1.Effect of the ABO Gene Variant c.917T>C on the Expression and Functional Role of B-Glycosyltransferase.
Shuang LIANG ; Fan WU ; Yan-Lian LIANG ; Tong LIU ; Li-Yan SUN ; Yu-Qing SU
Journal of Experimental Hematology 2025;33(1):269-275
OBJECTIVE:
By analyzing the correlation between genotypes and phenotypes, we explored the impact of the variant c.917T>C (p.L306P) in the ABO*B.01 allele on the expression and function of B-glycosyltransferase (GTB). This study aims to elucidate the molecular mechanisms underlying the occurrence of this subtype.
METHODS:
The study subjects included a blood donor specimen with incompatible forward and reverse ABO typing results. ABO phenotyping was determined using ABO blood group serology and GTB activity testing. Subsequently, Sanger sequencing and third-generation sequencing based on the PacBio platform were employed to sequence the ABO gene, resulting in the determination of haplotype sequences. Mutations were identified through sequence alignment. An in vitro cell expression system was established to assess the impact of the mutation site on antigen expression.
RESULTS:
The index case in this study was identified as B subtype with the allelic genotype c.917T>C in ABO*B.01/ABO*O.01.01 , which has not been previously reported. in vitro expression results revealed decreased levels of GTB expression and overall GTB activity in the mutant cells. Furthermore, the expression of the B antigen on the cell membrane was weaker in the mutant cells compared to the wild-type cells.
CONCLUSION
The p.L306P variation caused by the c.917T>C mutation in the ABO*B.01 allele may be a genetic factor contributing to the reduced expression of B antigens on the surface of red blood cells.
Humans
;
ABO Blood-Group System/genetics*
;
Alleles
;
Genotype
;
Mutation
;
Glycosyltransferases/genetics*
;
Haplotypes
;
Phenotype
2.The Frequency Difference of Red Blood Cell Group Gene Haplotypes among Han, Indian and Uyghur Populations in Shenzhen Region.
Tong LIU ; Jin QIU ; Fan WU ; Yan-Lia LIANG ; Li-Yan SUN ; Zhi-Hui DENG ; Shuang LIANG
Journal of Experimental Hematology 2025;33(3):863-868
OBJECTIVE:
To study the genetic polymorphism of red blood cell blood group among in Shenzhen Han, Indian and Xinjiang Uyghur populations, to provide scientific basis for the demand prediction and collection strategy of rare blood group, and to explore the genetic differences of blood group between Han and Caucasians.
METHODS:
The haplotypes of antigen coding genes of 10 target blood group systems from 87 Han Chinese and 50 Indian blood donors in Shenzhen, and 49 healthy Uyghur people in Xinjiang were obtained by three-generation sequencing technology, and the polymorphism and frequency characteristics were analyzed.
RESULTS:
Only a single genotype was detected the Langereis and Vel blood group systems in samples from three different populations. Only one genotype of Dombrock blood group was detected in Shenzhen Han, and Junior blood group in Xinjiang Uygur populations. In the MNS, Duffy, Kidd, Dombrock and Junior blood group systems, the haplotype frequency of Indian and Uyghur people was significantly different from that of Han people. Compared with the Han ethnic group, the rare blood group s-, Fy(a-), Jk(a-b-), and Do(a+b-) have a higher frequency among the Uyghur and Indian populations.
CONCLUSION
Haplotype frequencies of antigen genes for MNS, Duffy, Kidd, Dombrock and Junior blood group system in Shenzhen Han, Indian and Uyghur populations displayed a polymorphic difference with unique distribution characteristics different from the ethnic groups in other regions.
Humans
;
Blood Group Antigens/genetics*
;
China/ethnology*
;
Erythrocytes
;
Ethnicity/genetics*
;
Gene Frequency
;
Genotype
;
Haplotypes
;
India/ethnology*
;
Polymorphism, Genetic
;
White People/genetics*
;
Central Asian People/genetics*
;
East Asian People/genetics*
3.Application of Third-Generation Sequencing Technology in RHD Genotyping of a Chinese Pedigree with Weak D Phenotype.
Ling MA ; Tai-Xiang LIU ; Li-Li SHI ; Chen-Chen FENG ; Ruo-Yang ZHANG ; Fang ZHAO
Journal of Experimental Hematology 2025;33(4):1199-1202
OBJECTIVE:
To investigate the molecular mechanism of weak D phenotype in a Chinese family.
METHODS:
Routine Rh typing tests were performed first, and RHD exons 1-10 of the proband and his family members were sequenced by first-generation sequencing. RHD zygosity was also determined. Third-generation sequencing was used to analyze the haplotypes of the RHD gene.
RESULTS:
The proband showed a weak D serological phenotype. First-generation sequencing revealed a c.787G>A point mutation in exon 5. The family pedigree investigation showed that the proband and his younger sister had the same serological phenotype and molecular mechanism. His father carried this gene mutation, while his mother and younger brother were normal. Hybrid box was not detected, suggesting that all the family members did not have a haplotype with a complete deletion of the RHD gene. The results of third-generation sequencing showed that the proband and his sister inherited the weak D allele from their father and the non-functional allele RHD -CE(3-9)-D from their mother, respectively.
CONCLUSION
Third-generation sequencing technology enables haplotype analysis of the RHD gene and can detect complex genotypes such as genetic exchanges between RHD and RHCE combined with other mutations.
Female
;
Humans
;
Male
;
Alleles
;
Exons
;
Genotype
;
Haplotypes
;
High-Throughput Nucleotide Sequencing
;
Pedigree
;
Phenotype
;
Rh-Hr Blood-Group System/genetics*
;
East Asian People/genetics*
4.Molecular Biological Analysis of ABO Blood Group Ael and Bel Subtype.
Xin LIU ; Ying XIE ; Shu-Ling DONG ; Shu-Ya WANG ; Yong-Kui KONG
Journal of Experimental Hematology 2025;33(5):1422-1428
OBJECTIVE:
The molecular biology of alleles of ABO blood group Ael and Bel subtype from two samples was analyzed to explore the effect of mutations on the structure of glycosyltransferase.
METHODS:
The ABO phenotypes were identified by serological techniques, then exons 6 and 7 of ABO gene were amplified and sequenced, combined with haplotype analysis to determine the genotypes. Finally, homology modeling of the mutated A/B glycosyltransferase were conducted by Modeller software and the effect of mutations on the spatial structure was analyzed by PyMol software.
RESULTS:
The serological phenotypes of the two samples were Ael and Bel, and their genotypes were ABO*AW.37/ABO*O.01.01 and ABO*BEL.03/ABO*O.01.01, respectively. The three-dimensional structure modeling of the protein showed that, compared to the wild-type glycosyltransferase, two hydrogen bonds between the side chain of p.Glu314 and surrounding amino acid disappeared in the p.Lys314Glu mutant GTA; the hydrogen bonds between the side chain of p.Trp168 and surrounding amino acid also disappeared, and the hydrogen bond between the main chain of p.Trp168 and p.Gly165 was shortened to 3.3 Å in the p.Arg168Trp mutant GTB.
CONCLUSION
Mutations in exon 7 of ABO gene c.940A>G and c.502C>T are keys to the formation of AW.37 and BEL.03 alleles, resulting in decreased expression of A and B antigens, respectively.
ABO Blood-Group System/classification*
;
Humans
;
Genotype
;
Mutation
;
Alleles
;
Glycosyltransferases/genetics*
;
Exons
;
Haplotypes
;
Phenotype
;
Models, Molecular
5.Association of MICA gene polymorphisms and SNP loci with susceptibility to rosacea.
Xiangli YIN ; Quan ZHU ; Ji LI ; Yizhou ZOU ; Qizhi LUO
Journal of Central South University(Medical Sciences) 2025;50(3):319-330
OBJECTIVES:
The major histocompatibility complex class I chain-related gene A (MICA), a component of the human leukocyte antigen (HLA) gene complex, is involved in the pathogenesis of various diseases including cancers and autoimmune disorders. Rosacea, a chronic inflammatory skin disease with a complex pathogenesis, potentially influenced by genetic and autoimmune factors. This study aims to investigate the relationship among MICA gene polymorphisms, single nucleotide polymorphisms (SNPs), and susceptibility to rosacea, thereby offering new insights into the disease mechanism.
METHODS:
Peripheral blood DNA samples were collected from 84 patients with rosacea (rosacea group) and 223 healthy volunteers (control group) who visited the Dermatology Outpatient Department of Xiangya Hospital of Central South University between November 2017 and November 2019. MICA genotyping was performed using polymerase chain reaction-sequencing-based typing (PCR-SBT) and the next-generation sequencing (NGS), and the accuracy of the 2 methods was compared. The frequency distributions of MICA alleles between the 2 groups were analyzed. Amino acid clustering and SNP site analyses were conducted to identify haplotype-linked SNPs and to classify MICA polymorphic variants. Distribution differences of these classifications between groups were also examined.
RESULTS:
Blood tests in rosacea patients showed mildly elevated, with no significant changes in lymphocyte counts. Both PCR-SBT and NGS accurately identified MICA alleles. The most common alleles in the rosacea group were MICA*010:01, MICA*008:04, and MICA*019:01. The frequencies of MICA*002:01 and MICA*027 were significantly lower in the rosacea group compared to controls (6.55% vs 18.16% and 1.19% vs 5.38%, respectively), while and MICA*010:01 were significantly higher (7.74% vs 3.36% and 31.55% vs 18.61%, respectively; all P<0.05). Five short tandem repeat (STR) alleles were identified. Frequencies of MICA-A4 and MICA-A9 were lower in the rosacea group than in the control group (16.07% vs 23.32% and 7.74% vs 17.26%, respectively), whereas MICA-A6 was higher (10.12% vs 4.03%; all P<0.05). Clustering and SNP analysis identified 6 linked SNP sites, classifying MICA variants into Type I (C36+M129+K173+G206+W210+S215) and Type II (Y36+V129+E173+S206+R210+T215). Type I MICA variants were significantly associated with rosacea susceptibility.
CONCLUSIONS
MICA gene polymorphisms are associated with susceptibility to rosacea, and there are 6 linked SNP sites within the MICA gene. Based on this, MICA polymorphic variants are classified into Type I and Type II, with Type I being more closely associated with disease development of rosacea.
Humans
;
Polymorphism, Single Nucleotide
;
Histocompatibility Antigens Class I/genetics*
;
Rosacea/genetics*
;
Genetic Predisposition to Disease/genetics*
;
Female
;
Male
;
Adult
;
Middle Aged
;
Genotype
;
Alleles
;
Gene Frequency
;
Haplotypes
;
Case-Control Studies
;
Aged
;
High-Throughput Nucleotide Sequencing
6.Forensic performance and genetic background analyses of Guizhou Chuanqing population using a self-constructed microhaplotype panel.
Hongling ZHANG ; Changyun GU ; Qiyan WANG ; Xiaolan HUANG ; Qianchong RAN ; Zheng REN ; Yubo LIU ; Yansha LUO ; Shuaiji PAN ; Meiqing YANG ; Jingyan JI ; Xiaoye JIN
Journal of Southern Medical University 2025;45(7):1442-1450
OBJECTIVES:
To investigate the ethnic origin of Chuanqing people, one of the largest unidentified ethnic groups in Guizhou, China, and analyze its genetic relationships with surrounding populations.
METHODS:
Based on a self-developed microhaplotype system, we conducted genotyping and analyzed the genetic distribution of microhaplotype loci and their forensic applicability in Chuanqing population in Guizhou Province. Using the microhaplotype data from different intercontinental populations and previously reported data from Han population living in Guizhou Province, we systematically investigated the genetic background of Chuanqing people through population genetic approaches, including genetic distance estimation, principal component analysis, and phylogenetic tree construction.
RESULTS:
Among the studied population, the number of haplotype per microhaplotype ranged from 6 to 25. The average expected heterozygosity (He), observed heterozygosity (Ho), power of discrimination (PD), and probability of exclusion (PE) were 0.8291, 0.8301, 0.9387, and 0.6593, respectively. The cumulative power of discrimination (CPD) and cumulative probability of exclusion (CPE) for these 33 loci were 1-2.62×10-41 and 1-7.64×10-17, respectively. Population genetic analyses revealed that the Chuanqing population had close genetic relationships with the East Asian populations, especially the local Guizhou Han population, Beijing Han population and the Han populations living in southern China.
CONCLUSIONS
The 33 microhaplotypes exhibit high levels of genetic diversity in the Guizhou Chuanqing population, highlighting their potentials for both forensic identification and parentage testing. The Han populations might have contributed a significant amount of genetic material to the Chuanqing population during the formation and development of the latter.
Humans
;
China/ethnology*
;
Ethnicity/genetics*
;
Forensic Genetics/methods*
;
Genetics, Population
;
Genotype
;
Haplotypes
;
Phylogeny
;
East Asian People/genetics*
7.Association analysis between forkhead box E1 gene and non-syndromic cleft lip with or without cleft palate in Han Chinese population.
Sixuan JIA ; Sidi ZHANG ; Yue YOU ; Jialin SUN ; Shijun DUAN ; Bing SHI ; Zhonglin JIA
West China Journal of Stomatology 2025;43(1):28-36
OBJECTIVES:
This study aims to explore the association between single nucleotide polymorphisms (SNPs) loci near the haplotype region hg19 chr9:100560865-100660865 of the forkhead box E1 (FOXE1) gene and the occurrence of non-syndromic cleft lip with or without cleft palate (NSCL/P) in western Han Chinese population.
METHODS:
In the first stage, our study recruited 159 NSCL/P patients and performed targeted region sequencing to screen SNPs loci near the haplotype region of the FOXE1 gene associated with NSCL/P. In the second stage, we selected 21 common SNPs and re-enrolled 1 000 non-syndromic cleft lip only (NSCLO) patients, 1 000 non-syndromic cleft palate only (NSCPO) patients, and 1 000 normal controls to verify the association. PLINK software was used to perform Hardy-Weinberg equilibrium (HWE) test. Association analysis for common variants, gene burden analysis for rare mutations, and function prediction of SNPs with non-synonymous mutations were performed using Mutation Taster and other software programs.
RESULTS:
In the first stage, 126 variants, including 76 single nucleotide variants and 50 insertion-deletions were identified. All the included SNPs confirmed to HWE, and the results of gene burden analysis and prediction of functional harmfulness for rare variants were not statistically significant. Association analysis showed that rs13292899 of the FOXE1 gene was significantly associated with NSCL/P (P=1.85E-27) and was also correlated with NSCLO (P=6.41E-23) and non-syndromic cleft lip with cleft palate (NSCLP) (P=2.36E-15) subtypes. In the validation phase, rs79268293 (P=0.013, P=0.022), rs10983951 (P=0.009 2, P=0.007 6), rs117227387 (P=0.009 2, P=0.007 6), rs3758250 (P=0.009 2, P=0.007 6), and rs116899397 (P=0.009 2, P=0.007 6) were significantly associated with NSCLO and NSCPO; rs13292899 (P=0.008 5), rs74606599 (P=0.008 3), rs143226042 (P=0.008 3), and rs117236550 (P=0.01) were associated with the occurrence of NSCLO; and rs12343182 (P=0.008 7), rs10119760 (P=0.012), rs10113907 (P=0.012), and rs13299924 (P=0.012) were associated with the occurrence of NSCPO.
CONCLUSIONS
This study found a new susceptible SNP rs13292899 of the FOXE1 gene that is closely associated with NSCL/P and NSCLO subtype and 13 other SNPs associated with NSCLO or NSCPO.
Female
;
Humans
;
Male
;
China
;
Cleft Lip/genetics*
;
Cleft Palate/genetics*
;
Forkhead Transcription Factors/genetics*
;
Haplotypes
;
Polymorphism, Single Nucleotide
;
East Asian People/genetics*
8.Application of Familial Y-STR Haplotype Mismatch Tolerance in Genealogy Inference.
Meng-Jie TONG ; Ke ZHANG ; Cai-Xia LI ; Guang-Feng ZHANG ; Wen-Jie ZHANG ; Lan YANG ; Qing-Tang HOU ; Jing LIU
Journal of Forensic Medicine 2023;39(3):296-304
OBJECTIVES:
To provide a guideline for genealogy inference and family lineage investigation through a study of the mismatch tolerance distribution of Y-STR loci in Chinese Han male lineage.
METHODS:
Three Han lineages with clear genetic relationships were selected. YFiler Platinum PCR amplification Kit was used to obtain the typing data of 35 Y-STR loci in male samples. The variation of Y-STR haplotypes in generation inheritance and the mismatch tolerance at 1-7 kinship levels were statistically analyzed.
RESULTS:
Mutations in Y-STR were family-specific with different mutation loci and numbers of mutation in different lineages. Among all the mutations, 66.03% were observed on rapidly and fast mutating loci. At 1-7 kinship levels, the number of mismatch tolerance ranged from 0 to 5 on all 35 Y-STR loci, with a maximum step size of 6. On medium and slow mutant loci, the number of mismatch tolerance ranged from 0 to 2, with a maximum step size of 3; on rapidly and fast mutant loci, the number of mismatch tolerance ranged from 0 to 3, with a maximum step size of 6.
CONCLUSIONS
Combined use of SNP genealogy inference and Y-STR lineage investigation, both 0 and multiple mismatch tolerance need to be considered. Family lineage with 0-3 mismatch tolerance on all 35 Y-STR loci and 0-1 mismatch tolerance on medium and slow loci can be prioritized for screening. When the number of mismatch tolerance is eligible, family lineages with long steps should be carefully excluded. Meanwhile, adding fast mutant loci should also be handled with caution.
Male
;
Humans
;
Haplotypes
;
Chromosomes, Human, Y/genetics*
;
Microsatellite Repeats
;
Mutation
;
Asian People/genetics*
;
China
;
Genetics, Population
9.Analysis of Gene Recombination between HLA-B and -DRB1, HLA-DQB1 and -DPB1 Loci.
Chen CHEN ; Wei WANG ; Nan-Ying CHEN ; Li-Na DONG ; Wei ZHANG ; Fa-Ming ZHU
Journal of Experimental Hematology 2023;31(3):855-859
OBJECTIVE:
To investigate the recombinations within the human leukocyte antigen (HLA) region in two families.
METHODS:
Genomic DNA was extracted from the peripheral blood specimens of the different family members. HLA-A, -B, -C, -DRB1, -DQB1 and -DPB1 loci were genotyped using polymerase chain reaction-sequence specific oligonucleotide probing technique (PCR-SSO) and next-generation sequencing technique. HLA haplotype was determined by genetic analysis of the pedigree.
RESULTS:
The haplotypes of HLA-A*11:01~C*03:04~B*13:01~DRB1*12:02~DQB1*03:01~DPB1*05:01:01G and HLA-A*03:01~C*04:01~B*35:03~DRB1*12:01~DQB1*03:01~DPB1*04:01:01G in the family 1 were recombined between HLA-B and HLA-DRB1 loci, which formed the haplotype of HLA-A*11:01~C*03:04~B*13:01~DRB1* 12:01~DQB1*03:01~DPB1*04:01:01G. The haplotypes of HLA-A *02:06~C*03:03~B*35:01~DRB1*08:02~DQB1*04:02~ DPB1*13:01:01G and HLA-A *11:01~C*07:02~B*38:02~DRB1*15:02~DQB1*05:01~DPB1*05:01:01G in the family 2 were recombined between HLA-DQB1 and HLA-DPB1 loci, which formed the haplotype of HLA-A*02:06~C*03:03~B*35:01~ DRB1*08:02~DQB1*04:02~DPB1*05:01:01G.
CONCLUSION
The gene recombination events between HLA-B and -DRB1, HLA-DQB1 and -DPB1 loci were found respectively in two Chinese Han families.
Humans
;
Gene Frequency
;
HLA-DQ beta-Chains/genetics*
;
HLA-B Antigens/genetics*
;
Histocompatibility Antigens Class I/genetics*
;
Haplotypes
;
HLA-A Antigens/genetics*
;
HLA-DRB1 Chains/genetics*
;
Recombination, Genetic
;
Alleles
10.Association study between haplotypes of WNT signaling pathway genes and nonsyndromic oral clefts among Chinese Han populations.
Meng Ying WANG ; Wen Yong LI ; Ren ZHOU ; Si Yue WANG ; Dong Jing LIU ; Hong Chen ZHENG ; Zhi Bo ZHOU ; Hong Ping ZHU ; Tao WU ; Yong Hua HU
Journal of Peking University(Health Sciences) 2022;54(3):394-399
OBJECTIVE:
To explore whether WNT signaling pathway genes were associated with non-syndromic oral clefts (NSOC) based on haplotypes analyses among 1 008 Chinese NSOC case-parent trios.
METHODS:
The genome-wide association study (GWAS) data of 806 Chinese non-syndromic cleft lip with or without cleft palate (NSCL/P) trios and 202 Chinese non-syndromic cleft palate (NSCP) case-parent trios were drawn from the International Consortium to Identify Genes and Interactions Controlling Oral Clefts (ICOCs) study GWAS data set, whose Chinese study population were recruited from four provinces in China, namely Taiwan, Shandong, Hubei, and Sichuan provinces. The process of DNA genotyping was conducted by the Center for Inherited Disease Research in the Johns Hopkins University, using Illumina Human610-Quad v.1_B Bead Chip. The method of sliding windows was used to determine the haplotypes for analyses, including 2 SNPs haplotypes and 3 SNPs haplotypes. Haplotypes with a frequency lower than 1% were excluded for further analyses. To further assess the association between haplotypes and NSOC risks, and the transmission disequilibrium test (TDT) was performed. The Bonferroni method was adopted to correct multiple tests in the study, with which the threshold of statistical significance level was set as P < 0.05 divided by the number of tests, e.g P < 3.47×10-4 in the current stu-dy. All the statistical analyses were performed by using plink (v1.07).
RESULTS:
After quality control, a total of 144 single nucleotide polymorphisms (SNPs) mapped in seven genes in WNT signaling pathway were included for the analyses among the 806 Chinese NSCL/P trios and 202 Chinese NSCP trios. A total of 1 042 haplotypes with frequency higher than 1% were included for NSCL/P analyses and another 1 057 haplotypes with frequency higher than 1% were included for NSCP analyses. Results from the TDT analyses showed that a total of 69 haplotypes were nominally associated with the NSCL/P risk among Chinese (P < 0.05). Another 34 haplotypes showed nominal significant association with the NSCP risk among Chinese (P < 0.05). However, none of these haplotypes reached pre-defined statistical significance level after Bonferroni correction (P>3.47×10-4).
CONCLUSION
This study failed to observe any statistically significant associations between haplotypes of seven WNT signaling pathway genes and the risk of NSOC among Chinese. Further studies are warranted to replicate the findings here.
Cleft Lip/genetics*
;
Cleft Palate/genetics*
;
Genetic Predisposition to Disease
;
Genome-Wide Association Study
;
Genotype
;
Haplotypes
;
Humans
;
Polymorphism, Single Nucleotide
;
Wnt Signaling Pathway/genetics*

Result Analysis
Print
Save
E-mail