1.A novel C-3-substituted oleanolic acid benzyl amide derivative exhibits therapeutic potential against influenza A by targeting PA-PB1 interactions and modulating host macrophage inflammation.
Kunyu LU ; Jianfu HE ; Chongjun HONG ; Haowei LI ; Jiaai RUAN ; Jinshen WANG ; Haoxing YUAN ; Binhao RONG ; Chan YANG ; Gaopeng SONG ; Shuwen LIU
Acta Pharmaceutica Sinica B 2025;15(8):4156-4173
The influenza A virus (IAV), renowned for its high contagiousness and potential to catalyze global pandemics, poses significant challenges due to the emergence of drug-resistant strains. Given the critical role of RNA polymerase in IAV replication, it stands out as a promising target for anti-IAV therapies. In this study, we identified a novel C-3-substituted oleanolic acid benzyl amide derivative, A5, as a potent inhibitor of the PAC-PB1N polymerase subunit interaction, with an IC50 value of 0.96 ± 0.21 μmol/L. A5 specifically targets the highly conserved PAC domain and demonstrates remarkable efficacy against both laboratory-adapted and clinically isolated IAV strains, including multidrug-resistant strains, with EC50 values ranging from 0.60 to 1.83 μmol/L. Notably, when combined with oseltamivir, A5 exhibits synergistic effects both in vitro and in vivo. In a murine model, dose-dependent administration of A5 leads to a significant reduction in IAV titers, resulting in a high survival rate among treated mice. Additionally, A5 treatment inhibits virus-induced Toll-like receptor 4 activation, attenuates cytokine responses, and protects against IAV-induced inflammatory responses in macrophages. In summary, A5 emerges as a novel inhibitor with high efficiency and broad-spectrum anti-influenza activity.
2.Explored the Function of Electromagnetic Compatibility (EMC) of Medical Devices from the Perspective of Test.
Zhipeng GAO ; Moda XU ; Wei ZHANG ; Yanling LIU ; Xiangjun CAO ; Haoxing HE
Chinese Journal of Medical Instrumentation 2023;47(4):442-444
OBJECTIVE:
To improve the electromagnetic compatibility (EMC) quality of medical devices, improve the efficiency of EMC testing, and promote the speed of market approval.
METHODS:
The unqualified cases of EMC test items of medical devices in recent years were statistically analyzed, and the reasons of low EMC quality of medical devices were analyzed from the perspective of test.
RESULTS:
Based on the analysis of the reasons, the suggestions were given from the perspectives of medical device manufacturers and testing organizations.
CONCLUSIONS
In order to ensure the quality of EMC of medical devices, medical device manufacturers, regulatory authorities and inspection and testing institutions should strengthen the monitoring and evaluation of medical device electromagnetic compatibility, to ensure the safety of products work together to promote the development of the medical device industry healthily and orderly.
Electromagnetic Phenomena
;
Industry
;
Electromagnetic Fields

Result Analysis
Print
Save
E-mail