1.Advances in application of digital technologies in surgery for ankylosing spondylitis.
Haorui YANG ; Lu LIU ; Nan KANG
Chinese Journal of Reparative and Reconstructive Surgery 2025;39(7):896-902
OBJECTIVE:
To explore the application progress and clinical value of digital technologies in the surgical treatment of ankylosing spondylitis (AS).
METHODS:
By systematically reviewing domestic and international literature, the study summarized the specific application scenarios, operational procedures, and technical advantages of digital technologies [including preoperative three-dimensional (3D) planning, intraoperative real-time navigation, robot-assisted surgery, and 3D printing] in AS surgery, and analyzed their impact on surgical accuracy, complication rates, and clinical outcomes.
RESULTS:
Digital technologies significantly improve the precision and safety of AS surgery. Preoperative 3D planning enables personalized surgical protocols; intraoperative navigation systems dynamically adjusts surgical trajectories, reducing the risk of iatrogenic injury; robot-assisted surgery can minimize human errors and enhance implant positioning accuracy; 3D-printed anatomical models and guides optimize the correction of complex spinal deformities. Furthermore, the combined applications of these technologies shorten operative time, reduce intraoperative blood loss, decrease postoperative complications (e.g., infection, nerve injury), and accelerate functional recovery.
CONCLUSION
Through multidimensional integration and innovation, digital technologies provide a precise and minimally invasive solution for AS surgical treatment. Future research should focus on their synergy with biomaterials and intelligent algorithms to further refine surgical strategies and improve long-term prognosis.
Humans
;
Spondylitis, Ankylosing/diagnostic imaging*
;
Printing, Three-Dimensional
;
Surgery, Computer-Assisted/methods*
;
Robotic Surgical Procedures/methods*
;
Imaging, Three-Dimensional
;
Postoperative Complications/prevention & control*
;
Digital Technology
;
Models, Anatomic
2.Design and functional validation of a chimeric E3 ubiquitin ligase targeting the spike protein S1 subunit of SARS-CoV-2.
Yan DAI ; Jiayu LIN ; Xiaoya ZHANG ; Haorui LU ; Lang RAO
Chinese Journal of Biotechnology 2024;40(11):4071-4083
The spike (S) protein plays a crucial role in the entry of SARS-CoV-2 into host cells. The S protein contains two subunits, S1 and S2. The receptor-binding domain (RBD) of the S1 subunit binds to the receptor angiotensin-converting enzyme 2 (ACE2) to enter the host cells. Therefore, degrading S1 is one of the feasible strategies to inhibit SARS-CoV-2 infection. The purpose of this study is to develop a degradation tool targeting S1. First, we constructed a HEK 293 cell line stably expressing S1 by using a three-plasmid lentivirus system. The overexpression of the mitochondrial E3 ubiquitin protein ligase 1 (MUL1) in this cell line promoted the ubiquitination of S1 and accelerated its proteasomal degradation. Further research showed the polyubiquitination of S1 catalyzed by MUL1 mainly occurred via the addition of K48-linked chains. Moreover, the specific peptide LCB1, which targets and recognizes S1, was combined with MUL1 to create the chimeric E3 ubiquitin ligase LCB1-MUL1. In comparison to MUL1, this chimeric enzyme demonstrated improved catalytic efficiency, resulting in a reduction of S1's half-life from 12 h to 9 h. In summary, this study elucidated the mechanism by which MUL1 promotes the ubiquitination modification of S1 and facilitates its degradation through the proteasome, and preliminarily validated the effectiveness of targeted degradation of S1 by chimeric enzyme LCB1-MUL1.
Ubiquitin-Protein Ligases/genetics*
;
Humans
;
HEK293 Cells
;
Ubiquitination
;
Spike Glycoprotein, Coronavirus/genetics*
;
SARS-CoV-2/metabolism*
;
Recombinant Fusion Proteins/metabolism*
;
Proteasome Endopeptidase Complex/genetics*
;
COVID-19/metabolism*
;
Angiotensin-Converting Enzyme 2/genetics*

Result Analysis
Print
Save
E-mail