1.Effect and mechanism of compatibility of Astragali Radix-Puerariae Lobatae Radix on ferroptosis in T2DM insulin resistance rats
Shuang WEI ; Feng HAO ; Wenchun ZHANG ; Zhangyang ZHAO ; Ji LI ; Dongwei HAN ; Huan XING
China Pharmacy 2025;36(1):57-63
OBJECTIVE To explore the effect and potential mechanism of the compatibility of Astragali Radix-Puerariae Lobatae Radix on ferroptosis of liver cells in type 2 diabetes mellitus (T2DM) insulin resistance (IR) rats. METHODS Sixty male SD rats were randomly divided into control group (12 rats) and modeling group (48 rats). The modeling group was fed with a high- fat diet for 4 consecutive weeks and then given a one-time tail vein injection of 1% streptozotocin to establish T2DM IR model. The model rats were randomly divided into model group, the compatibility of Astragali Radix-Puerariae Lobatae Radix group [QG group, 4.05 g/(kg·d), intragastric administration], ferroptosis inhibitor ferrostatin-1 group [Fer-1 group, 5 mg/kg by intraperitoneal injection, once every other day], the compatibility of Astragali Radix-Puerariae Lobatae Radix+ferroptosis inducer erastin group [QG+erastin group, 4.05 g/(kg·d) by intragastric administration+erastin 10 mg/(kg·d), intraperitoneal injection]. After 4 weeks of intervention, serum fasting blood glucose (FBG) and fasting insulin (FINS) were measured in each group of rats, and homeostasis model assessment of insulin resistance (HOMA-IR) and the natural logarithm of insulin action index(IAI) were calculated; the serum levels of total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), aspartate transaminase (AST) and alanine transaminase (ALT), Fe2+ and Fe content, glutathione (GSH), malondialdehyde (MDA) and superoxide dismutase (SOD) levels, NADP+/NADPH ratio and reactive oxygen species (ROS) were determined. The pathological morphology of its liver tissue was observed; the protein expressions of glutathione peroxidase 4 (GPX4), ferritin heavy chain 1 (FTH1), long-chain acyl-CoA synthetase 3 (ACSL3), ACSL4, ferritin mitochondrial (FTMT), and cystine/glutamate anti-porter (xCT) in the liver tissue of rats were detected. RESULTS Compared with control group, the liver cells in the model group of rats showed disordered arrangement, swelling, deepened nuclear staining, and more infiltration of inflammatory cells, as well as a large number of hepatocyte vacuoles and steatosis; FBG (after medication), the levels of TC, TG, LDL-C, AST, ALT, FINS, MDA and ROS, HOMA-IR, Fe2+ and Fe content, NADP+/NADPH ratio and protein expression of ACSL4 were significantly increased or up-regulated, while the levels of HDL-C, GSH and SOD, IAI, protein expressions of GPX4, FTH1, ACSL3, FTMT and xCT were significantly reduced or down-regulated (P<0.01). Compared with the model group, both QG group and Fer-1 group showed varying degrees of improvement in pathological damage of liver tissue and the levels of the above indicators, the differences in the changes of most indicators were statistically significant (P<0.01 or P<0.05). Compared with QG group, the improvement of the above indexes of QG+erastin group had been reversed significantly (P<0.01). CONCLUSIONS The compatibility decoction of Astragali Radix-Puerariae Lobatae Radix can reduce the level of FBG in T2DM IR rats, and alleviate IR degree, ion overload and pathological damage of liver tissue. The above effects are related to the inhibition of ferroptosis.
2.Principles, technical specifications, and clinical application of lung watershed topography map 2.0: A thoracic surgery expert consensus (2024 version)
Wenzhao ZHONG ; Fan YANG ; Jian HU ; Fengwei TAN ; Xuening YANG ; Qiang PU ; Wei JIANG ; Deping ZHAO ; Hecheng LI ; Xiaolong YAN ; Lijie TAN ; Junqiang FAN ; Guibin QIAO ; Qiang NIE ; Mingqiang KANG ; Weibing WU ; Hao ZHANG ; Zhigang LI ; Zihao CHEN ; Shugeng GAO ; Yilong WU
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(02):141-152
With the widespread adoption of low-dose CT screening and the extensive application of high-resolution CT, the detection rate of sub-centimeter lung nodules has significantly increased. How to scientifically manage these nodules while avoiding overtreatment and diagnostic delays has become an important clinical issue. Among them, lung nodules with a consolidation tumor ratio less than 0.25, dominated by ground-glass shadows, are particularly worthy of attention. The therapeutic challenge for this group is how to achieve precise and complete resection of nodules during surgery while maximizing the preservation of the patient's lung function. The "watershed topography map" is a new technology based on big data and artificial intelligence algorithms. This method uses Dicom data from conventional dose CT scans, combined with microscopic (22-24 levels) capillary network anatomical watershed features, to generate high-precision simulated natural segmentation planes of lung sub-segments through specific textures and forms. This technology forms fluorescent watershed boundaries on the lung surface, which highly fit the actual lung anatomical structure. By analyzing the adjacent relationship between the nodule and the watershed boundary, real-time, visually accurate positioning of the nodule can be achieved. This innovative technology provides a new solution for the intraoperative positioning and resection of lung nodules. This consensus was led by four major domestic societies, jointly with expert teams in related fields, oriented to clinical practical needs, referring to domestic and foreign guidelines and consensus, and finally formed after multiple rounds of consultation, discussion, and voting. The main content covers the theoretical basis of the "watershed topography map" technology, indications, operation procedures, surgical planning details, and postoperative evaluation standards, aiming to provide scientific guidance and exploration directions for clinical peers who are currently or plan to carry out lung nodule resection using the fluorescent microscope watershed analysis method.
3.Analysis of gemcitabine adverse drug reactions and risk factors in Inner Mongolia
Shengnan YANG ; Wei SHI ; Yufang ZHAO ; Zhien LIU ; Wenpu LEI ; Yanan ZHANG ; Ke ZHAO ; Hao GUO
China Pharmacy 2025;36(4):486-490
OBJECTIVE To analyze the occurrence characteristics and risk factors of adverse drug reactions (ADR) of gemcitabine for injection in national centralized volume-based procurement (hereinafter referred to as “centralized procurement”), and provide reference for clinical safe drug use. METHODS A retrospective study was conducted to collect the relevant case reports of gemcitabine for injection reported to the National Adverse Drug Reaction Monitoring System by Inner Mongolia Autonomous Region from January 2022 to December 2023; basic information of patients, drug use status, patient outcomes, rational drug use and other information were collected, and the occurrence characteristics of ADRs with leukopenia, myelosuppression, neutropenia, thrombocytopenia and liver dysfunction were analyzed. Univariate analysis and multivariate Logistic regression were used to analyze the correlation of gender, age, combination of antitumor drugs, original malignant tumor and drug dose with ADR. RESULTS A total of 315 cases reports (315 patients) of gemcitabine-induced ADR were included in this study, with a male-to-female ratio of 1.42∶1 and age of (61.17±9.13) years. The primary malignant tumor was pancreatic cancer (73 cases, 23.17%). Leukopenia, myelosuppression and nausea were the most common ADR, followed by neutropenia, thrombocytopenia, liver dysfunction and so on. The severity grade of ADR was mainly 1-2, and the outcome of most ADR was good. Multivariate Logistic regression analysis showed that combination of antitumor drugs was a risk factor for myelosuppression and neutropenia (RR=2.154, 95%CI: 1.218- 3.807, P=0.008; RR=3.099, 95%CI: 1.240-7.744, P=0.016); gender (female) was a risk factor for leukopenia and liver dysfunction (RR=0.508, 95%CI: 0.302-0.853, P=0.010; RR=0.301, 95%CI: 0.102-0.887, P=0.029). In terms of drug use rationality, there were 143 cases (45.40%) of drug 126.com use in accordance with the indications of the label, and 172 cases (54.60%) of off-label drug use. Among them, the primary malignant tumors were bladder cancer, bile duct cancer and ovarian cancer, which ranked the top three off-label drug use. CONCLUSIONS The ADR caused by gemcitabine in Inner Mongolia is mainly in the blood and digestive systems. The severity of ADRs is mainly classified as 1-2 levels, and most ADRs have good outcomes. Gender (female) and combination medication are risk factors for gemcitabine-induced ADR. Appropriate chemotherapy regimen should be selected according to the patient’s condition and physical condition, and ADR monitoring in blood and digestive systems should be strengthened during medication of gemcitabine.
4.Construction of a Disease-Syndrome Integrated Diagnosis and Treatment System for Gastric "Inflammation-Cancer" Transformation Based on Multi-Modal Phenotypic Modeling
Hao LI ; Huiyao ZHANG ; Wei BAI ; Tingting ZHOU ; Guodong HUANG ; Xianjun RAO ; Yang YANG ; Lijun BAI ; Wei WEI
Journal of Traditional Chinese Medicine 2025;66(5):458-463
By analyzing the current application of multi-modal data in the diagnosis of gastric "inflammation-cancer" transformation, this study explored the feasibility and strategies for constructing a disease-syndrome integrated diagnosis and treatment system. Based on traditional Chinese medicine (TCM) phenomics, we proposed utilizing multi-modal data from literature research, cross-sectional studies, and cohort follow-ups, combined with artificial intelligence technology, to establish a multi-dimensional diagnostic and treatment index system. This approach aims to uncover the complex pathogenesis and transformation patterns of gastric "inflammation-cancer" progression. Additionally, by dynamically collecting TCM four-diagnostic information and modern medical diagnostic information through a long-term follow-up system, we developed three major modules including information extraction, multi-modal phenotypic modeling, and information output, to make it enable real-world clinical data-driven long-term follow-up and treatment of chronic atrophic gastritis. This system can provide technical support for clinical diagnosis, treatment evaluation, and research, while also offering insights and methods for intelligent TCM diagnosis.
5.Chemical consitituents and hypoglycemic activity of Qinhuai No. 1 Rehmannia glutinosa
Meng YANG ; Zhi-you HAO ; Xiao-lan WANG ; Chao-yuan XIAO ; Jun-yang ZHANG ; Shi-qi ZHOU ; Xiao-ke ZHENG ; Wei-sheng FENG
Acta Pharmaceutica Sinica 2025;60(1):205-210
Eight compounds were isolated and purified from the ethyl acetate part of 70% acetone extract of
6.The effect of rutaecarpine on improving fatty liver and osteoporosis in MAFLD mice
Yu-hao ZHANG ; Yi-ning LI ; Xin-hai JIANG ; Wei-zhi WANG ; Shun-wang LI ; Ren SHENG ; Li-juan LEI ; Yu-yan ZHANG ; Jing-rui WANG ; Xin-wei WEI ; Yan-ni XU ; Yan LIN ; Lin TANG ; Shu-yi SI
Acta Pharmaceutica Sinica 2025;60(1):141-149
Metabolic-associated fatty liver disease (MAFLD) and osteoporosis (OP) are two very common metabolic diseases. A growing body of experimental evidence supports a pathophysiological link between MAFLD and OP. MAFLD is often associated with the development of OP. Rutaecarpine (RUT) is one of the main active components of Chinese medicine Euodiae Fructus. Our previous studies have demonstrated that RUT has lipid-lowering, anti-inflammatory and anti-atherosclerotic effects, and can improve the OP of rats. However, whether RUT can improve both fatty liver and OP symptoms of MAFLD mice at the same time remains to be investigated. In this study, we used C57BL/6 mice fed a high-fat diet (HFD) for 4 months to construct a MAFLD model, and gave the mice a low dose (5 mg·kg-1) and a high dose (15 mg·kg-1) of RUT by gavage for 4 weeks. The effects of RUT on liver steatosis and bone metabolism were then evaluated at the end of the experiment [this experiment was approved by the Experimental Animal Ethics Committee of Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences (approval number: IMB-20190124D303)]. The results showed that RUT treatment significantly reduced hepatic steatosis and lipid accumulation, and significantly reduced bone loss and promoted bone formation. In summary, this study shows that RUT has an effect of improving fatty liver and OP in MAFLD mice.
7.Analysis of regulation of prognosis,immune infiltration,and ferroptosis in sarcoma based on stemness index model
Jingxian WEI ; Lian MENG ; Hao SUN ; Tiantian ZHANG ; Chunxia LIU
Chinese Journal of Tissue Engineering Research 2025;29(19):4151-4160
BACKGROUND:The stemness index may be associated with the prognosis and immune infiltration of sarcoma,but the specific regulatory mechanism and characteristic genes have yet to be fully elucidated. OBJECTIVE:To investigate the correlation between stem cells and prognosis as well as immune infiltration in sarcoma employing the gene stemness index model and to identify the ferroptosis signature genes associated with sarcoma stem cells. METHODS:The sarcoma RNA sequencing data and related clinical information were obtained from the Cancer Genome Atlas(TCGA).The sarcoma RNA sequencing data were grouped using the sarcoma stemness index.Survival data were used to analyze prognosis between groups.Differentially expressed genes were obtained for pathway enrichment and immune infiltration analysis.Ferroptosis-related differential genes were used to construct a protein interaction network and analyze prognostic correlation.Rhabdomyosarcoma cell lines were cultured and divided into adherent cell group and stem cell group.The adherent cell group received no intervention,while the stem cell group was treated with serum-free culture to enrich stem cells in rhabdomyosarcoma cells.qRT-PCR was used to evaluate stemness markers,ferroptosis-related genes,and mRNA expression of ferroptosis-related markers in the cells. RESULTS AND CONCLUSION:(1)Patients were divided into high and low stemness index groups based on the median stemness index.The progression-free survival of patients in the high stemness index group was lower than that in the low stemness index group by disease risk prediction,suggesting poor prognosis.(2)According to GO and KEGG analysis,the groups with high and low stemness indices differed from one another.There were differences in immune infiltration between the high and low stemness index groups.Nine of the 23 ferroptosis-related genes in the differential genes have the potential to establish a highly correlated network of protein interactions.Patients with high expression of IDO1,IFNG,and AQP5 have a better prognosis,while those with high expression of CA9 have a poor prognosis.(3)The qRT-PCR results demonstrated a significant upregulation of stem cell-related markers NANOG,SOX2,and OCT4 mRNA expressions in the stem cell group compared to the adherent cell group(P<0.05).Compared to the adherent cell group,the stem cell group exhibited decreased mRNA expression level of ferroptosis-related marker SLC7A11(P<0.05)while showing increased levels of ACSL4,GPX4,FTH1,and COX2(P<0.05).Compared to the adherent cell group,the stem cell group displayed decreased mRNA expression level of differentially expressed gene CA9 alongside elevated levels of IDO1,IFNG,and AQP5(P<0.05).Stem cells were strongly associated with sarcoma survival and ferroptosis by bioinformatics analysis and experimental verification.Sarcoma stem cells have aberrant expression of CA9,IDO1,IFNG,and AQP5,which may serve as new targets for sarcoma therapy as well as diagnostic indicators.
8.Clinical application value of intracavitary PRP infusion combined with IVF-FET in patients with chronic endometritis
Xiaotong ZHANG ; Xiaoyuan HAO ; Rui FANG ; Shuyao HU ; Linkun MA ; Yaqi ZHAO ; Wei HAN
Chinese Journal of Blood Transfusion 2025;38(3):382-387
[Objective] To evaluate the clinical application value of intrauterine perfusion with platelet-rich plasma (PRP) combined with in vitro fertilization-frozen-thawed embryo transfer (IVF-FET) in patients with chronic endometritis (CE). [Methods] A randomized controlled trial (RCT) was conducted, enrolling 60 CE patients undergoing artificial cycle frozen embryo transfer at our hospital from January 2022 to January 2024. Participants were randomly divided into three groups: Group A (routine frozen embryo transfer, n=20), Group B (routine frozen embryo transfer + one PRP intrauterine perfusion, n=20), and Group C (routine frozen embryo transfer + two PRP intrauterine perfusions, n=20). Endometrial thickness during the transformation and transplantation phases, uterine artery pulsatility index (PI), resistance index (RI), systolic peak velocity/end-diastolic velocity (S/D) ratio during transplantation, serum levels of IL-2, IL-4, IL-6, IL-10, and TNF-α during transplantation, as well as biochemical pregnancy rate, clinical pregnancy rate, live birth rate, and early miscarriage rate were compared across groups. [Results] No significant differences in endometrial thickness were observed among the three groups during the transformation phase (P>0.05). During the transplantation phase, endometrial thickness in Groups C and B was significantly higher than in Group A[9.54 (8.96-10.22) and 8.90 (8.34-9.72) vs 8.37 (7.89-8.75) mm, P<0.05], with Group C showing greater thickness than Group B (Z=3.733, P<0.05). Endometrial thickness in Groups C and B during transplantation was significantly increased compared to their respective transformation phases (Z=2.191, 2.462; P<0.05). Groups C and B exhibited lower PI, RI, and S/D values than Group A[PI:1.87 (1.77-1.97), 1.94 (1.88-2.15) vs 2.43 (2.35-2.49); RI:0.75 (0.73-0.77), 0.78 (0.75-0.81) vs 0.84 (0.83-0.86); S/D:2.61 (2.33-3.42), 3.01 (2.20-3.93) vs 3.72 (3.06-4.49); P<0.05]. Group C demonstrated lower PI and RI than Group B (P<0.05). IL-2 levels in Groups C and B were higher than in Group A[3.88 (2.71-5.01), 3.59 (2.73-4.38) vs 3.16 (2.11-3.25) ng/L, P<0.05], while IL-4, IL-6, IL-10, and TNF-α levels were significantly lower (IL-4: Z=1.428, 2.421; IL-6: Z=1.754, 2.435; IL-10: Z=1.754, 2.854; TNF-α: Z=1.961, 1.765; P<0.05). Group C had lower IL-6 levels than Group B (Z=3.976, P<0.05). Biochemical pregnancy rate, clinical pregnancy rate, and live birth rate in Group C were significantly higher than in Group A (75% vs 40%, 70% vs 35%, 60% vs 20%, P<0.05). No significant differences in early miscarriage rates were observed among the groups (χ2=3.750, P>0.05). [Conclusion] Intrauterine autologous PRP perfusion in CE patients enhances pregnancy and live birth rates, improves pregnancy outcomes post-FET, and demonstrates superior efficacy in endometrial repair and receptivity with two PRP perfusions compared to a single perfusion. This provides a safe and effective therapeutic option for optimizing outcomes in CE patients with prior implantation failure.
9.Mechanism of imperatorin in ameliorating doxorubicin resistance of breast cancer based on transcriptomics
Yiting LI ; Wei DONG ; Xinli LIANG ; Hu WANG ; Yumei QIU ; Xiaoyun DING ; Hao ZHANG ; Huiyun BAO ; Xianxi LI ; Xilan TANG
China Pharmacy 2025;36(5):529-534
OBJECTIVE To investigate the ameliorative effect and potential mechanism of imperatorin (IMP) on doxorubicin (DOX) resistance in breast cancer. METHODS The effects of maximum non-toxic concentration (100 μg/mL) of IMP combined with different concentrations of DOX (12.5, 25, 50, 75, 100 μg/mL) on the proliferation of MCF-7/DOX cells were determined by MTT method. MCF-7/DOX cells were divided into blank control group (1‰ dimethyl sulfoxide), DOX group (50 μg/mL), IMP+DOX group (100 μg/mL IMP+50 μg/mL DOX) and IMP group (100 μg/mL). mRNA and protein expressions of multidrug resistance protein 1 (MDR1) and multidrug resistance-associated protein 1 in each group were measured. The relevant pathways and targets involved in the improvement of DOX resistance in breast cancer cells by IMP were screened and validated by using transcriptome sequencing technology, along with gene ontology (GO) enrichment analyses and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. RESULTS Compared with DOX alone, the combination of IMP and DOX reduced the half inhibitory concentration of DOX on MCF-7/DOX cells from 81.965 μg/mL to 43.170 μg/mL, the reverse fold was 1.90, and the mRNA expression of MDR1 was significantly down-regulated (P<0.05). The results of GO enrichment analyses and KEGG pathway enrichment analyses indicated that the reversal of DOX resistance in breast cancer by IMP was mainly associated with the regulation of biological processes such as detoxification, multiple biological processes, and cell killing. The main pathway involved was the p53 signaling pathway, and the key targets mainly included constitutively photomorphogenic protein 1 (COP1), cyclin E1 (CCNE1), growth arrest and DNA damage-inducible protein 45A E-mail:tangxilan1983@163.com (GADD45A) and GADD45B. The results of the verification experiments showed that compared with DOX group, there was a trend of up-regulation of COP1 mRNA, and significant down- regulation of CCNE1, GADD45A, and GADD45B mRNA expression in IMP+DOX group (P<0.05). CONCLUSIONS The effect of IMP in ameliorating DOX resistance in breast cancer is related to its regulation of COP1, CCNE1, GADD45A and GADD45B targets in the p53 signaling pathway.
10.Targeting PPARα for The Treatment of Cardiovascular Diseases
Tong-Tong ZHANG ; Hao-Zhuo ZHANG ; Li HE ; Jia-Wei LIU ; Jia-Zhen WU ; Wen-Hua SU ; Ju-Hua DAN
Progress in Biochemistry and Biophysics 2025;52(9):2295-2313
Cardiovascular disease (CVD) remains one of the leading causes of mortality among adults globally, with continuously rising morbidity and mortality rates. Metabolic disorders are closely linked to various cardiovascular diseases and play a critical role in their pathogenesis and progression, involving multifaceted mechanisms such as altered substrate utilization, mitochondrial structural and functional dysfunction, and impaired ATP synthesis and transport. In recent years, the potential role of peroxisome proliferator-activated receptors (PPARs) in cardiovascular diseases has garnered significant attention, particularly peroxisome proliferator-activated receptor alpha (PPARα), which is recognized as a highly promising therapeutic target for CVD. PPARα regulates cardiovascular physiological and pathological processes through fatty acid metabolism. As a ligand-activated receptor within the nuclear hormone receptor family, PPARα is highly expressed in multiple organs, including skeletal muscle, liver, intestine, kidney, and heart, where it governs the metabolism of diverse substrates. Functioning as a key transcription factor in maintaining metabolic homeostasis and catalyzing or regulating biochemical reactions, PPARα exerts its cardioprotective effects through multiple pathways: modulating lipid metabolism, participating in cardiac energy metabolism, enhancing insulin sensitivity, suppressing inflammatory responses, improving vascular endothelial function, and inhibiting smooth muscle cell proliferation and migration. These mechanisms collectively reduce the risk of cardiovascular disease development. Thus, PPARα plays a pivotal role in various pathological processes via mechanisms such as lipid metabolism regulation, anti-inflammatory actions, and anti-apoptotic effects. PPARα is activated by binding to natural or synthetic lipophilic ligands, including endogenous fatty acids and their derivatives (e.g., linoleic acid, oleic acid, and arachidonic acid) as well as synthetic peroxisome proliferators. Upon ligand binding, PPARα activates the nuclear receptor retinoid X receptor (RXR), forming a PPARα-RXR heterodimer. This heterodimer, in conjunction with coactivators, undergoes further activation and subsequently binds to peroxisome proliferator response elements (PPREs), thereby regulating the transcription of target genes critical for lipid and glucose homeostasis. Key genes include fatty acid translocase (FAT/CD36), diacylglycerol acyltransferase (DGAT), carnitine palmitoyltransferase I (CPT1), and glucose transporter (GLUT), which are primarily involved in fatty acid uptake, storage, oxidation, and glucose utilization processes. Advancing research on PPARα as a therapeutic target for cardiovascular diseases has underscored its growing clinical significance. Currently, PPARα activators/agonists, such as fibrates (e.g., fenofibrate and bezafibrate) and thiazolidinediones, have been extensively studied in clinical trials for CVD prevention. Traditional PPARα agonists, including fenofibrate and bezafibrate, are widely used in clinical practice to treat hypertriglyceridemia and low high-density lipoprotein cholesterol (HDL-C) levels. These fibrates enhance fatty acid metabolism in the liver and skeletal muscle by activating PPARα, and their cardioprotective effects have been validated in numerous clinical studies. Recent research highlights that fibrates improve insulin resistance, regulate lipid metabolism, correct energy metabolism imbalances, and inhibit the proliferation and migration of vascular smooth muscle and endothelial cells, thereby ameliorating pathological remodeling of the cardiovascular system and reducing blood pressure. Given the substantial attention to PPARα-targeted interventions in both basic research and clinical applications, activating PPARα may serve as a key therapeutic strategy for managing cardiovascular conditions such as myocardial hypertrophy, atherosclerosis, ischemic cardiomyopathy, myocardial infarction, diabetic cardiomyopathy, and heart failure. This review comprehensively examines the regulatory roles of PPARα in cardiovascular diseases and evaluates its clinical application value, aiming to provide a theoretical foundation for further development and utilization of PPARα-related therapies in CVD treatment.

Result Analysis
Print
Save
E-mail