1.Effects of electroacupuncture at changbing fang on autophagy of colonic cells and gut microbiota in ulcerative colitis of rats.
Huichao XU ; Tian WU ; Jianheng HAO ; Ronglin WU ; Bingbei YAN ; Haijun WANG ; Laixi JI
Chinese Acupuncture & Moxibustion 2025;45(5):657-669
OBJECTIVE:
To observe the effects of electroacupuncture (EA) at changbing fang (prescription for intestinal disease) on autophagy of colonic cells and gut microbiota in rats with ulcerative colitis (UC), and to explore the mechanism of EA in the treatment of UC.
METHODS:
Thirty-two SD male rats were randomly divided into a control group, a model group, an EA group and a sham-EA group, with 8 rats in each group. Except the control group, the UC rat model was established by free drinking of 5% dextran sulfate sodium solution for 7 days in the other groups. In the EA group, changbing fang was adopted, in which, EA was applied at "Tianshu" (ST25) and "Shangjuxu" (ST37), at disperse-dense wave and frequency of 10 Hz/50 Hz, for 20 min in each intervention. In the sham-EA group, shallow transcutaneous puncture was performed at the sites, 5 mm away from the points as the EA group, with the same parameters as the EA group. The intervention was delivered once daily for 3 consecutive days. The body weight was measured daily and the disease activity index (DAI) score was calculated before and after intervention. After intervention completion, the colon length was measured. Using HE staining, the colon morphology was observed and the score of colonic pathology was assessed. With ELISA adopted, the contents of tumor necrosis factor (TNF-α), interleukin (IL)-1β, IL-2 and IL-10 in the serum of the rats were detected. The ultrastructure of the colon tissue was observed under electron microscopy. Using Western blotting, the protein expression was detected for microtubule-associated protein 1 light chain 3 (LC3)Ⅱ, LC3Ⅰ, autophagy-related genes (ATG) 5, ATG12, sequestosome 1 (p62), phosphatidylinositol 3-kinase (PI3K), phosphorylated protein kinase B (p-AKT), protein kinase B (AKT), and phosphorylated mammalian target of rapamycin (p-mTOR), mammalian target of rapamycin (mTOR) in the colon tissue. The mRNA expression of PI3K, AKT and m-TOR in the colon tissue was detected by real-time fluorescence quantitative PCR. The 16S rRNA gene sequencing was used to analyze the structure of gut flora in the feces of rats.
RESULTS:
From day 1 to day 7, compared with the control group, the body weight decreased in the model group, EA group, and SEA group (P<0.05, P<0.01). From day 9 to day 10, the EA group showed an increase in body weight compared with the model group and SEA group (P<0.05, P<0.01). Before intervention, the DAI score in the model group, EA group, and SEA group was higher than the score of the control group, respectively (P<0.01). After intervention, the DAI score in the EA group was reduced compared with the model group and SEA group (P<0.01). Compared with the control group, in the model group, the colon length of rats was shorter (P<0.01); it showed the distorted crypts, thinner mucosal layer, reduced goblet cells, inflammatory cell infiltration and the disarranged histological structure; and the pathological score of the colon tissue increased (P<0.01); the serum contents of TNF-α and IL-1β increased (P<0.01), and those of IL-2 and IL-10 decreased (P<0.01). The structure of colon epithelial cells was disarranged, with cilia pelt off, and a large number of vacuoles in the cytoplasm; the mitochondria were swollen, with unclear structure and cristae partially disappeared; and few autophagosomes were observed. The value of LC3Ⅱ/LC3Ⅰand the protein expression of ATG5 and ATG12 in the colon tissues were reduced (P<0.01), the protein expression of p62 and PI3K, and the values of p-AKT/AKT, and p-mTOR/mTOR increased (P<0.01), and mRNA expression of PI3K, AKT and mTOR was elevated (P<0.01). The indexes of Chao1, Ace and Shannon decreased (P<0.01). At the phylum level, the relative abundance of Firmicutes decreased (P<0.05), that of Bacteroidetes and Proteobacteria increased (P<0.05, P<0.01). At the genus level, the relevant abundance of Lactobacillus decreased (P<0.05), while that of Lachnospiraceae_NK4A136_group and Phascolarctobacterium increased (P<0.01, P<0.05 ). Compared with the model group and SEA group, in the EA group, the colon length increased (P<0.01), the infiltration of inflammatory cells was reduced, the arrangement of intestinal epithelial cells was arranged regularly, with a small amount of shedding, and the pathological score of the colon tissue decreased (P<0.01). The serum contents of TNF-α and IL-1β decreased (P<0.01), and those of IL-2 and IL-10 increased (P<0.01). The colonic epithelial cells were arranged relatively, the morphology of organelles was basically normal, and autophagosomes were visible. The value of LC3Ⅱ/LC3Ⅰand the protein expression of ATG5 and ATG12 in colon tissue increased (P<0.01, P<0.05), the protein expression of p62 and PI3K, and the values of p-AKT/AKT, and p-mTOR/mTOR decreased (P<0.01); and mRNA expression of PI3K, AKT, m-TOR was reduced (P<0.01). The indexes of Chao1, Ace and Shannon increased (P<0.01). At the phylum level, the relative abundance of Firmicutes increased (P<0.01), while that of Bacteroidetes decreased (P<0.01). At the genus level, the relative abundance of Lactobacillus increased (P<0.05), whereas that of Lachnospiraceae_NK4A136_group decreased (P<0.01). When compared with the model group, the relative abundance of Proteobacteria decreased (P<0.05), and that of Phascolarctobacterium was reduced (P<0.05) in the EA group.
CONCLUSION
EA at changbingfang alleviates UC symptoms probably through inhibiting the PI3K/AKT/mTOR signaling pathway to regulate colonic autophagy and improve the intestinal flora.
Animals
;
Electroacupuncture
;
Colitis, Ulcerative/metabolism*
;
Male
;
Rats
;
Gastrointestinal Microbiome
;
Rats, Sprague-Dawley
;
Colon/metabolism*
;
Humans
;
Autophagy
;
Acupuncture Points
;
Tumor Necrosis Factor-alpha/genetics*
;
Interleukin-10/genetics*
2.ResNet-Vision Transformer based MRI-endoscopy fusion model for predicting treatment response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer: A multicenter study.
Junhao ZHANG ; Ruiqing LIU ; Di HAO ; Guangye TIAN ; Shiwei ZHANG ; Sen ZHANG ; Yitong ZANG ; Kai PANG ; Xuhua HU ; Keyu REN ; Mingjuan CUI ; Shuhao LIU ; Jinhui WU ; Quan WANG ; Bo FENG ; Weidong TONG ; Yingchi YANG ; Guiying WANG ; Yun LU
Chinese Medical Journal 2025;138(21):2793-2803
BACKGROUND:
Neoadjuvant chemoradiotherapy followed by radical surgery has been a common practice for patients with locally advanced rectal cancer, but the response rate varies among patients. This study aimed to develop a ResNet-Vision Transformer based magnetic resonance imaging (MRI)-endoscopy fusion model to precisely predict treatment response and provide personalized treatment.
METHODS:
In this multicenter study, 366 eligible patients who had undergone neoadjuvant chemoradiotherapy followed by radical surgery at eight Chinese tertiary hospitals between January 2017 and June 2024 were recruited, with 2928 pretreatment colonic endoscopic images and 366 pelvic MRI images. An MRI-endoscopy fusion model was constructed based on the ResNet backbone and Transformer network using pretreatment MRI and endoscopic images. Treatment response was defined as good response or non-good response based on the tumor regression grade. The Delong test and the Hanley-McNeil test were utilized to compare prediction performance among different models and different subgroups, respectively. The predictive performance of the MRI-endoscopy fusion model was comprehensively validated in the test sets and was further compared to that of the single-modal MRI model and single-modal endoscopy model.
RESULTS:
The MRI-endoscopy fusion model demonstrated favorable prediction performance. In the internal validation set, the area under the curve (AUC) and accuracy were 0.852 (95% confidence interval [CI]: 0.744-0.940) and 0.737 (95% CI: 0.712-0.844), respectively. Moreover, the AUC and accuracy reached 0.769 (95% CI: 0.678-0.861) and 0.729 (95% CI: 0.628-0.821), respectively, in the external test set. In addition, the MRI-endoscopy fusion model outperformed the single-modal MRI model (AUC: 0.692 [95% CI: 0.609-0.783], accuracy: 0.659 [95% CI: 0.565-0.775]) and the single-modal endoscopy model (AUC: 0.720 [95% CI: 0.617-0.823], accuracy: 0.713 [95% CI: 0.612-0.809]) in the external test set.
CONCLUSION
The MRI-endoscopy fusion model based on ResNet-Vision Transformer achieved favorable performance in predicting treatment response to neoadjuvant chemoradiotherapy and holds tremendous potential for enabling personalized treatment regimens for locally advanced rectal cancer patients.
Humans
;
Rectal Neoplasms/diagnostic imaging*
;
Magnetic Resonance Imaging/methods*
;
Male
;
Female
;
Middle Aged
;
Neoadjuvant Therapy/methods*
;
Aged
;
Adult
;
Chemoradiotherapy/methods*
;
Endoscopy/methods*
;
Treatment Outcome
3.Research progress on the comorbidity mechanism of sarcopenia and obesity in the aging population.
Hao-Dong TIAN ; Yu-Kun LU ; Li HUANG ; Hao-Wei LIU ; Hang-Lin YU ; Jin-Long WU ; Han-Sen LI ; Li PENG
Acta Physiologica Sinica 2025;77(5):905-924
The increasing prevalence of aging has led to a rising incidence of comorbidity of sarcopenia and obesity, posing significant burdens on socioeconomic and public health. Current research has systematically explored the pathogenesis of each condition; however, the mechanisms underlying their comorbidity remain unclear. This study reviews the current literature on sarcopenia and obesity in the aging population, focusing on their shared biological mechanisms, which include loss of autophagy, abnormal macrophage function, mitochondrial dysfunction, and reduced sex hormone secretion. It also identifies metabolic mechanisms such as insulin resistance, vitamin D metabolism abnormalities, dysregulation of iron metabolism, decreased levels of nicotinamide adenine dinucleotide, and gut microbiota imbalances. Additionally, this study also explores the important role of genetic factors, such as alleles and microRNAs, in the co-occurrence of sarcopenia and obesity. A better understanding of these mechanisms is vital for developing clinical interventions and preventive strategies.
Humans
;
Sarcopenia/physiopathology*
;
Obesity/physiopathology*
;
Aging/physiology*
;
Autophagy/physiology*
;
Insulin Resistance
;
Comorbidity
;
Vitamin D/metabolism*
;
Gonadal Steroid Hormones/metabolism*
;
Gastrointestinal Microbiome
;
Mitochondria
;
MicroRNAs
4.Association between maximal urethral length preservation and postoperative continence after robot-assisted radical prostatectomy: a meta-analysis and systematic review.
Tian-Yu XIONG ; Zhan-Liang LIU ; Hao-Yu WU ; Yun-Peng FAN ; Yi-Nong NIU
Asian Journal of Andrology 2025;27(2):225-230
Urinary incontinence is a common complication following robot-assisted radical prostatectomy (RARP). Urethral length has been identified as a factor affecting postoperative continence recovery. In this meta-analysis, we examined the association between use of the maximal urethral length preservation (MULP) technique and postoperative urinary continence in patients undergoing RARP. We conducted a comprehensive search of PubMed, Web of Science, Embase, and the Cochrane Library up to December 31, 2023. The quality of the literature was assessed using the Newcastle-Ottawa Scale. A random-effects meta-analysis was performed to synthesize data and calculate the odds ratio (OR) from eligible studies on continence and MULP. Six studies involving 1869 patients met the eligibility criteria. MULP was positively associated with both early continence (1 month after RARP; Z = 3.62, P = 0.003, OR = 3.10, 95% confidence interval [CI]: 1.68-5.73) and late continence (12 months after RARP; Z = 2.34, P = 0.019, OR = 2.10, 95% CI: 1.13-3.90). Oncological outcomes indicated that MULP did not increase the overall positive surgical margin rate or the positive surgical margin status at the prostate apex (both P > 0.05). In conclusion, the use of the MULP technique in RARP significantly improved both early and late postoperative continence outcomes without compromising oncological outcomes.
Humans
;
Prostatectomy/adverse effects*
;
Robotic Surgical Procedures/methods*
;
Male
;
Urethra/surgery*
;
Urinary Incontinence/prevention & control*
;
Postoperative Complications/etiology*
;
Prostatic Neoplasms/surgery*
;
Organ Sparing Treatments/methods*
5.Application of active glucose monitoring in the perioperative period of gastrointestinal endoscopy in children with glycogen storage disease type Ⅰb.
Jing YANG ; Hao-Tian WU ; Ni MA ; Jia-Xing WU ; Min YANG
Chinese Journal of Contemporary Pediatrics 2025;27(8):923-928
OBJECTIVES:
To investigate the role of active glucose monitoring in preventing hypoglycemia during the perioperative period of gastrointestinal endoscopy in children with glycogen storage disease type Ⅰb (GSD-Ⅰb).
METHODS:
A retrospective analysis was performed for the clinical data of children with GSD-Ⅰb who were diagnosed and treated in Guangdong Provincial People's Hospital from June 2021 to August 2024. The effect of active glucose monitoring on hypoglycemic episodes during the perioperative period of gastrointestinal endoscopy was analyzed.
RESULTS:
A total of 14 children with GSD-Ⅰb were included, among whom there were 7 boys and 7 girls, with a mean age of 10.0 years. Among 34 hospitalizations, there were 15 cases of hypoglycemic episodes (44%), among which 6 symptomatic cases (1 case with blood glucose level of 1.6 mmol/L and 5 cases with blood glucose level of <1.1 mmol/L) occurred without active monitoring, while 9 asymptomatic cases (with blood glucose level of 1.2-3.9 mmol/L) were detected by active monitoring. The predisposing factors for hypoglycemic episodes included preoperative fasting (5 cases, 33%), delayed feeding (7 cases, 47%), vomiting (2 cases, 13%), and parental omission (1 case, 7%). Two children experienced two hypoglycemic episodes during the same period of hospitalization, and no child experienced subjective symptoms prior to hypoglycemic episodes. Treatment methods included nasogastric glucose administration (1 case, 7%), intravenous injection of glucose (14 cases, 93%), and continuous glucose infusion (4 cases, 27%). Blood glucose returned to 3.5-6.9 mmol/L within 10 minutes after intervention and remained normal after dietary resumption.
CONCLUSIONS
Active glucose monitoring during the perioperative period of gastrointestinal endoscopy can help to achieve early detection of hypoglycemic states in children with GSD-Ⅰb, prevent hypoglycemic episodes, and enhance precise diagnosis and treatment.
Humans
;
Female
;
Male
;
Child
;
Retrospective Studies
;
Blood Glucose/analysis*
;
Hypoglycemia/etiology*
;
Glycogen Storage Disease Type I/blood*
;
Endoscopy, Gastrointestinal
;
Perioperative Period
;
Child, Preschool
;
Adolescent
6.Efficacy and safety of empagliflozin in the treatment of glycogen storage disease-associated inflammatory bowel disease.
Dan-Xia LIANG ; Hao-Tian WU ; Jing YANG ; Min YANG
Chinese Journal of Contemporary Pediatrics 2025;27(8):929-935
OBJECTIVES:
To investigate the efficacy and safety of empagliflozin in patients with glycogen storage disease (GSD)-associated inflammatory bowel disease (IBD).
METHODS:
A cross-sectional study was conducted, enrolling 25 patients with GSD-associated IBD who received empagliflozin treatment. General data, details of empagliflozin use, and adverse events were collected. Clinical symptoms and biochemical parameters before and after empagliflozin therapy were compared.
RESULTS:
Twenty-five patients with GSD-associated IBD were included, with a median age at diagnosis of 0.7 years, and a mean age at initiation of empagliflozin therapy of (11 ± 6) years. The initial dose of empagliflozin was (0.30 ± 0.13) mg/(kg·d), with a maintenance dose of (0.40 ± 0.21) mg/(kg·d), and a treatment duration of (34 ± 6) months. Seventy-eight percent (18/23) of patients' parents reported that empagliflozin therapy reduced the frequency of infections and oral ulcers, and increased neutrophil counts. Clinically, the number of patients with anorexia decreased from 12 to 5 after treatment, and 30% showed improved appetite (P<0.05). The numbers of patients with diarrhea, mucus/bloody stools, perianal disease, and oral ulcers decreased from 19, 9, 11, and 21 before treatment to 7, 1, 0, and 10 after treatment, respectively (P<0.05). Laboratory findings showed that absolute neutrophil counts increased, while platelet counts, lactate, and uric acid levels decreased significantly after empagliflozin treatment (P<0.05). Adverse reactions occurred in 7 patients (28%) during empagliflozin treatment. Two cases occurred in the treatment initiation phase, presenting as hypotension or profuse sweating with dehydration, along with urinary tract infections (UTIs); empagliflozin was discontinued in both cases. During the maintenance phase, 3 cases of UTIs and 2 cases of hypoglycemia (one with profuse sweating) were reported.
CONCLUSIONS
Empagliflozin therapy can increase neutrophil counts, reduce the incidence of infections and oral ulcers, alleviate diarrhea and abdominal pain, improve appetite, and ameliorate platelet count, lactate, and uric acid levels in patients with GSD-associated IBD, demonstrating significant clinical benefit. UTIs, hypoglycemia, hypotension, profuse sweating, and dehydration may be potential adverse reactions associated with empagliflozin therapy.
Humans
;
Benzhydryl Compounds/adverse effects*
;
Male
;
Female
;
Glucosides/adverse effects*
;
Inflammatory Bowel Diseases/etiology*
;
Child
;
Child, Preschool
;
Cross-Sectional Studies
;
Adolescent
;
Glycogen Storage Disease/drug therapy*
;
Infant
7.Tanreqing Injection Inhibits Activation of NLRP3 Inflammasome in Macrophages Infected with Influenza A Virus by Promoting Mitophagy.
Tian-Yi LIU ; Yu HAO ; Qin MAO ; Na ZHOU ; Meng-Hua LIU ; Jun WU ; Yi WANG ; Ming-Rui YANG
Chinese journal of integrative medicine 2025;31(1):19-27
OBJECTIVE:
To investigate the inhibitory effect of Tanreqing Injection (TRQ) on the activation of nucleotide-binding oligomerization domain-like receptor pyrin domain containing 3 (NLRP3) inflammasome in macrophages infected with influenza A virus and the underlying mechanism based on mitophagy pathway.
METHODS:
The inflammatory model of murine macrophage J774A.1 induced by influenza A virus [strain A/Puerto Rico/8/1934 (H1N1), PR8] was constructed and treated by TRQ, while the mitochondria-targeted antioxidant Mito-TEMPO and autophagy specific inhibitor 3-methyladenine (3-MA) were used as controls to intensively study the anti-inflammatory mechanism of TRQ based on mitophagy-mitochondrial reactive oxygen species (mtROS)-NLRP3 inflammasome pathway. The levels of NLRP3, Caspase-1 p20, microtubule-associated protein 1 light chain 3 II (LC3II) and P62 proteins were measured by Western blot. The release of interleukin-1β (IL-1β) was tested by enzyme linked immunosorbent assay, the mtROS level was detected by flow cytometry, and the immunofluorescence and co-localization of LC3 and mitochondria were observed under confocal laser scanning microscopy.
RESULTS:
Similar to the effect of Mito-TEMPO and contrary to the results of 3-MA treatment, TRQ could significantly reduce the expressions of NLRP3, Caspase-1 p20, and autophagy adaptor P62, promote the expression of autophagy marker LC3II, enhance the mitochondrial fluorescence intensity, and inhibit the release of mtROS and IL-1β (all P<0.01). Moreover, LC3 was co-localized with mitochondria, confirming the type of mitophagy.
CONCLUSION
TRQ could reduce the level of mtROS by promoting mitophagy in macrophages infected with influenza A virus, thus inhibiting the activation of NLRP3 inflammasome and the release of IL-1β, and attenuating the inflammatory response.
Mitophagy/drug effects*
;
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
Animals
;
Macrophages/virology*
;
Inflammasomes/drug effects*
;
Drugs, Chinese Herbal/pharmacology*
;
Mice
;
Mitochondria/metabolism*
;
Reactive Oxygen Species/metabolism*
;
Influenza A virus/physiology*
;
Interleukin-1beta/metabolism*
;
Cell Line
;
Injections
8.Enhanced radiotheranostic targeting of integrin α5β1 with PEGylation-enabled peptide multidisplay platform (PEGibody): A strategy for prolonged tumor retention with fast blood clearance.
Siqi ZHANG ; Xiaohui MA ; Jiang WU ; Jieting SHEN ; Yuntao SHI ; Xingkai WANG ; Lin XIE ; Xiaona SUN ; Yuxuan WU ; Hao TIAN ; Xin GAO ; Xueyao CHEN ; Hongyi HUANG ; Lu CHEN ; Xuekai SONG ; Qichen HU ; Hailong ZHANG ; Feng WANG ; Zhao-Hui JIN ; Ming-Rong ZHANG ; Rui WANG ; Kuan HU
Acta Pharmaceutica Sinica B 2025;15(2):692-706
Peptide-based radiopharmaceuticals targeting integrin α5β1 show promise for precise tumor diagnosis and treatment. However, current peptide-based radioligands that target α5β1 demonstrate inadequate in vivo performance owing to limited tumor retention. The use of PEGylation to enhance the tumor retention of radiopharmaceuticals by prolonging blood circulation time poses a risk of increased blood toxicity. Therefore, a PEGylation strategy that boosts tumor retention while minimizing blood circulation time is urgently needed. Here, we developed a PEGylation-enabled peptide multidisplay platform (PEGibody) for PR_b, an α5β1 targeting peptide. PEGibody generation involved PEGylation and self-assembly. [64Cu]QM-2303 PEGibodies displayed spherical nanoparticles ranging from 100 to 200 nm in diameter. Compared with non-PEGylated radioligands, [64Cu]QM-2303 demonstrated enhanced tumor retention time due to increased binding affinity and stability. Importantly, the biodistribution analysis confirmed rapid clearance of [64Cu]QM-2303 from the bloodstream. Administration of a single dose of [177Lu]QM-2303 led to robust antitumor efficacy. Furthermore, [64Cu]/[177Lu]QM-2303 exhibited low hematological and organ toxicity in both healthy and tumor-bearing mice. Therefore, this study presents a PEGibody-based radiotheranostic approach that enhances tumor retention time and provides long-lasting antitumor effects without prolonging blood circulation lifetime. The PEGibody-based radiopharmaceutical [64Cu]/[177Lu]QM-2303 shows great potential for positron emission tomography imaging-guided targeted radionuclide therapy for α5β1-overexpressing tumors.
9.Fibroblast activation protein targeting radiopharmaceuticals: From drug design to clinical translation.
Yuxuan WU ; Xingkai WANG ; Xiaona SUN ; Xin GAO ; Siqi ZHANG ; Jieting SHEN ; Hao TIAN ; Xueyao CHEN ; Hongyi HUANG ; Shuo JIANG ; Boyang ZHANG ; Yingzi ZHANG ; Minzi LU ; Hailong ZHANG ; Zhicheng SUN ; Ruping LIU ; Hong ZHANG ; Ming-Rong ZHANG ; Kuan HU ; Rui WANG
Acta Pharmaceutica Sinica B 2025;15(9):4511-4542
The activation proteins released by fibroblasts in the tumor microenvironment regulate tumor growth, migration, and treatment response, thereby influencing tumor progression and therapeutic outcomes. Owing to the proliferation and metastasis of tumors, fibroblast activation protein (FAP) is typically highly expressed in the tumor stroma, whereas it is nearly absent in adult normal tissues and benign lesions, making it an attractive target for precision medicine. Radiolabeled agents targeting FAP have the potential for targeted cancer diagnosis and therapy. This comprehensive review aims to describe the evolution of FAPI-based radiopharmaceuticals and their structural optimization. Within its scope, this review summarizes the advances in the use of radiolabeled small molecule inhibitors for tumor imaging and therapy as well as the modification strategies for FAPIs, combined with insights from structure-activity relationships and clinical studies, providing a valuable perspective for radiopharmaceutical clinical development and application.
10.A dual-targeting peptide-drug conjugate based on CXCR4 and FOLR1 inhibits triple-negative breast cancer.
Kun WANG ; Cong WANG ; Hange YANG ; Gong CHEN ; Ke WANG ; Peihong JI ; Xudong SUN ; Xuegong FAN ; Jie MA ; Zhencun CUI ; Xingkai WANG ; Hao TIAN ; Dengfu WU ; Lu WANG ; Zhimin WANG ; Jiangyan LIU ; Juan YI ; Kuan HU ; Hailong ZHANG ; Rui WANG
Acta Pharmaceutica Sinica B 2025;15(10):4995-5009
Triple-negative breast cancer is therapeutically challenging due to the low expression of tumor markers and 'cold' tumor immunosuppressive microenvironment. Here, we present a dual-targeting peptide-drug conjugate (PDC) for tumor inhibition. Our PDC efficiently and selectively delivers cytotoxic Monomethyl Auristatin E (MMAE) into tumor cells via C-X-C chemokine receptor type 4 (CXCR4) and folate receptor 1 (FOLR1) for synergistic inhibition of growth and metastasis. Our results show that the dual-targeting PDC has potent antitumor activity in cultured human cells and several murine transplanted tumor models without apparent toxicity. The combination of dual-targeting PDC and radiotherapy modulates the tumor immunosuppressive microenvironment by increasing CD8+ T cell infiltration and attenuating the proportion of myeloid-derived suppressor and regulatory T cells. Therefore, our dual-targeting PDC represents a promising new strategy for cancer therapy that rebalances the immune system and promotes tumor regression.

Result Analysis
Print
Save
E-mail