1.Separate and Combained Associations of PM 2.5 Exposure and Smoking with Dementia and Cognitive Impairment.
Lu CUI ; Zhi Hui WANG ; Yu Hong LIU ; Lin Lin MA ; Shi Ge QI ; Ran AN ; Xi CHEN ; Hao Yan GUO ; Yu Xiang YAN
Biomedical and Environmental Sciences 2025;38(2):194-205
OBJECTIVE:
The results of limited studies on the relationship between environmental pollution and dementia have been contradictory. We analyzed the combined effects of PM 2.5 and smoking on the prevalence of dementia and cognitive impairment in an elderly community-dwelling Chinese population.
METHODS:
We assessed 24,117 individuals along with the annual average PM 2.5 concentrations from 2012 to 2016. Dementia was confirmed in the baseline survey at a qualified clinical facility, and newly suspected dementia was assessed in 2017, after excluding cases of suspected dementia in 2015. National census data were used to weight the sample data to reflect the entire population in China, with multiple logistic regression performed to analyze the combined effects of PM 2.5 and smoking frequency on dementia and cognitive impairment.
RESULTS:
Individuals exposed to the highest PM 2.5 concentration and smoked daily were at higher risk of dementia than those in the lowest PM 2.5 concentration group ( OR, 1.603; 95% CI [1.626-1.635], P < 0.0001) and in the nonsmoking group ( OR, 1.248; 95% CI [1.244-1.252]; P < 0.0001). Moderate PM 2.5 exposure and occasional smoking together increased the short-term risk of cognitive impairment. High-level PM 2.5 exposure and smoking were associated with an increased risk of dementia, so more efforts are needed to reduce this risk through environmental protection and antismoking campaigns.
CONCLUSION
High-level PM 2.5 exposure and smoking were associated with an increased risk of dementia. Lowering the ambient PM 2.5, and smoking cessation are recommended to promote health.
Humans
;
Dementia/etiology*
;
Male
;
Aged
;
Female
;
Cognitive Dysfunction/etiology*
;
China/epidemiology*
;
Particulate Matter/analysis*
;
Smoking/epidemiology*
;
Air Pollutants/analysis*
;
Aged, 80 and over
;
Environmental Exposure/adverse effects*
;
Prevalence
;
Middle Aged
2. Ligustilide delays senescence of auditory cortex in mice by inhibiting ferritinophagy
Ying-Dong ZHOU ; Meng-Xian ZHANG ; Qing-Ling WANG ; Hao-Ran KANG ; Zhi-Cheng ZHANG ; Xiang-Dong GUO ; Qing-Lin WANG ; Ya-Min LIU
Chinese Pharmacological Bulletin 2024;40(3):455-461
Aim To investigate the mechanism of ligu aged 2 months of the same strain were used as the constilide (LIG) in delaying the senescence of auditory trol (Ctrl) group. Auditory brainstem response test was cortex and treating central presbycusis. Methods used to detect the auditory threshold of mice before and Forty C57BL/6J mice aged 13 months were randomly di after treatment. Levels of serum MDA and activity of vided into ligustilide low-dose(L-LIG) group, ligustil serum SOD were detected to display the level of oxidative ide medium-dose (M-LIG) group, ligustilide high-dose stress. The pathological changes of auditory cortex were (H-LIG) group and aging (Age) group, and 10 mice observed by HE staining. Ferroptosis was observed by
3.Effect of virtual reality treadmill training on balance and gait in stroke patients
Chunyang YU ; Ran LIU ; Yishuang ZHAO ; Shuai GUO ; Ya'nan ZHOU ; Li LI ; Hao ZHANG
Chinese Journal of Rehabilitation Theory and Practice 2024;30(3):310-315
Objective To explore the effect of virtual reality treadmill training on balance and gait in stroke patients. Methods From March,2022,to March,2023,40 stroke patients in Beijing Tiantan Hospital,Capital Medical University were randomly divided into control group(n = 20)and experimental group(n = 20).Both groups received rou-tine rehabilitation training.The control group received ordinary treadmill walking training,and the experimental group received treadmill walking training with virtual reality,for two weeks.They were assessed with Berg Bal-ance Scale(BBS)and Timed Up and Go Test(TUGT),and the envelope ellipse area,center of pressure(COP)av-erage speed of movement,step length,stride length and stride width were compared between two groups before and after treatment. Results After treatment,the scores of BBS and time of TUGT improved in both groups(|t|>3.508,P<0.01),and they were better in the experimental group than in the control group(|t|>3.019,P<0.01);there was no significant dif-ference in the envelope ellipse area,COP average speed,and stride width between two groups(P>0.05);howev-er,the step length and stride width improved in the experimental group(|t|>4.008,P<0.01). Conclusion Treadmill training with virtual reality can improve the balance and walking ability of stroke patients.
4.Protective effects of Ginkgo biloba extract on presbycusis in the rat model via autophagy pathway
Qing-Ling WANG ; Meng-Xian ZHANG ; Ying-Dong ZHOU ; Hao-Ran KANG ; Xiang-Dong GUO ; Qing-Lin WANG
Chinese Traditional Patent Medicine 2024;46(1):65-71
AIM To investigate the effects of Ginkgo biloba extract on hearing function,cochlear morphology and autophagy-related protein expression in a rat model of presbycusis.METHODS Forty-five rats were randomly divided into the control group,the model group and the low,medium and high dose G.biloba extract groups(10,20 and 30 mg/kg),with 9 rats in each group.The rat model of presbycusis was established by intraperitoneal injection of 500 mg/kg D-galactose(D-gal).Eight weeks after the corresponding administration,the rats had their changes of hearing threshold detected by the auditory brainstem evoked potential(ABR);their morphological changes of cochlear hair cells,stria vascularis(SV)and spiral ganglion cells observed by HE staining;their number of hair cells inside and outside the cochlea detected by immunofluorescence staining;their ultrastructure changes of cochlear hair cells observed by transmission electron microscopy;and their expression of autophagy-related proteins in cochlea tissue detected by Western blot.RESULTS Compared with the control group,the model group displayed increased ABR threshold(P<0.01);more severely damaged inner and outer hair cells,spiral ganglion cells and SV,decreased SV thickness and numbers of spiral ganglion cells,inner and outer hair cells and autophagosomes(P<0.01);decreased protein expressions of Beclin1 and LC3 Ⅱ and ratio of LC3 Ⅱ/LC3 Ⅰ in cochlear tissue(P<0.01),and higher P62 protein expression(P<0.01).Compared with the model group,the medium and high dose G.biloba extract groups shared decreased ABR thresholds(P<0.01);improved morphology of inner and outer hair cells and SV in the cochlea,normalized,morphology of spiral ganglion cells,and increased SV thickness and the numbers of spiral ganglion cells,inner and outer hair cells and autophagosomes(P<0.05,P<0.01);increased protein expressions of Beclin1 and LC3 Ⅱ and the ratio of LC3 Ⅱ/LC3 Ⅰ in the cochlea(P<0.01),and decreased P62 protein expression(P<0.01).CONCLUSION The protective effects G.biloba extract on hearing function and cochlear cells in the rat model of presbycusis may be associated with the up-regulated expression of Beclin1 and LC3 Ⅱ proteins and down-regulated P62 protein expression in cochlear tissues.
5.Interactions between gut microbiota-producing enzymes and natural drugs affect disease progression
Zhi-yu WANG ; Hao-ran SHEN ; Yan-xing HAN ; Jian-dong JIANG ; Wei JIANG ; Hui-hui GUO
Acta Pharmaceutica Sinica 2024;59(8):2183-2191
Naturally derived metabolites are valuable resources for drug research and development, and play an important role in the treatment of diseases. As the "second genome" of the body, gut microbiota is rich in metabolic enzymes, which interacts with external substances such as drugs, thus affecting the progression of diseases. This article summarizes the interaction between gut microbiota-producing enzymes and natural medicines, and focuses on the impact of this interaction on disease progression, hoping to provide new ideas for the development and pharmacological mechanism of natural medicines.
6.Research progress on molecular mechanism related to skeletal muscle atrophy.
Yi-Bing KE ; Dawuti ABUDOUKEREMU ; Hao-Ran GUO ; Yong-Ping WANG
Acta Physiologica Sinica 2024;76(6):1056-1068
The maintenance of skeletal muscle quality involves various signal pathways that interact with each other. Under normal physiological conditions, these intersecting signal pathways regulate and coordinate the hypertrophy and atrophy of skeletal muscles, balancing the protein synthesis and degradation of muscle. When the total rate of protein synthesis exceeds that of protein degradation, the muscle gradually becomes enlarged, while when the total rate of protein synthesis is lower than that of protein degradation, the muscle shrinks. Myocyte atrophy mainly involves two protein degradation pathways, namely ubiquitin-proteasome and autophagy-lysosome. Protein degradation pathway is activated during muscle atrophy, resulting in the loss of muscle mass. Muscle atrophy can occur under various conditions such as malnutrition, aging and cachexia. Skeletal muscle atrophy caused by orthopedic diseases mainly includes disuse muscular atrophy caused by fracture and denervation muscular atrophy. The signal pathways that control and coordinate protein synthesis and degradation in skeletal muscle include insulin-like growth factor 1 (IGF1)-Akt-mammalian target of rapamycin (mTOR), myostatin-activin A-Smad, G protein α inhibitory peptide 2 (Gαi2)-PKC, nuclear factor κB (NF-κB), ectodysplasin A2 receptor (EDA2R)-NF-κB inducing kinase (NIK) and mitogen-activated protein kinase (MAPK) pathways. This paper provides a comprehensive review of the protein degradation pathways in skeletal muscle atrophy and the associated signal pathways regulating protein degradation in muscular atrophy.
Humans
;
Muscular Atrophy/etiology*
;
Muscle, Skeletal/pathology*
;
Signal Transduction
;
Animals
;
Insulin-Like Growth Factor I/metabolism*
;
Myostatin/physiology*
;
TOR Serine-Threonine Kinases/metabolism*
;
Autophagy/physiology*
;
NF-kappa B/metabolism*
;
Proteolysis
;
Proteasome Endopeptidase Complex/physiology*
7.Effect of Chinese Medicine in Patients with COVID-19: A Multi-center Retrospective Cohort Study.
Guo-Zhen ZHAO ; Shi-Yan YAN ; Bo LI ; Yu-Hong GUO ; Shuang SONG ; Ya-Hui HU ; Shi-Qi GUO ; Jing HU ; Yuan DU ; Hai-Tian LU ; Hao-Ran YE ; Zhi-Ying REN ; Ling-Fei ZHU ; Xiao-Long XU ; Rui SU ; Qing-Quan LIU
Chinese journal of integrative medicine 2024;30(11):974-983
OBJECTIVE:
To evaluate the effectiveness and safety of Chinese medicine (CM) in the treatment of coronavirus disease 2019 (COVID-19) in China.
METHODS:
A multi-center retrospective cohort study was carried out, with cumulative CM treatment period of ⩾3 days during hospitalization as exposure. Data came from consecutive inpatients from December 19, 2019 to May 16, 2020 in 4 medical centers in Wuhan, China. After data extraction, verification and cleaning, confounding factors were adjusted by inverse probability of treatment weighting (IPTW), and the Cox proportional hazards regression model was used for statistical analysis.
RESULTS:
A total of 2,272 COVID-19 patients were included. There were 1,684 patients in the CM group and 588 patients in the control group. Compared with the control group, the hazard ratio (HR) for the deterioration rate in the CM group was 0.52 [95% confidence interval (CI): 0.41 to 0.64, P<0.001]. The results were consistent across patients of varying severity at admission, and the robustness of the results were confirmed by 3 sensitivity analyses. In addition, the HR for all-cause mortality in the CM group was 0.29 (95% CI: 0.19 to 0.44, P<0.001). Regarding of safety, the proportion of patients with abnormal liver function or renal function in the CM group was smaller.
CONCLUSION
This real-world study indicates that the combination of a full-course CM therapy on the basic conventional treatment, may safely reduce the deterioration rate and all-cause mortality of COVID-19 patients. This result can provide the new evidence to support the current treatment of COVID-19. Additional prospective clinical trial is needed to evaluate the efficacy and safety of specific CM interventions. (Registration No. ChiCTR2200062917).
Humans
;
Retrospective Studies
;
Male
;
Female
;
Middle Aged
;
COVID-19/epidemiology*
;
COVID-19 Drug Treatment
;
Aged
;
Medicine, Chinese Traditional/methods*
;
Drugs, Chinese Herbal/adverse effects*
;
SARS-CoV-2
;
Treatment Outcome
;
China/epidemiology*
;
Adult
8.Clinical practice of whole-genome sequencing in the rapid diagnosis of critically ill neonates.
Fei-Fan XIAO ; Yu-Lan LU ; Bing-Bing WU ; Xin-Ran DONG ; Guo-Qiang CHENG ; Li-Yuan HU ; Wen-Hao ZHOU ; Xiao-Min PENG ; Lin YANG ; Hui-Jun WANG
Chinese Journal of Contemporary Pediatrics 2023;25(2):135-139
OBJECTIVES:
To explore the application of whole-genome sequencing (WGS) in the rapid clinical diagnosis of critically ill neonates.
METHODS:
The critically ill neonates who admitted to the neonatal intensive care unit of Children's Hospital of Fudan University and underwent WGS from August to September, 2019 were enrolled in this prospective study. The genetic testing results and clinical outcome were analyzed with reference to the sequencing data and clinical features of the neonates.
RESULTS:
A total of 15 neonates were tested, among whom there were 9 boys and 6 girls. The main reason for hospitalization included abnormal breathing in 7 neonates, poor response in 2 neonates, feeding difficulty in 2 neonates, fever in 1 neonate, hypothermia in 1 neonate, preterm birth in 1 neonate, and convulsion in 1 neonate. The mean turn-around time was 4.5 days for WGS. Finally a genetic diagnosis was obtained for 3 neonates, with a positive diagnostic rate of 20% (3/15). Among the 3 neonates, 2 neonates were withdrawn from the treatment due to severe conditions and 1 neonate died on the day when the sample was sent for genetic testing, whose etiology could be explained by the results of genetic testing.
CONCLUSIONS
WGS technique can provide a timely and effective diagnosis for critically ill neonates suspected of genetic diseases and provide genetic evidence for clinical treatment of critically ill cases.
Infant, Newborn
;
Male
;
Child
;
Female
;
Humans
;
Critical Illness
;
Prospective Studies
;
Premature Birth
;
Dyspnea
;
Fever
9.Short chain fatty acid: a messenger of gut-organ axis for disease regulation
Hui-hui GUO ; Hao-ran SHEN ; Yan-xing HAN ; Jian-dong JIANG
Acta Pharmaceutica Sinica 2023;58(3):593-604
Gut microbiota is a complex and dynamic system, and is essential for the health of the body. As the "second genome" of the body, it can establish communication with the important organs by regulating intestinal nerves, gastrointestinal hormones, intestinal barrier, immunity and metabolism, thus affecting host′s physiological functions. Short chain fatty acid (SCFA), known as one important metabolite of intestinal microbiota, is regarded as a significant messenger of the gut-organ communication, due to its extensive regulation in the body′s immunity, metabolism, endocrine and signal transduction. In this review, we summarize the interaction between gut-liver/brain/kidney/lung axis and diseases, and focus on the role and mechanism of SCFA in the gut-organ communication, hoping to provide new ideas for the treatment of the related diseases.
10.Remote ischemic conditioning-induced hyperacute and acute responses of plasma proteome in healthy young male adults: a quantitative proteomic analysis.
Siying SONG ; Hao WU ; Yunhuan LIU ; Duo LAN ; Baolian JIAO ; Shuling WAN ; Yibing GUO ; Da ZHOU ; Yuchuan DING ; Xunming JI ; Ran MENG
Chinese Medical Journal 2023;136(2):150-158
BACKGROUND:
Long-term remote ischemic conditioning (RIC) has been proven to be beneficial in multiple diseases, such as cerebral and cardiovascular diseases. However, the hyperacute and acute effects of a single RIC stimulus are still not clear. Quantitative proteomic analyses of plasma proteins following RIC application have been conducted in preclinical and clinical studies but exhibit high heterogeneity in results due to wide variations in experimental setups and sampling procedures. Hence, this study aimed to explore the immediate effects of RIC on plasma proteome in healthy young adults to exclude confounding factors of disease entity, such as medications and gender.
METHODS:
Young healthy male participants were enrolled after a systematic physical examination and 6-month lifestyle observation. Individual RIC sessions included five cycles of alternative ischemia and reperfusion, each lasting for 5 min in bilateral forearms. Blood samples were collected at baseline, 5 min after RIC, and 2 h after RIC, and then samples were processed for proteomic analysis using liquid chromatography-tandem mass spectrometry method.
RESULTS:
Proteins related to lipid metabolism (e.g., Apolipoprotein F), coagulation factors (hepatocyte growth factor activator preproprotein), members of complement cascades (mannan-binding lectin serine protease 1 isoform 2 precursor), and inflammatory responses (carboxypeptidase N catalytic chain precursor) were differentially altered at their serum levels following the RIC intervention. The most enriched pathways were protein glycosylation and complement/coagulation cascades.
CONCLUSIONS
One-time RIC stimulus may induce instant cellular responses like anti-inflammation, coagulation, and fibrinolysis balancing, and lipid metabolism regulation which are protective in different perspectives. Protective effects of single RIC in hyperacute and acute phases may be exploited in clinical emergency settings due to apparently beneficial alterations in plasma proteome profile. Furthermore, the beneficial effects of long-term (repeated) RIC interventions in preventing chronic cardiovascular diseases among general populations can also be expected based on our study findings.
Young Adult
;
Humans
;
Male
;
Proteome
;
Cardiovascular Diseases
;
Proteomics
;
Ischemia
;
Blood Coagulation

Result Analysis
Print
Save
E-mail