1.Analysis of clinical characteristics and diagnostic prediction of Qi deficiency and blood stasis syndrome in acute ischemic stroke
Hao XU ; Xu ZHU ; Bo LI ; Xiaodan LIU ; Xihui PAN ; Changqing DENG
Digital Chinese Medicine 2025;8(1):111-122
[Objective] :
To explore the clinical characteristics and methods for syndrome differentiation prediction, as well as to construct a predictive model for Qi deficiency and blood stasis syndrome in patients with acute ischemic stroke (AIS).
[Methods] :
This study employed a retrospective case-control design to analyze patients with AIS who received inpatient treatment at the Neurology Department of The First Hospital of Hunan University of Chinese Medicine from January 1, 2013 to December 31, 2022. AIS patients meeting the diagnostic criteria for Qi deficiency and blood stasis syndrome were stratified into case group, while those without Qi deficiency and blood stasis syndrome were stratified into control group. The demographic characteristics (age and gender), clinical parameters [time from onset to admission, National Institutes of Health Stroke Scale (NIHSS) score, and blood pressure], past medical history, traditional Chinese medicine (TCM) diagnostic characteristics (tongue and pulse), neurological symptoms and signs, imaging findings [magnetic resonance imaging-diffusion weighted imaging (MRI-DWI)], and biochemical indicators of the two groups were collected and compared. The indicators with statistical difference (P < 0.05) in univariate analysis were included in multivariate logistic regression analysis to evaluate their predictive value for the diagnosis of Qi deficiency and blood stasis syndrome, and the predictive model was constructed by receiver operating characteristic (ROC) curve analysis.
[Results] :
The study included 1 035 AIS patients, with 404 cases in case group and 631 cases in control group. Compared with control group, patients in case group were significantly older, had extended onset-to-admission time, lower diastolic blood pressure, and lower NIHSS scores (P < 0.05). Case group showed lower incidence of hypertension history (P < 0.05). Regarding tongue and pulse characteristics, pale and dark tongue colors, white tongue coating, fine pulse, astringent pulse, and sinking pulse were more common in case group. Imaging examinations demonstrated higher proportions of centrum semiovale infarction, cerebral atrophy, and vertebral artery stenosis in case group (P < 0.05). Among biochemical indicators, case group showed higher proportions of elevated fasting blood glucose and glycated hemoglobin (HbA1c), while lower proportions of elevated white blood cell count, reduced hemoglobin, and reduced high-density lipoprotein cholesterol (HDL-C) (P < 0.05). Multivariate logistic regression analysis identified significant predictors for Qi deficiency and blood stasis syndrome including: fine pulse [odds ratio (OR) = 4.38], astringent pulse (OR = 3.67), superficial sensory abnormalities (OR = 1.86), centrum semiovale infarction (OR = 1.57), cerebral atrophy (OR = 1.55), vertebral artery stenosis (OR = 1.62), and elevated HbA1c (OR = 3.52). The ROC curve analysis of the comprehensive prediction model yielded an area under the curve (AUC) of 0.878 [95% confidence interval (CI) = 0.855 – 0.900].
[Conclusion]
This study finds out that Qi deficiency and blood stasis syndrome represents one of the primary types of AIS. Fine pulse, astringent pulse, superficial sensory abnormalities, centrum semiovale infarction, cerebral atrophy, vertebral artery stenosis, elevated blood glucose, elevated HbA1c, pale and dark tongue colors, and white tongue coating are key objective diagnostic indicators for the syndrome differentiation of AIS with Qi deficiency and blood stasis syndrome. Based on these indicators, a syndrome differentiation prediction model has been developed, offering a more objective basis for clinical diagnosis, and help to rapidly identify this syndrome in clinical practice and reduce misdiagnosis and missed diagnosis.
2.Mechanism of vanillic acid against cardiac fibrosis induced by isoproterenol in mice based on Drp1/HK1/NLRP3 and mitochondrial apoptosis signaling pathways.
Hai-Bo HE ; Mian WU ; Jie XU ; Qian-Qian XU ; Fang-Zhu WAN ; Hua-Qiao ZHONG ; Ji-Hong ZHANG ; Gang ZHOU ; Hui-Lin QIN ; Hao-Ran LI ; Hai-Ming TANG
China Journal of Chinese Materia Medica 2025;50(8):2193-2208
This study investigated the effects and underlying mechanisms of vanillic acid(VA) against cardiac fibrosis(CF) induced by isoproterenol(ISO) in mice. Male C57BL/6J mice were randomly divided into control group, VA group(100 mg·kg~(-1), ig), ISO group(10 mg·kg~(-1), sc), ISO + VA group(10 mg·kg~(-1), sc + 100 mg·kg~(-1), ig), ISO + dynamin-related protein 1(Drp1) inhibitor(Mdivi-1) group(10 mg·kg~(-1), sc + 50 mg·kg~(-1), ip), and ISO + VA + Mdivi-1 group(10 mg·kg~(-1), sc + 100 mg·kg~(-1), ig + 50 mg·kg~(-1), ip). The treatment groups received the corresponding medications once daily for 14 consecutive days. On the day after the last administration, cardiac functions were evaluated, and serum and cardiac tissue samples were collected. These samples were analyzed for serum aspartate aminotransferase(AST), lactate dehydrogenase(LDH), creatine kinase-MB(CK-MB), cardiac troponin I(cTnI), reactive oxygen species(ROS), interleukin(IL)-1β, IL-4, IL-6, IL-10, IL-18, and tumor necrosis factor-α(TNF-α) levels, as well as cardiac tissue catalase(CAT), glutathione(GSH), malondialdehyde(MDA), myeloperoxidase(MPO), superoxide dismutase(SOD), total antioxidant capacity(T-AOC) activities, and cytochrome C levels in mitochondria and cytoplasm. Hematoxylin-eosin, Masson, uranium acetate and lead citrate staining were used to observe morphological and mitochondrial ultrastructural changes in the cardiac tissues, and myocardial injury area and collagen volume fraction were calculated. Flow cytometry was applied to detect the relative content and M1/M2 polarization of cardiac macrophages. The mRNA expression levels of macrophage polarization markers [CD86, CD206, arginase 1(Arg-1), inducible nitric oxide synthase(iNOS)], CF markers [type Ⅰ collagen(Coll Ⅰ), Coll Ⅲ, α-smooth muscle actin(α-SMA)], and cytokines(IL-1β, IL-4, IL-6, IL-10, IL-18, TNF-α) in cardiac tissues were determined by quantitative real-time PCR. Western blot was used to detect the protein expression levels of Coll Ⅰ, Coll Ⅲ, α-SMA, Drp1, p-Drp1, voltage-dependent anion channel(VDAC), hexokinase 1(HK1), NOD-like receptor protein 3(NLRP3), apoptosis-associated speck-like protein(ASC), caspase-1, cleaved-caspase-1, gasdermin D(GSDMD), cleaved N-terminal gasdermin D(GSDMD-N), IL-1β, IL-18, B-cell lymphoma-2(Bcl-2), B-cell lymphoma-xl(Bcl-xl), Bcl-2-associated death promoter(Bad), Bcl-2-associated X protein(Bax), apoptotic protease activating factor-1(Apaf-1), pro-caspase-3, cleaved-caspase-3, pro-caspase-9, cleaved-caspase-9, poly(ADP-ribose) polymerase-1(PARP-1), and cleaved-PARP-1 in cardiac tissues. The results showed that VA significantly improved cardiac function in mice with CF, reduced myocardial injury area and cardiac index, and decreased serum levels of AST, CK-MB, cTnI, LDH, ROS, IL-1β, IL-6, IL-18, and TNF-α. VA also lowered MDA and MPO levels, mRNA expressions of IL-1β, IL-6, IL-18, and TNF-α, and mRNA and protein expressions of Coll Ⅰ, Coll Ⅲ, and α-SMA in cardiac tissues, and increased serum levels of IL-4 and IL-10, cardiac tissue levels of CAT, GSH, SOD, and T-AOC, and mRNA expressions of IL-4 and IL-10. Additionally, VA ameliorated cardiac pathological damage, inhibited myocardial cell apoptosis, inflammatory infiltration, and collagen fiber deposition, reduced collagen volume fraction, and alleviated mitochondrial damage. VA decreased the ratio of F4/80~+CD86~+ M1 cells and the mRNA expressions of CD86 and iNOS in cardiac tissue, and increased the ratio of F4/80~+CD206~+ M2 cells and the mRNA expressions of CD206 and Arg-1. VA also reduced protein expressions of p-Drp1, VDAC, NLRP3, ASC, caspase-1, cleaved-caspase-1, GSDMD, GSDMD-N, IL-1β, IL-18, Bad, Bax, Apaf-1, cleaved-caspase-3, cleaved-caspase-9, cleaved-PARP-1, and cytoplasmic cytochrome C, and increased the expressions of HK1, Bcl-2, Bcl-xl, pro-caspase-3, pro-caspase-9 proteins, as well as the Bcl-2/Bax and Bcl-xl/Bad ratios and mitochondrial cytochrome C content. These results indicate that VA has a significant ameliorative effect on ISO-induced CF in mice, alleviates ISO-induced oxidative damage and inflammatory response, and its mechanism may be closely related to the inhibition of Drp1/HK1/NLRP3 and mitochondrial apoptosis signaling pathways, suppression of myocardial cell inflammatory infiltration and collagen fiber deposition, reduction of collagen volume fraction and CollⅠ, Coll Ⅲ, and α-SMA expressions, thus mitigating CF.
Animals
;
Isoproterenol/adverse effects*
;
Male
;
Mice
;
Signal Transduction/drug effects*
;
Vanillic Acid/administration & dosage*
;
Dynamins/genetics*
;
Mice, Inbred C57BL
;
Fibrosis/genetics*
;
Apoptosis/drug effects*
;
Mitochondria/metabolism*
;
NLR Family, Pyrin Domain-Containing 3 Protein/genetics*
;
Myocardium/metabolism*
;
Humans
3.Protective effect of sub-hypothermic mechanical perfusion combined with membrane lung oxygenation on a yorkshire model of brain injury after traumatic blood loss.
Xiang-Yu SONG ; Yang-Hui DONG ; Zhi-Bo JIA ; Lei-Jia CHEN ; Meng-Yi CUI ; Yan-Jun GUAN ; Bo-Yao YANG ; Si-Ce WANG ; Sheng-Feng CHEN ; Peng-Kai LI ; Heng CHEN ; Hao-Chen ZUO ; Zhan-Cheng YANG ; Wen-Jing XU ; Ya-Qun ZHAO ; Jiang PENG
Chinese Journal of Traumatology 2025;28(6):469-476
PURPOSE:
To investigate the protective effect of sub-hypothermic mechanical perfusion combined with membrane lung oxygenation on ischemic hypoxic injury of yorkshire brain tissue caused by traumatic blood loss.
METHODS:
This article performed a random controlled trial. Brain tissue of 7 yorkshire was selected and divided into the sub-low temperature anterograde machine perfusion group (n = 4) and the blank control group (n = 3) using the random number table method. A yorkshire model of brain tissue injury induced by traumatic blood loss was established. Firstly, the perfusion temperature and blood oxygen saturation were monitored in real-time during the perfusion process. The number of red blood cells, hemoglobin content, NA+, K+, and Ca2+ ions concentrations and pH of the perfusate were detected. Following perfusion, we specifically examined the parietal lobe to assess its water content. The prefrontal cortex and hippocampus were then dissected for histological evaluation, allowing us to investigate potential regional differences in tissue injury. The blank control group was sampled directly before perfusion. All statistical analyses and graphs were performed using GraphPad Prism 8.0 Student t-test. All tests were two-sided, and p value of less than 0.05 was considered to indicate statistical significance.
RESULTS:
The contents of red blood cells and hemoglobin during perfusion were maintained at normal levels but more red blood cells were destroyed 3 h after the perfusion. The blood oxygen saturation of the perfusion group was maintained at 95% - 98%. NA+ and K+ concentrations were normal most of the time during perfusion but increased significantly at about 4 h. The Ca2+ concentration remained within the normal range at each period. Glucose levels were slightly higher than the baseline level. The pH of the perfusion solution was slightly lower at the beginning of perfusion, and then gradually increased to the normal level. The water content of brain tissue in the sub-low and docile perfusion group was 78.95% ± 0.39%, which was significantly higher than that in the control group (75.27% ± 0.55%, t = 10.49, p < 0.001), and the difference was statistically significant. Compared with the blank control group, the structure and morphology of pyramidal neurons in the prefrontal cortex and CA1 region of the hippocampal gyrus were similar, and their integrity was better. The structural integrity of granulosa neurons was destroyed and cell edema increased in the perfusion group compared with the blank control group. Immunofluorescence staining for glail fibrillary acidic protein and Iba1, markers of glial cells, revealed well-preserved cell structures in the perfusion group. While there were indications of abnormal cellular activity, the analysis showed no significant difference in axon thickness or integrity compared to the 1-h blank control group.
CONCLUSIONS
Mild hypothermic machine perfusion can improve ischemia and hypoxia injury of yorkshire brain tissue caused by traumatic blood loss and delay the necrosis and apoptosis of yorkshire brain tissue by continuous oxygen supply, maintaining ion homeostasis and reducing tissue metabolism level.
Animals
;
Perfusion/methods*
;
Disease Models, Animal
;
Brain Injuries/etiology*
;
Swine
;
Male
;
Hypothermia, Induced/methods*
4.Comparative analysis of the safety and efficacy of fenestrated pedicle screw with cement and conventional pedicle screw with cement in the treatment of osteoporotic vertebral fractures: A meta-analysis.
Li CAO ; Hong-Jie XU ; Yi-Kang YU ; Huan-Huan TANG ; Bo-Hao FANG ; Ke CHEN
Chinese Journal of Traumatology 2025;28(2):101-112
PURPOSE:
Bone cement-reinforced fenestrated pedicle screws (FPSs) have been widely used in the internal fixation and repair of the spine with osteoporosis in recent years and show significant improvement in fixation strength and stability. However, compared with conventional reinforcement methods, the advantages of bone cement-reinforced FPSs remain undetermined. This article compares the effects of fenestrated and conventional pedicle screws (CPSs) combined with bone cement in the treatment of osteoporosis.
METHODS:
A clinical control study of FPSs and CPSs combined with bone cement reinforcement in osteoporotic vertebral internal fixation was performed using the database PubMed, Embase, Cochrane Library, CNKI, the Wanfang, and the China Biomedical Literature Service System. Two evaluators screened the relevant literature in strict accordance with the inclusion criteria (diagnosis of participants, type of clinical study, treatment with FPS and CPS, and outcome indicators) and exclusion criteria (duplicate literature and missing or incorrect data) and independently conducted data extraction and quality evaluation. Clinical control studies of direct comparison between FPS and CPS combined with bone cement reinforcement in patients who were definitively diagnosed with thoracolumbar fractures or spinal degenerative diseases were included. Quality evaluation was conducted using the Cochrane risk bias evaluation tool for randomized controlled studies and using the Newcastle-Ottawa scale for retrospective case-control studies. RevMan software (version 5.3) was used for the meta-analysis to compare the clinical efficacy, radiological results, and related complications of the 2 methods.
RESULTS:
A total of 13 articles were included, including 7 randomized controlled studies and 6 retrospective case-control studies. There were 909 patients in these studies, 451 in the FPS and polymethyl methacrylate (FPS & PMMA) group and 458 in the CPS and polymethyl methacrylate (CPS & PMMA) group. The results of the meta-analysis showed that there was no significant difference between the 2 groups in operation time, hospital stay, visual analogue score, Japanese orthopaedic association score, Oswestry disability index score, Cobb angle, vertebral body deformation index and fusion rate (p > 0.05). The mean difference of intraoperative bleeding volume was -10.45, (95% confidence intervals (CI) (-16.92, -3.98), p = 0.002), the mean difference of loss height of the anterior edge of the vertebral body after surgery was -0.69 (95% CI (-0.93, -0.44), p < 0.001), and the relative risk (RR) of overall complication rate was 0.43 (95% CI (0.27, 0.68), p < 0.001), including the RR of bone cement leakage rate was 0.57 (95% CI (0.39, 0.85), p = 0.005). The screw loosening rate (RR = 0.26, 95% CI (0.13, 0.54), p < 0.001) of the FPS group was significantly lower than that of the CPS group.
CONCLUSION
The existing clinical evidence shows that compared with the CPS combined with bone cement, the use of FPS repair in the internal fixation of an osteoporotic vertebral body can reduce the amount of intraoperative bleeding, be more conducive to maintaining the height of the vertebral body, and significantly reduce the incidence of postoperative complications such as bone cement leakage and screw loosening.
Humans
;
Pedicle Screws
;
Bone Cements
;
Spinal Fractures/surgery*
;
Osteoporotic Fractures/surgery*
;
Fracture Fixation, Internal/instrumentation*
5.The Enhancing Effects and Underlying Mechanism of Ionizing Radiation on Adipogenic Differentiation of Mesenchymal Stem Cells via Regulating Oxidative Stress Pathway.
Fu-Hao YU ; Bo-Feng YIN ; Pei-Lin LI ; Xiao-Tong LI ; Jia-Yi TIAN ; Run-Xiang XU ; Jie TANG ; Xiao-Yu ZHANG ; Wen-Jing ZHANG ; Heng ZHU ; Li DING
Journal of Experimental Hematology 2025;33(1):246-254
OBJECTIVE:
To investigate the effects and underlying mechanism of ionizing radiation on the adipogenic of mesenchymal stem cells (MSCs).
METHODS:
Mouse MSCs were cultured in vitro and treated with 2 Gy and 6 Gy radiation with 60Co, and the radiation dose rate was 0.98 Gy/min. Bulk RNA-seq was performed on control and irradiated MSCs. The changes of adipogenic differentiation and oxidative stress pathways of MSC were revealed by bioinformatics analysis. Oil Red O staining was used to detect the adipogenic differentiation ability of MSCs in vitro, and real-time fluorescence quantitative PCR (qPCR) was used to detect the expression differences of key regulatory factors Cebpa, Lpl and Pparg after radiation treatment. At the same time, qPCR and Western blot were used to detect the effect of inhibition of Nrf2, a key factor of antioxidant stress pathway, on the expression of key regulatory factors of adipogenesis. Moreover, the species conservation of the irradiation response of human bone marrow MSCs and mouse MSC was determined by qPCR.
RESULTS:
Bulk RNA-seq suggested that ionizing radiation promotes adipogenic differentiation of MSCs and up-regulation of oxidative stress-related genes and pathways. The results of Oil Red O staining and qPCR showed that ionizing radiation promoted the adipogenesis of MSCs, with high expression of Cebpa, Lpl and Pparg, as well as oxidative stress-related gene Nrf2. Nrf2 pathway inhibitors could further enhance the adipogenesis of MSCs in bone marrow after radiation. Notably, the similar regulation of oxidative pathways and enhanced adipogenesis post irradiation were observed in human bone marrow MSCs. In addition, irradiation exposure led to up-regulated mRNA expression of interleukin-6 and down-regulated mRNA expression of colony stimulating factor 2 in human bone marrow MSCs.
CONCLUSION
Ionizing radiation promotes adipogenesis of MSCs in mice, and oxidative stress pathway participates in this effect, blocking Nrf2 further promotes the adipogenesis of MSCs. Additionally, irradiation activates oxidative pathways and promotes adipogenic differentiation of human bone marrow MSCs.
Mesenchymal Stem Cells/cytology*
;
Oxidative Stress/radiation effects*
;
Animals
;
Adipogenesis/radiation effects*
;
Mice
;
Radiation, Ionizing
;
Cell Differentiation/radiation effects*
;
Humans
;
NF-E2-Related Factor 2/metabolism*
;
PPAR gamma
;
Cells, Cultured
6.Establishment and Application of an in Vitro Cellular Model of Adipogenic Differentiation of Bone Marrow Mesenchymal Stem Cells with Serum Injury in aGVHD Mouse.
Run-Xiang XU ; Pei-Lin LI ; Jia-Yi TIAN ; Jie TANG ; Bo-Feng YIN ; Fu-Hao YU ; Fei-Yan WANG ; Xiao-Tong LI ; Xiao-Yu ZHANG ; Wen-Rong XIA ; Heng ZHU ; Li DING
Journal of Experimental Hematology 2025;33(1):255-261
OBJECTIVE:
To establish an in vitro cell model simulating acute graft-versus-host disease (aGVHD) bone marrow microenvironment injury with the advantage of mouse serum of aGVHD model and explore the effect of serum of aGVHD mouse on the adipogenic differentiation ability of mesenchymal stem cells (MSCs).
METHODS:
The 6-8-week-old C57BL/6N female mice and BALB/c female mice were used as the donor and recipient mice of the aGVHD model, respectively. Bone marrow transplantation (BMT) mouse model (n=20) was established by being injected with bone marrow cells (1×107 per mouse) from donor mice within 4-6 hours after receiving a lethal dose (8.0 Gy, 72.76 cGy/min) of γ ray general irradiation. A mouse model of aGVHD (n=20) was established by infusing a total of 0.4 ml of a mixture of donor mouse-derived bone marrow cells (1×107 per mouse) and spleen lymphocytes (2×106 per mouse). The blood was removed from the eyeballs and the mouse serum was aspirated on the 7th day after modeling. Bone marrow-derived MSCs were isolated from 1-week-old C57BL/6N male mice and incubated with 2%, 5% and 10% BMT mouse serum and aGVHD mouse serum in the medium, respectively. The effect of serum in the two groups on the in vitro adipogenic differentiation ability of mouse MSCs was detected by Oil Red O staining. The expression levels of related proteins PPARγ and CEBPα were detected by Western blot. The expression differences of key adipogenic transcription factors including PPARγ, CEBPα, FABP4 and LPL were determined by real-time quantitative PCR (RT-qPCR).
RESULTS:
An in vitro cell model simulating the damage of bone marrow microenvironment in mice with aGVHD was successfully established. Oil Red O staining showed that the number of orange-red fatty droplets was significantly reduced and the adipogenic differentiation ability of MSC was impaired at aGVHD serum concentration of 10% compared with BMT serum. Western blot experiments showed that adipogenesis-related proteins PPARγ and CEBPα expressed in MSCs were down-regulated. Further RT-qPCR assay showed that the production of PPARγ, CEBPα, FABP4 and LPL, the key transcription factors for adipogenic differentiation of MSC, were significantly reduced.
CONCLUSION
The adipogenic differentiation capacity of MSCs is inhibited by aGVHD mouse serum.
Animals
;
Mesenchymal Stem Cells/cytology*
;
Mice
;
Mice, Inbred BALB C
;
Mice, Inbred C57BL
;
Adipogenesis
;
Female
;
Cell Differentiation
;
Graft vs Host Disease/blood*
;
Bone Marrow Cells/cytology*
;
PPAR gamma/metabolism*
;
Disease Models, Animal
;
CCAAT-Enhancer-Binding Protein-alpha/metabolism*
7.Preparation and Evaluation of Clinical-Grade Human Umbilical Cord-Derived Mesenchymal Stem Cells with High Expression of Hematopoietic Supporting Factors.
Jie TANG ; Pei-Lin LI ; Xiao-Yu ZHANG ; Xiao-Tong LI ; Fu-Hao YU ; Jia-Yi TIAN ; Run-Xiang XU ; Bo-Feng YIN ; Li DING ; Heng ZHU
Journal of Experimental Hematology 2025;33(3):892-898
OBJECTIVE:
To prepare clinical-grade human umbilical cord-derived mesenchymal stem cells (hUC-MSC) with high expression of hematopoietic supporting factors and evaluate their stem cell characteristics.
METHODS:
Fetal umbilical cord tissues were collected from healthy postpartum women during full-term cesarean section. Wharton's jelly was mechanically separated and hUC-MSCs were obtained by explant culture method and enzyme digestion method in an animal serum-free culture system with addition of human platelet lysate. The phenotypic characteristics of hUC-MSCs obtained by two methods were detected by flow cytometry. The differences in proliferation ability between the two groups of hUC-MSCs were identified through CCK-8 assay and colony forming unit-fibroblast (CFU-F) assay. The differences in multilineage differentiation potential between the two groups of hUC-MSCs were identified through induction of adipogenic, osteogenic, and chondrogenic differentiation. The mRNA expression levels of hematopoietic supporting factors such as SCF, IL-3, CXCL12, VCAM1 and ANGPT1 in the two groups of hUC-MSCs were identified by real-time fluorescence quantiative PCR(RT-qPCR).
RESULTS:
The results of flow cytometry showed that hUC-MSCs obtained by the two methods both expressed high levels of CD73, CD90 and CD105, while lowly expressed CD31, CD45 and HLA-DR. The results of CCK-8 and CFU-F assay showed that the proliferation ability of hUC-MSCs obtained by explant culture method was better than those obtained by enzyme digestion method. The results of the triple lineage differentiation experiment showed that there was no significant difference in multilineage differentiation potential between the two grous of hUC-MSCs. The results of RT-qPCR showed that the mRNA expression levels of hematopoietic supporting factors SCF, IL-3, CXCL12, VCAM1 and ANGPT1 in hUC-MSCs obtained by explant cultrue method were higher than those obtained by enzyme digestion method.
CONCLUSION
Clinical-grade hUC-MSCs with high expression levels of hematopoietic supporting factors were successfully cultured in an animal serum-free culture system.
Humans
;
Mesenchymal Stem Cells/metabolism*
;
Umbilical Cord/cytology*
;
Cell Differentiation
;
Female
;
Cell Proliferation
;
Cells, Cultured
;
Chemokine CXCL12/metabolism*
;
Angiopoietin-1/metabolism*
;
Vascular Cell Adhesion Molecule-1/metabolism*
;
Stem Cell Factor/metabolism*
;
Flow Cytometry
;
Pregnancy
8.Aldolase A accelerates hepatocarcinogenesis by refactoring c-Jun transcription.
Xin YANG ; Guang-Yuan MA ; Xiao-Qiang LI ; Na TANG ; Yang SUN ; Xiao-Wei HAO ; Ke-Han WU ; Yu-Bo WANG ; Wen TIAN ; Xin FAN ; Zezhi LI ; Caixia FENG ; Xu CHAO ; Yu-Fan WANG ; Yao LIU ; Di LI ; Wei CAO
Journal of Pharmaceutical Analysis 2025;15(7):101169-101169
Hepatocellular carcinoma (HCC) expresses abundant glycolytic enzymes and displays comprehensive glucose metabolism reprogramming. Aldolase A (ALDOA) plays a prominent role in glycolysis; however, little is known about its role in HCC development. In the present study, we aim to explore how ALDOA is involved in HCC proliferation. HCC proliferation was markedly suppressed both in vitro and in vivo following ALDOA knockout, which is consistent with ALDOA overexpression encouraging HCC proliferation. Mechanistically, ALDOA knockout partially limits the glycolytic flux in HCC cells. Meanwhile, ALDOA translocated to nuclei and directly interacted with c-Jun to facilitate its Thr93 phosphorylation by P21-activated protein kinase; ALDOA knockout markedly diminished c-Jun Thr93 phosphorylation and then dampened c-Jun transcription function. A crucial site Y364 mutation in ALDOA disrupted its interaction with c-Jun, and Y364S ALDOA expression failed to rescue cell proliferation in ALDOA deletion cells. In HCC patients, the expression level of ALDOA was correlated with the phosphorylation level of c-Jun (Thr93) and poor prognosis. Remarkably, hepatic ALDOA was significantly upregulated in the promotion and progression stages of diethylnitrosamine-induced HCC models, and the knockdown of A ldoa strikingly decreased HCC development in vivo. Our study demonstrated that ALDOA is a vital driver for HCC development by activating c-Jun-mediated oncogene transcription, opening additional avenues for anti-cancer therapies.
9.Effects of Hot Night Exposure on Human Semen Quality: A Multicenter Population-Based Study.
Ting Ting DAI ; Ting XU ; Qi Ling WANG ; Hao Bo NI ; Chun Ying SONG ; Yu Shan LI ; Fu Ping LI ; Tian Qing MENG ; Hui Qiang SHENG ; Ling Xi WANG ; Xiao Yan CAI ; Li Na XIAO ; Xiao Lin YU ; Qing Hui ZENG ; Pi GUO ; Xin Zong ZHANG
Biomedical and Environmental Sciences 2025;38(2):178-193
OBJECTIVE:
To explore and quantify the association of hot night exposure during the sperm development period (0-90 lag days) with semen quality.
METHODS:
A total of 6,640 male sperm donors from 6 human sperm banks in China during 2014-2020 were recruited in this multicenter study. Two indices (i.e., hot night excess [HNE] and hot night duration [HND]) were used to estimate the heat intensity and duration during nighttime. Linear mixed models were used to examine the association between hot nights and semen quality parameters.
RESULTS:
The exposure-response relationship revealed that HNE and HND during 0-90 days before semen collection had a significantly inverse association with sperm motility. Specifically, a 1 °C increase in HNE was associated with decreased sperm progressive motility of 0.0090 (95% confidence interval [ CI]: -0.0147, -0.0033) and decreased total motility of 0.0094 (95% CI: -0.0160, -0.0029). HND was significantly associated with reduced sperm progressive motility and total motility of 0.0021 (95% CI: -0.0040, -0.0003) and 0.0023 (95% CI: -0.0043, -0.0002), respectively. Consistent results were observed at different temperature thresholds on hot nights.
CONCLUSION
Our findings highlight the need to mitigate nocturnal heat exposure during spermatogenesis to maintain optimal semen quality.
Humans
;
Male
;
Semen Analysis
;
Adult
;
Sperm Motility
;
Hot Temperature/adverse effects*
;
China
;
Middle Aged
;
Spermatozoa/physiology*
;
Young Adult
10.Engineering of Pichia pastoris for producing glycoproteins with hybrid-type (GlcNAcMan5GlcNAc2) N-glycans.
Hao WANG ; Tiantian WANG ; Bin ZHANG ; Jun WU ; Huifang XU ; Yanru ZHANG ; Kehai LIU ; Bo LIU
Chinese Journal of Biotechnology 2025;41(9):3617-3629
Glycosylation modification is an important post-translational modification of proteins, which participates in regulating protein half-life, biological activity, and immunogenicity, thereby affecting their functions. Glycoproteins expressed in Pichia pastoris predominantly carry high-mannose type glycans, primarily composed of mannose residues, which starkly contrasts with the complex-type glycans synthesized by mammalian cells. This study aims to transform the high mannose glycosylation modification of P. pastoris into a hybrid glycosylation modification similar to that of mammalian cells through genetic engineering technology. We introduced the mannosidase Ⅰ gene (MDSⅠ) from Trichoderma viride and the human β-1,2-N-acetylglucosaminyltransferase I gene (GnTⅠ) into a previously constructed P. pastoris strain (∆och1) capable of producing Man8GlcNAc2 glycans. To precisely regulate the expression of MDSⅠ and GnTⅠ, we designed various promoter combinations, including the strong inducible AOX promoter and the constitutive GAP promoter. The receptor-binding domain (RBD, residues 377-588) of the spike protein from the Middle East respiratory syndrome coronavirus (MERS-CoV) was selected as the reporter protein for this investigation (MERS-RBD). The N-glycosylation profile of MERS-RBD was systematically analyzed using PNGase F digestion coupled with mass spectrometry. The results showed that after the knockout of och1 and the introduction of MDSⅠ and GnTⅠ genes with different promoter combinations, P. pastoris strains capable of producing GlcNAcMan5GlcNAc2 glycans were successfully generated. When the AOX promoter was used to control the MDSⅠ gene and the GAP promoter was used to control the GnTⅠ gene, the engineered strain exhibited the highest proportion of hybrid-type GlcNAcMan5GlcNAc2 glycans, which accounted for 68.38% of the total N-glycosylation. In conclusion, we successfully engineered a P. pastoris strain capable of synthesizing hybrid-type GlcNAcMan5GlcNAc2 glycans, establishing a foundation for subsequent research on the biosynthesis of complex-type N-glycans in P. pastoris.
Glycosylation
;
Glycoproteins/genetics*
;
Polysaccharides/metabolism*
;
N-Acetylglucosaminyltransferases/metabolism*
;
Pichia/metabolism*
;
Humans
;
Mannosidases/metabolism*
;
Genetic Engineering
;
Trichoderma/genetics*
;
Recombinant Proteins/genetics*
;
Saccharomycetales

Result Analysis
Print
Save
E-mail