1.Mechanism of Yishen Huoxue Tongqiao Formula in Improving Unilateral Vestibular Labyrinth Destruction by Regulating Metabolism-neuroplasticity
Yu TIAN ; Hui LENG ; Rupeng QU ; Xianglong HAO ; Aiping WANG ; Lei SHI ; Zhongyuan QU ; Ye DONG ; Xiande MA ; Yangling HUANG
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(5):54-64
ObjectiveThis study aims to explore the mechanism by which Yishen Huoxue Tongqiao Formula improves metabolism-neuroplasticity and treats unilateral vestibular labyrinth destruction by regulating the metabolic balance of glutamate (Glu)/γ-aminobutyric acid (GABA). Methods48 Sprague-Dawley (SD) adult rats were randomly divided into the sham operation group, model group, Yishen Huoxue Tongqiao Formula groups with low, medium, and high doses (9.20, 18.39, 36.78 g·kg-1), and betahistine group (1.62 mg·kg-1). A unilateral vestibular labyrinth destruction (vestibular dysfunction) model was established by intratympanic injection of chloroform into the right ear, while the control group received intratympanic injection of normal saline. Drugs were administered once daily for seven consecutive days. During the period, behavioral tests were performed to evaluate the behaviors of rats after unilateral vestibular labyrinth destruction. Hematoxylin-eosin (HE) staining and Nissl staining were used to observe the neuronal morphology in the medial vestibular nucleus. Golgi staining was employed to assess the number of dendritic spines of neurons in the medial vestibular nucleus. Ultra-performance liquid chromatography-tandem mass spectrometry (LC-ESI-MS/MS) was utilized to detect Glu/GABA. Immunofluorescence and immunohistochemistry were used to detect the expressions of neuronal nuclei (NeuN), growth-associated protein 43 (GAP-43), and glial fibrillary acidic protein (GFAP). Western blot and real-time fluorescent quantitative polymerase chain reaction (Real-time PCR) were applied to determine the expressions of glutamate-immunoreactive (Glu-IR), GABA, GFAP, postsynaptic density protein 95 (PSD-95), and GAP-43. ResultsCompared with the sham operation group, the model group presented with head deviation, balance disorder, increased tail suspension score, nuclear consolidation of medial vestibular nerve neurons, and decreased Nissl bodies (P<0.01). The number of dendritic spines in neurons and NeuN-positive cells decreased. The content of Glu decreased. The content of GABA increased (Glu/GABA decreased). The expression of GAP-43 was down-regulated, and GFAP was up-regulated (P<0.05, P<0.01). The expressions of Glu-IR, PSD-95, and GAP-43 proteins, as well as Glu-IR mRNA decreased, while the expressions of GABA and GFAP proteins and mRNA increased (P<0.05, P<0.01). Compared with those in the model group, the head deviation, imbalanced behavior, and tail suspension scores in each treatment group decreased, with alleviated neuronal injury and recovered Nissl bodies (P<0.01). The number of dendritic spines of neurons increased, and the number of NeuN-positive cells rebounded. The content of Glu increased, and the content of GABA decreased (Glu/GABA increased). GFAP was down-regulated, and GAP-43 was up-regulated (P<0.05, P<0.01). The expressions of Glu-IR, PMD-95, and GAP-43 proteins, as well as Glu-IR mRNA increased, while the expressions of GABA and GFAP proteins and mRNA decreased. The effect was more significant in the high-dose group (P<0.01). ConclusionThe Yishen Huoxue Tongqiao Formula can alleviate vestibular dysfunction, and its mechanism may be associated with regulating the metabolic balance of Glu/GABA, mitigating neural damage, improving synaptic plasticity (promoting GAP-43 expression and inhibiting GFAP expression), and facilitating vestibular compensation.
2.Expert consensus on evaluation index system construction for new traditional Chinese medicine(TCM) from TCM clinical practice in medical institutions.
Li LIU ; Lei ZHANG ; Wei-An YUAN ; Zhong-Qi YANG ; Jun-Hua ZHANG ; Bao-He WANG ; Si-Yuan HU ; Zu-Guang YE ; Ling HAN ; Yue-Hua ZHOU ; Zi-Feng YANG ; Rui GAO ; Ming YANG ; Ting WANG ; Jie-Lai XIA ; Shi-Shan YU ; Xiao-Hui FAN ; Hua HUA ; Jia HE ; Yin LU ; Zhong WANG ; Jin-Hui DOU ; Geng LI ; Yu DONG ; Hao YU ; Li-Ping QU ; Jian-Yuan TANG
China Journal of Chinese Materia Medica 2025;50(12):3474-3482
Medical institutions, with their clinical practice foundation and abundant human use experience data, have become important carriers for the inheritance and innovation of traditional Chinese medicine(TCM) and the "cradles" of the preparation of new TCM. To effectively promote the transformation of new TCM originating from the TCM clinical practice in medical institutions and establish an effective evaluation index system for the transformation of new TCM conforming to the characteristics of TCM, consensus experts adopted the literature research, questionnaire survey, Delphi method, etc. By focusing on the policy and technical evaluation of new TCM originating from the TCM clinical practice in medical institutions, a comprehensive evaluation from the dimensions of drug safety, efficacy, feasibility, and characteristic advantages was conducted, thus forming a comprehensive evaluation system with four primary indicators and 37 secondary indicators. The expert consensus reached aims to encourage medical institutions at all levels to continuously improve the high-quality research and development and transformation of new TCM originating from the TCM clinical practice in medical institutions and targeted at clinical needs, so as to provide a decision-making basis for the preparation, selection, cultivation, and transformation of new TCM for medical institutions, improve the development efficiency of new TCM, and precisely respond to the public medication needs.
Medicine, Chinese Traditional/standards*
;
Humans
;
Consensus
;
Drugs, Chinese Herbal/therapeutic use*
;
Surveys and Questionnaires
3.Research progress in traditional Chinese medicine treatment of kidney-Yang deficiency syndrome by regulating neuro-endocrine-immune system.
Xiao YANG ; Jia-Geng GUO ; Yu DUAN ; Zhen-Dong QIU ; Min-Qi CHEN ; Wei WEI ; Xiao-Tao HOU ; Er-Wei HAO ; Jia-Gang DENG
China Journal of Chinese Materia Medica 2025;50(15):4153-4165
Kidney-Yang deficiency syndrome is a common geriatric disease that underlies chronic conditions such as diabetic nephropathy, chronic kidney disease, and osteoporosis. As age progresses, the kidney-Yang deficiency syndrome showcases increasingly pronounced manifestations, emerging as a key factor in the comorbidities experienced by elderly patients and affecting their quality of life and overall health status. Traditional Chinese medicine(TCM) has been extensively utilized in the treatment of kidney-Yang deficiency syndrome, with Epimedii Folium, Cinnamomi Cortex, and Lycii Fructus widely used in clinical settings. Despite the complexity of the molecular mechanisms involved in treating kidney-Yang deficiency syndrome, the potential therapeutic value of TCM remains compelling. Delving into the mechanisms of TCM treatment of kidney-Yang deficiency syndrome by regulating the neuro-endocrine-immune system can provide a scientific basis for targeted treatments of this syndrome and lay a foundation for the modernization of TCM. The pathophysiology of kidney-Yang deficiency syndrome involves multiple systems, including the interaction of the neuro-endocrine-immune system, the decline in renal function, the intensification of oxidative stress responses, and energy metabolism disorders. Understanding these mechanisms and their interrelationships can help untangle the etiology of kidney-Yang deficiency syndrome, aiding clinicians in making more precise diagnoses and treatments. Furthermore, the research on the specific applications of TCM in research on these pathological mechanisms can enhance the international recognition and status of TCM, enabling it to exert a greater global influence.
Humans
;
Yang Deficiency/physiopathology*
;
Drugs, Chinese Herbal/therapeutic use*
;
Medicine, Chinese Traditional
;
Kidney Diseases/physiopathology*
;
Neurosecretory Systems/physiopathology*
;
Animals
;
Kidney/physiopathology*
;
Endocrine System/physiopathology*
;
Immune System/physiopathology*
4.Analysis of The Characteristics of Brain Functional Activity in Gross Motor Tasks in Children With Autism Based on Functional Near-infrared Spectroscopy Technology
Wen-Hao ZONG ; Qi LIANG ; Shi-Yu YANG ; Feng-Jiao WANG ; Meng-Zhao WEI ; Hong LEI ; Gui-Jun DONG ; Ke-Feng LI
Progress in Biochemistry and Biophysics 2025;52(8):2146-2162
ObjectiveBased on functional near-infrared spectroscopy (fNIRS), we investigated the brain activity characteristics of gross motor tasks in children with autism spectrum disorder (ASD) and motor dysfunctions (MDs) to provide a theoretical basis for further understanding the mechanism of MDs in children with ASD and designing targeted intervention programs from a central perspective. MethodsAccording to the inclusion and exclusion criteria, 48 children with ASD accompanied by MDs were recruited into the ASD group and 40 children with typically developing (TD) into the TD group. The fNIRS device was used to collect the information of blood oxygen changes in the cortical motor-related brain regions during single-handed bag throwing and tiptoe walking, and the differences in brain activation and functional connectivity between the two groups of children were analyzed from the perspective of brain activation and functional connectivity. ResultsCompared to the TD group, in the object manipulative motor task (one-handed bag throwing), the ASD group showed significantly reduced activation in both left sensorimotor cortex (SMC) and right secondary visual cortex (V2) (P<0.05), whereas the right pre-motor and supplementary motor cortex (PMC&SMA) had significantly higher activation (P<0.01) and showed bilateral brain region activity; in terms of brain functional integration, there was a significant decrease in the strength of brain functional connectivity (P<0.05) and was mainly associated with dorsolateral prefrontal cortex (DLPFC) and V2. In the body stability motor task (tiptoe walking), the ASD group had significantly higher activation in motor-related brain regions such as the DLPFC, SMC, and PMC&SMA (P<0.05) and showed bilateral brain region activity; in terms of brain functional integration, the ASD group had lower strength of brain functional connectivity (P<0.05) and was mainly associated with PMC&SMA and V2. ConclusionChildren with ASD exhibit abnormal brain functional activity characteristics specific to different gross motor tasks in object manipulative and body stability, reflecting insufficient or excessive compensatory activation of local brain regions and impaired cross-regions integration, which may be a potential reason for the poorer gross motor performance of children with ASD, and meanwhile provides data support for further unraveling the mechanisms underlying the occurrence of MDs in the context of ASD and designing targeted intervention programs from a central perspective.
5.Design, synthesis, and antitumor activity of novel thioheterocyclic nucleoside derivatives by suppressing the c-MYC pathway.
Xian-Jia LI ; Ke-Xin HUANG ; Ke-Xin WANG ; Ru LIU ; Dong-Chao WANG ; Yu-Ru LIANG ; Er-Jun HAO ; Yang WANG ; Hai-Ming GUO
Acta Pharmaceutica Sinica B 2025;15(7):3685-3707
Eightly-four novel thioheterocyclic nucleoside derivatives were designed, synthesized, and evaluated for antitumor activity in vitro and in vivo. Most of the compounds inhibited the growth of HCT116 and HeLa cancer cells in vitro, among them 33a and 36b exhibited potent activity against HCT116 cells (IC50 = 0.27 and 0.49 μmol/L, respectively). Both compounds 33a and 36b inhibited cell metastasis, arrested the cell cycle in the G2/M phase, and induced apoptosis in vitro. Mechanistic studies revealed that 33a and 36b increased ROS levels, led to DNA damage, ER stress, and mitochondrial dysfunction, and inhibited autophagy in HCT116 cells. Biological information analysis, RNA-sequencing, Gene Set Enrichment Analysis (GSEA), drug affinity responsive target stability (DARTS) assay, cellular thermal shift assay (CETSA), and SPR experiments identified that compounds 33a and 36b showed antitumor activity by suppressing the c-MYC pathway. c-MYC silencing assays indicated that c-MYC proteins participated in 33a-mediated anticancer activities in HCT116 cells. More importantly, compound 33a presented favorable pharmacokinetic properties in mice (T 1/2 = 6.8 h) and showed significant antitumor efficacy in vivo without obvious toxicity, showing promising potential for further clinical development.
6.External validation of the model for predicting high-grade patterns of stage ⅠA invasive lung adenocarcinoma based on clinical and imaging features
Yu RONG ; Nianqiao HAN ; Yanbing HAO ; Jianli HU ; Yajin NIU ; Lan ZHANG ; Yuehua DONG ; Nan ZHANG ; Junfeng LIU
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(08):1096-1104
Objective To externally validate a prediction model based on clinical and CT imaging features for the preoperative identification of high-grade patterns (HGP), such as micropapillary and solid subtypes, in early-stage lung adenocarcinoma, in order to guide clinical treatment decisions. Methods This study conducted an external validation of a previously developed prediction model using a cohort of patients with clinical stage ⅠA lung adenocarcinoma from the Fourth Hospital of Hebei Medical University. The model, which incorporated factors including tumor size, density, and lobulation, was assessed for its discrimination, calibration performance, and clinical impact. Results A total of 650 patients (293 males, 357 females; age range: 30-82 years) were included. The validation showed that the model demonstrated good performance in discriminating HGP (area under the curve>0.7). After recalibration, the model's calibration performance was improved. Decision curve analysis (DCA) indicated that at a threshold probability>0.6, the number of HGP patients predicted by the model closely approximated the actual number of cases. Conclusion This study confirms the effectiveness of a clinical and imaging feature-based prediction model for identifying HGP in stage ⅠA lung adenocarcinoma in a clinical setting. Successful application of this model may be significant for determining surgical strategies and improving patients' prognosis. Despite certain limitations, these findings provide new directions for future research.
7.Associations between statins and all-cause mortality and cardiovascular events among peritoneal dialysis patients: A multi-center large-scale cohort study.
Shuang GAO ; Lei NAN ; Xinqiu LI ; Shaomei LI ; Huaying PEI ; Jinghong ZHAO ; Ying ZHANG ; Zibo XIONG ; Yumei LIAO ; Ying LI ; Qiongzhen LIN ; Wenbo HU ; Yulin LI ; Liping DUAN ; Zhaoxia ZHENG ; Gang FU ; Shanshan GUO ; Beiru ZHANG ; Rui YU ; Fuyun SUN ; Xiaoying MA ; Li HAO ; Guiling LIU ; Zhanzheng ZHAO ; Jing XIAO ; Yulan SHEN ; Yong ZHANG ; Xuanyi DU ; Tianrong JI ; Yingli YUE ; Shanshan CHEN ; Zhigang MA ; Yingping LI ; Li ZUO ; Huiping ZHAO ; Xianchao ZHANG ; Xuejian WANG ; Yirong LIU ; Xinying GAO ; Xiaoli CHEN ; Hongyi LI ; Shutong DU ; Cui ZHAO ; Zhonggao XU ; Li ZHANG ; Hongyu CHEN ; Li LI ; Lihua WANG ; Yan YAN ; Yingchun MA ; Yuanyuan WEI ; Jingwei ZHOU ; Yan LI ; Caili WANG ; Jie DONG
Chinese Medical Journal 2025;138(21):2856-2858
8.Research progress on the comorbidity mechanism of sarcopenia and obesity in the aging population.
Hao-Dong TIAN ; Yu-Kun LU ; Li HUANG ; Hao-Wei LIU ; Hang-Lin YU ; Jin-Long WU ; Han-Sen LI ; Li PENG
Acta Physiologica Sinica 2025;77(5):905-924
The increasing prevalence of aging has led to a rising incidence of comorbidity of sarcopenia and obesity, posing significant burdens on socioeconomic and public health. Current research has systematically explored the pathogenesis of each condition; however, the mechanisms underlying their comorbidity remain unclear. This study reviews the current literature on sarcopenia and obesity in the aging population, focusing on their shared biological mechanisms, which include loss of autophagy, abnormal macrophage function, mitochondrial dysfunction, and reduced sex hormone secretion. It also identifies metabolic mechanisms such as insulin resistance, vitamin D metabolism abnormalities, dysregulation of iron metabolism, decreased levels of nicotinamide adenine dinucleotide, and gut microbiota imbalances. Additionally, this study also explores the important role of genetic factors, such as alleles and microRNAs, in the co-occurrence of sarcopenia and obesity. A better understanding of these mechanisms is vital for developing clinical interventions and preventive strategies.
Humans
;
Sarcopenia/physiopathology*
;
Obesity/physiopathology*
;
Aging/physiology*
;
Autophagy/physiology*
;
Insulin Resistance
;
Comorbidity
;
Vitamin D/metabolism*
;
Gonadal Steroid Hormones/metabolism*
;
Gastrointestinal Microbiome
;
Mitochondria
;
MicroRNAs
9.Study on lightweight plasma recognition algorithm based on depth image perception.
Hanwen ZHANG ; Yu SUN ; Hao JIANG ; Jintian HU ; Gangyin LUO ; Dong LI ; Weijuan CAO ; Xiang QIU
Journal of Biomedical Engineering 2025;42(1):123-131
In the clinical stage, suspected hemolytic plasma may cause hemolysis illness, manifesting as symptoms such as heart failure, severe anemia, etc. Applying a deep learning method to plasma images significantly improves recognition accuracy, so that this paper proposes a plasma quality detection model based on improved "You Only Look Once" 5th version (YOLOv5). Then the model presented in this paper and the evaluation system were introduced into the plasma datasets, and the average accuracy of the final classification reached 98.7%. The results of this paper's experiment were obtained through the combination of several key algorithm modules including omni-dimensional dynamic convolution, pooling with separable kernel attention, residual bi-fusion feature pyramid network, and re-parameterization convolution. The method of this paper obtains the feature information of spatial mapping efficiently, and enhances the average recognition accuracy of plasma quality detection. This paper presents a high-efficiency detection method for plasma images, aiming to provide a practical approach to prevent hemolysis illnesses caused by external factors.
Algorithms
;
Humans
;
Hemolysis
;
Plasma
;
Deep Learning
;
Image Processing, Computer-Assisted/methods*
10.Protective effect of sub-hypothermic mechanical perfusion combined with membrane lung oxygenation on a yorkshire model of brain injury after traumatic blood loss.
Xiang-Yu SONG ; Yang-Hui DONG ; Zhi-Bo JIA ; Lei-Jia CHEN ; Meng-Yi CUI ; Yan-Jun GUAN ; Bo-Yao YANG ; Si-Ce WANG ; Sheng-Feng CHEN ; Peng-Kai LI ; Heng CHEN ; Hao-Chen ZUO ; Zhan-Cheng YANG ; Wen-Jing XU ; Ya-Qun ZHAO ; Jiang PENG
Chinese Journal of Traumatology 2025;28(6):469-476
PURPOSE:
To investigate the protective effect of sub-hypothermic mechanical perfusion combined with membrane lung oxygenation on ischemic hypoxic injury of yorkshire brain tissue caused by traumatic blood loss.
METHODS:
This article performed a random controlled trial. Brain tissue of 7 yorkshire was selected and divided into the sub-low temperature anterograde machine perfusion group (n = 4) and the blank control group (n = 3) using the random number table method. A yorkshire model of brain tissue injury induced by traumatic blood loss was established. Firstly, the perfusion temperature and blood oxygen saturation were monitored in real-time during the perfusion process. The number of red blood cells, hemoglobin content, NA+, K+, and Ca2+ ions concentrations and pH of the perfusate were detected. Following perfusion, we specifically examined the parietal lobe to assess its water content. The prefrontal cortex and hippocampus were then dissected for histological evaluation, allowing us to investigate potential regional differences in tissue injury. The blank control group was sampled directly before perfusion. All statistical analyses and graphs were performed using GraphPad Prism 8.0 Student t-test. All tests were two-sided, and p value of less than 0.05 was considered to indicate statistical significance.
RESULTS:
The contents of red blood cells and hemoglobin during perfusion were maintained at normal levels but more red blood cells were destroyed 3 h after the perfusion. The blood oxygen saturation of the perfusion group was maintained at 95% - 98%. NA+ and K+ concentrations were normal most of the time during perfusion but increased significantly at about 4 h. The Ca2+ concentration remained within the normal range at each period. Glucose levels were slightly higher than the baseline level. The pH of the perfusion solution was slightly lower at the beginning of perfusion, and then gradually increased to the normal level. The water content of brain tissue in the sub-low and docile perfusion group was 78.95% ± 0.39%, which was significantly higher than that in the control group (75.27% ± 0.55%, t = 10.49, p < 0.001), and the difference was statistically significant. Compared with the blank control group, the structure and morphology of pyramidal neurons in the prefrontal cortex and CA1 region of the hippocampal gyrus were similar, and their integrity was better. The structural integrity of granulosa neurons was destroyed and cell edema increased in the perfusion group compared with the blank control group. Immunofluorescence staining for glail fibrillary acidic protein and Iba1, markers of glial cells, revealed well-preserved cell structures in the perfusion group. While there were indications of abnormal cellular activity, the analysis showed no significant difference in axon thickness or integrity compared to the 1-h blank control group.
CONCLUSIONS
Mild hypothermic machine perfusion can improve ischemia and hypoxia injury of yorkshire brain tissue caused by traumatic blood loss and delay the necrosis and apoptosis of yorkshire brain tissue by continuous oxygen supply, maintaining ion homeostasis and reducing tissue metabolism level.
Animals
;
Perfusion/methods*
;
Disease Models, Animal
;
Brain Injuries/etiology*
;
Swine
;
Male
;
Hypothermia, Induced/methods*

Result Analysis
Print
Save
E-mail