1.Biomechanical effect of alveolar bone graft resorption on the maxillary alveolar process in a patient with unilateral cleft lip and palate
WANG Xiaoyu ; WANG Hao ; LI Song
Journal of Prevention and Treatment for Stomatological Diseases 2025;33(2):120-128
Objective :
To investigate the biomechanical effect of alveolar bone graft (ABG) resorption on the maxillary alveolar process under occlusal force in a patient with unilateral cleft lip and palate (UCLP) and provide evidence for the clinical application of ABG.
Methods:
A 3D finite element maxillary model of an 11-year-old female patient with UCLP was generated. The occlusal force was applied to six models with different ABG resorption, namely non-resorption, upper 1/3 resorption, upper 2/3 resorption, lower 1/3 resorption, lower 2/3 resorption, and upper&lower 1/3 resorption. The properties of structures in all models were set to be linear, elastic, and isotropic. The displacement and Von Mises stress of each reference node of the alveolar process were compared and analyzed.
Results:
Under occlusal force, the most significant displacement of the alveolar process was located in the anterior area, and it decreased gradually from anterior area to both sides in all groups. The displacement values of the alveolar process under cleft side lateral occlusion were as follows: non-resorption group < lower 2/3 resorption group < upper&lower 1/3 resorption group < lower 1/3 resorption group < upper 2/3 resorption group < upper 1/3 resorption group. The displacement values of the alveolar process under centric occlusion were as follows: non-resorption group < lower 1/3 resorption group < upper&lower 1/3 resorption group < upper 2/3 resorption group < lower 2/3 resorption group < upper 1/3 resorption group. The displacement values of the alveolar process under non-cleft side lateral occlusion were as follows: non-resorption group < lower 1/3 resorption group < upper 1/3 resorption group < lower 2/3 resorption group < upper&lower 1/3 resorption group < upper 2/3 resorption group. The stress was concentrated on the premolar area on the functional side of the alveolar process, followed by the canine and molar areas in all groups. The stress values of the alveolar process under cleft side lateral occlusion were as follows: non-resorption group < lower 2/3 resorption group < upper&lower 1/3 resorption group < upper 2/3 resorption group < lower 1/3 resorption group < upper 1/3 resorption group. The stress values of the alveolar process under centric occlusion were as follows: non-resorption group < upper 1/3 resorption group < lower 1/3 resorption group < lower 2/3 resorption group < upper&lower 1/3 resorption group < upper 2/3 resorption group. The stress values of the alveolar process under non-cleft side lateral occlusion were as follows: non-resorption group < lower 2/3 resorption group < upper&lower 1/3 resorption group < lower 1/3 resorption group < upper 2/3 resorption group < upper 1/3 resorption group. Under occlusal force, the displacement and stress of the alveolar process in the non-resorption model were significantly lower than those in other models. The displacement and stress of the alveolar process in the models with resorption in the lower area of the ABG were significantly lower than those in the models with resorption in the upper-middle areas of the ABG.
Conclusion
After unilateral complete cleft lip and palate bone grafting, the integrity and continuity of the middle and upper parts of the alveolar process bone grafting play a key role in the biomechanical status of the alveolar process. If bone resorption occurs in the above parts, bone grafting should be considered.
2.Luteolin improves myocardial cell death induced by serum from rats with spinal cord injury
Wenwen ZHANG ; Mengru XU ; Yuan TIAN ; Lifei ZHANG ; Shu SHI ; Ning WANG ; Yuan YUAN ; Li WANG ; Haihu HAO
Chinese Journal of Tissue Engineering Research 2025;29(1):38-43
BACKGROUND:Cardiac dysfunction due to spinal cord injury is an important factor of death in patients with spinal cord injury;however,the specific mechanism is still not clear.Therefore,revealing the mechanism of cardiac dysfunction in spinal cord injury patients is of great significance to improve their quality of life and survival rate. OBJECTIVE:To investigate the mechanism of luteolin in improving serum-induced myocardial cell death in spinal cord injury rats. METHODS:Allen's impact instrument was used to damage the spine T9-T11 of male SD rats to establish a spinal cord injury model meanwhile a sham operation group was set as the control group.The serum of rats of each group was collected.H9c2 cells were divided into a blank control group,a sham operated rat serum group,a spinal cord injury rat serum group and a luteolin pretreatment group.The cells in blank control group were only cultured with ordinary culture medium.The cells in the sham operated rat serum group were treated with medium containing 10%serum from sham operated rat.The cells in the spinal cord injury rat serum group were treated with medium containing 10%serum from spinal cord injury rat.The cells in the luteolin pretreatment group were precultured with a final concentration of 20 μmol/L luteolin for 4 hours and then changed to a medium containing 10%rat serum from spinal cord injury rat.After 24 hours of culture,the survival rate of each group of H9c2 cells was measured by CCK-8 assay.Western blot assay was used to detect the expression of autophagy related protein LC3 and p62 in H9c2 cells in each group. RESULTS AND CONCLUSION:Compared with the blank control group,there was no significant change in cell survival rate in the sham operated rat serum group(P>0.05).Compared with the sham operated rat serum group,the cell survival rate(P<0.01)and the expression of LC3 protein(P<0.05)in spinal cord injury rat serum group was significantly reduced,and the expression of p62 protein was significantly increased(P<0.05).Compared with the spinal cord injury rat serum group,the survival rate of cells in the luteolin pretreatment group significantly increased(P<0.000 1);the expression of LC3 protein significantly increased(P<0.05),and the expression of p62 protein significantly decreased(P<0.05).The results indicate that luteolin may improve myocardial cell death induced by serum from rats with spinal cord injury by promoting autophagy.
3.Neuroplasticity Mechanisms of Exercise-induced Brain Protection
Li-Juan HOU ; Lan-Qun MAO ; Wei CHEN ; Ke LI ; Xu-Dong ZHAO ; Yin-Hao WANG ; Zi-Zheng YANG ; Tian-He WEI
Progress in Biochemistry and Biophysics 2025;52(6):1435-1452
Neuroscience is a significant frontier discipline within the natural sciences and has become an important interdisciplinary frontier scientific field. Brain is one of the most complex organs in the human body, and its structural and functional analysis is considered the “ultimate frontier” of human self-awareness and exploration of nature. Driven by the strategic layout of “China Brain Project”, Chinese scientists have conducted systematic research focusing on “understanding the brain, simulating the brain, and protecting the brain”. They have made breakthrough progress in areas such as the principles of brain cognition, mechanisms and interventions for brain diseases, brain-like computation, and applications of brain-machine intelligence technology, aiming to enhance brain health through biomedical technology and improve the quality of human life. Due to limited understanding and comprehension of neuroscience, there are still many important unresolved issues in the field of neuroscience, resulting in a lack of effective measures to prevent and protect brain health. Therefore, in addition to actively developing new generation drugs, exploring non pharmacological treatment strategies with better health benefits and higher safety is particularly important. Epidemiological data shows that, exercise is not only an indispensable part of daily life but also an important non-pharmacological approach for protecting brain health and preventing neurodegenerative diseases, forming an emerging research field known as motor neuroscience. Basic research in motor neuroscience primarily focuses on analyzing the dynamic coding mechanisms of neural circuits involved in motor control, breakthroughs in motor neuroscience research depend on the construction of dynamic monitoring systems across temporal and spatial scales. Therefore, high spatiotemporal resolution detection of movement processes and movement-induced changes in brain structure and neural activity signals is an important technical foundation for conducting motor neuroscience research and has developed a set of tools based on traditional neuroscience methods combined with novel motor behavior decoding technologies, providing an innovative technical platform for motor neuroscience research. The protective effect of exercise in neurodegenerative diseases provides broad application prospects for its clinical translation. Applied research in motor neuroscience centers on deciphering the regulatory networks of neuroprotective molecules mediated by exercise. From the perspectives of exercise promoting neurogenesis and regeneration, enhancing synaptic plasticity, modulating neuronal functional activity, and remodeling the molecular homeostasis of the neuronal microenvironment, it aims to improve cognitive function and reduce the incidence of Parkinson’s disease and Alzheimer’s disease. This has also advanced research into the molecular regulatory networks mediating exercise-induced neuroprotection and facilitated the clinical application and promotion of exercise rehabilitation strategies. Multidimensional analysis of exercise-regulated neural plasticity is the theoretical basis for elucidating the brain-protective mechanisms mediated by exercise and developing intervention strategies for neurological diseases. Thus,real-time analysis of different neural signals during active exercise is needed to study the health effects of exercise throughout the entire life cycle and enhance lifelong sports awareness. Therefore, this article will systematically summarize the innovative technological developments in motor neuroscience research, review the mechanisms of neural plasticity that exercise utilizes to protect the brain, and explore the role of exercise in the prevention and treatment of major neurodegenerative diseases. This aims to provide new ideas for future theoretical innovations and clinical applications in the field of exercise-induced brain protection.
4.Efficacy of laparoscopic radical cystectomy with indocyanine green fluorescence imaging versus standard lymph node dissection: a randomized comparative study
Lifeng LIU ; Na CAO ; Yansong GUO ; Hao WANG ; Xiaopeng WANG ; Fengshuo YANG ; Yuepeng HU ; Longjiang TIAN ; Dawei TIAN
Journal of Modern Urology 2025;30(3):212-214
Objective: To investigate the efficacy,safety and feasibility of regional lymph node dissection in laparoscopic radical surgery for bladder cancer under the guidance of indocyanine green fluorescence imaging. Methods: A total of 30 patients with muscle invasive bladder cancer (T2/T3NxM0) who volunteered to enter the clinical trial were randomly divided into the indocyanine green imaging guided laparoscopic regional lymph node dissection group (n=15) and the standard pelvic lymph node dissection group (n=15).The number of positive lymph nodes,operation time,intraoperative bleeding volume,incidence of lymph leakage,and tumor recurrence and metastasis rate 2-year after surgery were collected. Results: The number of positive lymph nodes was (4.20±1.66) and (4.60±1.72) respectively in the indocyanine green and standard groups,with no statistically significant difference (P>0.05).There were no statistically significant difference in the tumor recurrence and metastasis rates 2-year after surgery between the two groups (P>0.05).However,the indocyanine green group had shorter operation time,less intraoperative bleeding volume,and lower incidence of lymphatic leakage than the standard group (P<0.05). Conclusion: Indocyanine green fluorescence imaging guided laparoscopic lymph node dissection has comparable clinical efficacy to standard lymph node dissection,but with fewer complications.
5.Application of Gas Chromatography Ion Mobility Spectrometry Technology Combined with Chemometric Methods in Identification of Foeniculi Fructus from Haiyuan Region
Xiurong TIAN ; Hao WANG ; Kejing PANG ; Penglong YU ; Xia LIU ; Mengyue SHEN ; Xianglin JIANG ; Yonghua LI ; Zhihong LI ; Hongqiong DING ; Qin YANG ; Xingying LI ; Qian XIONG ; Guochao WAN ; Yuexiang MA ; Zhenping LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(17):184-192
ObjectiveTo establish a geographical origin identification model for Foeniculi Fructus from Haiyuan, providing a new technical reference for the protection of Haiyuan's geo-authentic medicinal materials and its designation as a national geographical indication agricultural product. MethodsSamples of Foeniculi Fructus were collected from eight producing areas, including Minqin (Gansu), Bozhou (Anhui), Qingdao (Shandong), Dezhou (Shandong), Urumqi (Xinjiang), Nujiang (Yunnan), Gutuo (Inner Mongolia), and Haiyuan (Ningxia). Gas chromatography-ion mobility spectrometry (GC-IMS) was used to detect the volatile organic compounds (VOCs) in samples from these geographic origins. VOCs were qualitatively analyzed through dual matching with the National Institute of Standards and Technology (NIST) mass spectral database and the IMS drift time database. Using the Reporter module and Gallery Plot visualization tools within the LAV analytical platform, VOC fingerprint profiles characterizing geographic origins were constructed. A non-targeted analytical strategy was adopted, and 97 VOCs detected via GC-IMS were subjected to principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) based on their differential distribution patterns to construct an origin identification model for Foeniculi Fructus from Haiyuan region. Key discriminative markers were screened using variable importance in projection (VIP) values greater than 1. ResultsA total of 97 VOCs were identified, including alcohols, aldehydes, ketones, esters, organic acids, terpenoids, ethers, alkenes, and benzenes. The PLS-DA model, based on VOCs data obtained by GC-IMS, effectively distinguished Foeniculi Fructus in Haiyuan region from those of other origins. During cross-validation, the model achieved a prediction parameter (Q2) of 0.976 and a goodness-of-fit parameter (R2) of 0.936, with no overfitting observed in permutation testing. Twelve key flavor markers with VIP > 1 were identified as characteristic indicators of Haiyuan origin. ConclusionA stable and highly predictive origin identification model for Foeniculi Fructus from Haiyuan was successfully established using GC-IMS technology, PLS-DA, and VIP-based marker screening. This model provides a novel technical strategy for accurately distinguishing Foeniculi Fructus in Haiyuan region from other regional varieties and offers new technical support for its protection as a geo-authentic medicinal material and a nationally designated geographical indication agricultural product in China.
6.Application of Gas Chromatography Ion Mobility Spectrometry Technology Combined with Chemometric Methods in Identification of Foeniculi Fructus from Haiyuan Region
Xiurong TIAN ; Hao WANG ; Kejing PANG ; Penglong YU ; Xia LIU ; Mengyue SHEN ; Xianglin JIANG ; Yonghua LI ; Zhihong LI ; Hongqiong DING ; Qin YANG ; Xingying LI ; Qian XIONG ; Guochao WAN ; Yuexiang MA ; Zhenping LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(17):184-192
ObjectiveTo establish a geographical origin identification model for Foeniculi Fructus from Haiyuan, providing a new technical reference for the protection of Haiyuan's geo-authentic medicinal materials and its designation as a national geographical indication agricultural product. MethodsSamples of Foeniculi Fructus were collected from eight producing areas, including Minqin (Gansu), Bozhou (Anhui), Qingdao (Shandong), Dezhou (Shandong), Urumqi (Xinjiang), Nujiang (Yunnan), Gutuo (Inner Mongolia), and Haiyuan (Ningxia). Gas chromatography-ion mobility spectrometry (GC-IMS) was used to detect the volatile organic compounds (VOCs) in samples from these geographic origins. VOCs were qualitatively analyzed through dual matching with the National Institute of Standards and Technology (NIST) mass spectral database and the IMS drift time database. Using the Reporter module and Gallery Plot visualization tools within the LAV analytical platform, VOC fingerprint profiles characterizing geographic origins were constructed. A non-targeted analytical strategy was adopted, and 97 VOCs detected via GC-IMS were subjected to principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) based on their differential distribution patterns to construct an origin identification model for Foeniculi Fructus from Haiyuan region. Key discriminative markers were screened using variable importance in projection (VIP) values greater than 1. ResultsA total of 97 VOCs were identified, including alcohols, aldehydes, ketones, esters, organic acids, terpenoids, ethers, alkenes, and benzenes. The PLS-DA model, based on VOCs data obtained by GC-IMS, effectively distinguished Foeniculi Fructus in Haiyuan region from those of other origins. During cross-validation, the model achieved a prediction parameter (Q2) of 0.976 and a goodness-of-fit parameter (R2) of 0.936, with no overfitting observed in permutation testing. Twelve key flavor markers with VIP > 1 were identified as characteristic indicators of Haiyuan origin. ConclusionA stable and highly predictive origin identification model for Foeniculi Fructus from Haiyuan was successfully established using GC-IMS technology, PLS-DA, and VIP-based marker screening. This model provides a novel technical strategy for accurately distinguishing Foeniculi Fructus in Haiyuan region from other regional varieties and offers new technical support for its protection as a geo-authentic medicinal material and a nationally designated geographical indication agricultural product in China.
7.Status quo of cognitive frailty in community elderly patients with chronic obstructive pulmonary disease and its association with sleep quality, anxiety and depression
Zongquan ZHAO ; Hao ZHANG ; Jun SUN ; Yajuan ZHANG ; Xiangfan TIAN ; Xiaohong WANG ; Zhenyuan TANG ; Zhiying ZHANG
Journal of Public Health and Preventive Medicine 2025;36(5):71-75
Objective To analyze the status quo of cognitive frailty (CF) in community elderly patients with chronic obstructive pulmonary disease (COPD) and its correlation with sleep quality, anxiety and depression. Methods Elderly patients with COPD receiving health management in the center were selected from July 2023 to June 2024. The general data of patients were collected and Mini-Mental State Examination (MMSE), Fried Frailty Phenotype (FP), Pittsburgh Sleep Quality Index (PSQI) and Hospital Anxiety and Depression Scale (HADS) were used for investigation, and the above scores were analyzed. All patients were divided into CF group (n=129) and non-CF group (n=319) according to MMSE score and FP score. Univariate and multivariate logistic analyses were used to analyze the influencing factors of CF in elderly COPD patients. Results Pearson correlation analysis showed that MMSE score was significantly negatively correlated with PSQI score and HADS score in elderly COPD patients (P<0.05), and FP score was significantly positively correlated with PSQI score and HADS score (P<0.05). After logistic regression analysis, it was found that education level, marital status and sleep time were protective factors of CF in elderly COPD patients (P<0.05), and PSQI score and HADS score were risk factors of CF in elderly patients with COPD (P<0.05). Conclusion CF in community elderly COPD patients is related to sleep quality, sleep duration and anxiety and depression. It is necessary to take clinical measures to improve the sleep quality and psychological status, so as to avoid or slow down the occurrence of CF.
8.Needle knife diagnosis and treatment for ankylosing spondylitis at middle and advanced stage based on the theory of meridian tendons.
Yunqi GAO ; Hong ZHU ; Hao ZHANG ; Xuemei TIAN ; Haidong WANG ; Ping CHEN ; Fanghong NIAN ; Haitao LEI
Chinese Acupuncture & Moxibustion 2025;45(4):521-525
This study explores the diagnosis and treatment of needle knife therapy for ankylosing spondylitis (AS) at middle and advanced stage based on the theory of meridian tendons, from a holistic perspective and syndrome differentiation. The treatment strategy includes "harmonizing yin and yang" to address root causes and "tendons-based release" to harmonize qi and blood, with the "tendons nodule points" as the core acupoint selection criterion. Based on this approach, the study systematically elaborates on two needle knife methods for AS: "governor vessel bone-piercing technique" and "below-the-umbilicus release technique", covering indications, acupoint location, and procedures. Clinical case examples are provided to enrich needle knife therapy guided by the theory of meridian tendons, offering insights for clinical and research work on AS.
Humans
;
Acupuncture Points
;
Acupuncture Therapy/methods*
;
Meridians
;
Spondylitis, Ankylosing/physiopathology*
;
Tendons/physiopathology*
9.Effects of electroacupuncture at changbing fang on autophagy of colonic cells and gut microbiota in ulcerative colitis of rats.
Huichao XU ; Tian WU ; Jianheng HAO ; Ronglin WU ; Bingbei YAN ; Haijun WANG ; Laixi JI
Chinese Acupuncture & Moxibustion 2025;45(5):657-669
OBJECTIVE:
To observe the effects of electroacupuncture (EA) at changbing fang (prescription for intestinal disease) on autophagy of colonic cells and gut microbiota in rats with ulcerative colitis (UC), and to explore the mechanism of EA in the treatment of UC.
METHODS:
Thirty-two SD male rats were randomly divided into a control group, a model group, an EA group and a sham-EA group, with 8 rats in each group. Except the control group, the UC rat model was established by free drinking of 5% dextran sulfate sodium solution for 7 days in the other groups. In the EA group, changbing fang was adopted, in which, EA was applied at "Tianshu" (ST25) and "Shangjuxu" (ST37), at disperse-dense wave and frequency of 10 Hz/50 Hz, for 20 min in each intervention. In the sham-EA group, shallow transcutaneous puncture was performed at the sites, 5 mm away from the points as the EA group, with the same parameters as the EA group. The intervention was delivered once daily for 3 consecutive days. The body weight was measured daily and the disease activity index (DAI) score was calculated before and after intervention. After intervention completion, the colon length was measured. Using HE staining, the colon morphology was observed and the score of colonic pathology was assessed. With ELISA adopted, the contents of tumor necrosis factor (TNF-α), interleukin (IL)-1β, IL-2 and IL-10 in the serum of the rats were detected. The ultrastructure of the colon tissue was observed under electron microscopy. Using Western blotting, the protein expression was detected for microtubule-associated protein 1 light chain 3 (LC3)Ⅱ, LC3Ⅰ, autophagy-related genes (ATG) 5, ATG12, sequestosome 1 (p62), phosphatidylinositol 3-kinase (PI3K), phosphorylated protein kinase B (p-AKT), protein kinase B (AKT), and phosphorylated mammalian target of rapamycin (p-mTOR), mammalian target of rapamycin (mTOR) in the colon tissue. The mRNA expression of PI3K, AKT and m-TOR in the colon tissue was detected by real-time fluorescence quantitative PCR. The 16S rRNA gene sequencing was used to analyze the structure of gut flora in the feces of rats.
RESULTS:
From day 1 to day 7, compared with the control group, the body weight decreased in the model group, EA group, and SEA group (P<0.05, P<0.01). From day 9 to day 10, the EA group showed an increase in body weight compared with the model group and SEA group (P<0.05, P<0.01). Before intervention, the DAI score in the model group, EA group, and SEA group was higher than the score of the control group, respectively (P<0.01). After intervention, the DAI score in the EA group was reduced compared with the model group and SEA group (P<0.01). Compared with the control group, in the model group, the colon length of rats was shorter (P<0.01); it showed the distorted crypts, thinner mucosal layer, reduced goblet cells, inflammatory cell infiltration and the disarranged histological structure; and the pathological score of the colon tissue increased (P<0.01); the serum contents of TNF-α and IL-1β increased (P<0.01), and those of IL-2 and IL-10 decreased (P<0.01). The structure of colon epithelial cells was disarranged, with cilia pelt off, and a large number of vacuoles in the cytoplasm; the mitochondria were swollen, with unclear structure and cristae partially disappeared; and few autophagosomes were observed. The value of LC3Ⅱ/LC3Ⅰand the protein expression of ATG5 and ATG12 in the colon tissues were reduced (P<0.01), the protein expression of p62 and PI3K, and the values of p-AKT/AKT, and p-mTOR/mTOR increased (P<0.01), and mRNA expression of PI3K, AKT and mTOR was elevated (P<0.01). The indexes of Chao1, Ace and Shannon decreased (P<0.01). At the phylum level, the relative abundance of Firmicutes decreased (P<0.05), that of Bacteroidetes and Proteobacteria increased (P<0.05, P<0.01). At the genus level, the relevant abundance of Lactobacillus decreased (P<0.05), while that of Lachnospiraceae_NK4A136_group and Phascolarctobacterium increased (P<0.01, P<0.05 ). Compared with the model group and SEA group, in the EA group, the colon length increased (P<0.01), the infiltration of inflammatory cells was reduced, the arrangement of intestinal epithelial cells was arranged regularly, with a small amount of shedding, and the pathological score of the colon tissue decreased (P<0.01). The serum contents of TNF-α and IL-1β decreased (P<0.01), and those of IL-2 and IL-10 increased (P<0.01). The colonic epithelial cells were arranged relatively, the morphology of organelles was basically normal, and autophagosomes were visible. The value of LC3Ⅱ/LC3Ⅰand the protein expression of ATG5 and ATG12 in colon tissue increased (P<0.01, P<0.05), the protein expression of p62 and PI3K, and the values of p-AKT/AKT, and p-mTOR/mTOR decreased (P<0.01); and mRNA expression of PI3K, AKT, m-TOR was reduced (P<0.01). The indexes of Chao1, Ace and Shannon increased (P<0.01). At the phylum level, the relative abundance of Firmicutes increased (P<0.01), while that of Bacteroidetes decreased (P<0.01). At the genus level, the relative abundance of Lactobacillus increased (P<0.05), whereas that of Lachnospiraceae_NK4A136_group decreased (P<0.01). When compared with the model group, the relative abundance of Proteobacteria decreased (P<0.05), and that of Phascolarctobacterium was reduced (P<0.05) in the EA group.
CONCLUSION
EA at changbingfang alleviates UC symptoms probably through inhibiting the PI3K/AKT/mTOR signaling pathway to regulate colonic autophagy and improve the intestinal flora.
Animals
;
Electroacupuncture
;
Colitis, Ulcerative/metabolism*
;
Male
;
Rats
;
Gastrointestinal Microbiome
;
Rats, Sprague-Dawley
;
Colon/metabolism*
;
Humans
;
Autophagy
;
Acupuncture Points
;
Tumor Necrosis Factor-alpha/genetics*
;
Interleukin-10/genetics*
10.ResNet-Vision Transformer based MRI-endoscopy fusion model for predicting treatment response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer: A multicenter study.
Junhao ZHANG ; Ruiqing LIU ; Di HAO ; Guangye TIAN ; Shiwei ZHANG ; Sen ZHANG ; Yitong ZANG ; Kai PANG ; Xuhua HU ; Keyu REN ; Mingjuan CUI ; Shuhao LIU ; Jinhui WU ; Quan WANG ; Bo FENG ; Weidong TONG ; Yingchi YANG ; Guiying WANG ; Yun LU
Chinese Medical Journal 2025;138(21):2793-2803
BACKGROUND:
Neoadjuvant chemoradiotherapy followed by radical surgery has been a common practice for patients with locally advanced rectal cancer, but the response rate varies among patients. This study aimed to develop a ResNet-Vision Transformer based magnetic resonance imaging (MRI)-endoscopy fusion model to precisely predict treatment response and provide personalized treatment.
METHODS:
In this multicenter study, 366 eligible patients who had undergone neoadjuvant chemoradiotherapy followed by radical surgery at eight Chinese tertiary hospitals between January 2017 and June 2024 were recruited, with 2928 pretreatment colonic endoscopic images and 366 pelvic MRI images. An MRI-endoscopy fusion model was constructed based on the ResNet backbone and Transformer network using pretreatment MRI and endoscopic images. Treatment response was defined as good response or non-good response based on the tumor regression grade. The Delong test and the Hanley-McNeil test were utilized to compare prediction performance among different models and different subgroups, respectively. The predictive performance of the MRI-endoscopy fusion model was comprehensively validated in the test sets and was further compared to that of the single-modal MRI model and single-modal endoscopy model.
RESULTS:
The MRI-endoscopy fusion model demonstrated favorable prediction performance. In the internal validation set, the area under the curve (AUC) and accuracy were 0.852 (95% confidence interval [CI]: 0.744-0.940) and 0.737 (95% CI: 0.712-0.844), respectively. Moreover, the AUC and accuracy reached 0.769 (95% CI: 0.678-0.861) and 0.729 (95% CI: 0.628-0.821), respectively, in the external test set. In addition, the MRI-endoscopy fusion model outperformed the single-modal MRI model (AUC: 0.692 [95% CI: 0.609-0.783], accuracy: 0.659 [95% CI: 0.565-0.775]) and the single-modal endoscopy model (AUC: 0.720 [95% CI: 0.617-0.823], accuracy: 0.713 [95% CI: 0.612-0.809]) in the external test set.
CONCLUSION
The MRI-endoscopy fusion model based on ResNet-Vision Transformer achieved favorable performance in predicting treatment response to neoadjuvant chemoradiotherapy and holds tremendous potential for enabling personalized treatment regimens for locally advanced rectal cancer patients.
Humans
;
Rectal Neoplasms/diagnostic imaging*
;
Magnetic Resonance Imaging/methods*
;
Male
;
Female
;
Middle Aged
;
Neoadjuvant Therapy/methods*
;
Aged
;
Adult
;
Chemoradiotherapy/methods*
;
Endoscopy/methods*
;
Treatment Outcome


Result Analysis
Print
Save
E-mail