1.Dihuang Yinzi Improves Cognitive Function of Mouse Model of Learning and Memory Impairments by Regulating Synaptic Plasticity via SIRT2
Wenting WANG ; Yangjing HAO ; Wenna SU ; Qinqing LI ; Shifeng CHU ; Junlong ZHANG ; Wenbin HE
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(6):9-17
ObjectiveTo investigate the effects of Dihuang Yinzi on the cognitive function in the mouse model of learning and memory impairments induced by scopolamine (SCOP) and explore the treatment mechanism. MethodsA mouse model of learning and memory impairment was induced by intraperitoneal injection of SCOP. Sixty male C57BL/6J mice were randomized into six groups: control (0.9% NaCl, n=10), model (SCOP 1 mg·kg-1·d-1, n=10), low-, medium-, and high-dose Dihuang Yinzi (SCOP 1 mg·kg-1·d-1 + Dihuang Yinzi 5.5, 11.0, and 22.0 g·kg-1·d-1, n=10), and donepezil (SCOP 1 mg·kg-1·d-1 + donepezil 0.84 mg·kg-1·d-1, n=10). Mice were administrated with corresponding drugs for 6 weeks. Modeling started in the 4th week, and mice in other groups except the control group were injected with SCOP intraperitoneally 40 min after daily gavage. Behavioral testing began in the 5th week, 30 min after modeling each day. The Morris water maze and novel object recognition tests were carried out to evaluate the spatial learning and memory function of mice. Nissl staining was employed to observe the survival of neurons and Nissl bodies in the hippocampal CA1 region. Western blot was employed to determine the protein levels of silent information regulator 2 (SIRT2), α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor 1 (GluA1), protein kinase A (PKA), cAMP response element-binding protein (CREB), phosphorylated-CREB (p-CREB), postsynaptic density protein 95 (PSD95), growth-associated protein-43 (GAP-43), and synaptophysin (SYN) in the hippocampus. Immunofluorescence was used to detect the expression of doublecortin (DCX) in the hippocampal dentate gyrus (DG) region. ResultsCompared with the control group, the model group showed impaired learning and memory (P<0.01), obvious neuronal damage in the hippocampal CA1 region, a reduction in neuron survival (P<0.01), a decrease in DCX expression in the hippocampal DG region (P<0.01), down-regulated proteins levels of GluA1, PKA, p-CREB/CREB, PSD95, SYN, and GAP-43 in the hippocampal tissue (P<0.05, P<0.01), and an up-regulated protein level of SIRT2 (P<0.01). Compared with the model group, the medium- and high-dose Dihuang Yinzi groups and the donepezil group showed improvements in learning and memory (P<0.05, P<0.01), while the low-, medium-, and high-dose Dihuang Yinzi groups and the donepezil group had increased neuron survival (P<0.05, P<0.01). The medium-dose Dihuang Yinzi group and the donepezil group showed increased DCX expression (P<0.05, P<0.01). The medium- and high-dose Dihuang Yinzi groups and the donepezil group showed up-regulation in the protein levels of GluA1, PKA, p-CREB/CREB, PSD95, SYN, and GAP-43 (P<0.05, P<0.01) and down-regulation in the protein level of SIRT2 (P<0.01). ConclusionDihuang Yinzi can improve the cognitive function in the mouse model of learning and memory impairments induced by SCOP by inhibiting the upregulation of SIRT2, activating the PKA/CREB signaling pathway, improving synaptic plasticity, and reducing hippocampal neuronal damage.
2.Research the effect of 4℃ refrigerated stored apheresis platelets based on platelet metabolomics
Xiaoye XIA ; Xuejing LI ; Aihua SU ; Xiao HAO ; Hongyan YE
Chinese Journal of Blood Transfusion 2025;38(4):514-521
[Objective] To investigate the differences in metabolomics between apheresis platelets stored at 4℃ and at 22℃ with agitation, aiming to provide a theoretical basis for the cold storage of apheresis platelets. [Methods] Samples were collected at four time points (d1, d5, d10, d15) for platelets stored at 4℃ (experimental group) and two time points (d1, d5) for platelets stored at 22℃ with agitation (control group). Liquid chromatography-tandem mass spectrometry (LC-MS/MS) technology was used to detect changes in platelet metabolome levels under different storage conditions. Platelet functional activity was assessed by thromboelastography (TEG) for maximum amplitude (MA) values and flow cytometry for CD62P activation rates. [Results] Metabolites in the glycolytic pathway, key metabolites in the tricarboxylic acid cycle (citrate, α-ketoglutarate), metabolites in the purine metabolism pathway (adenine, inosine monophosphate, guanine, etc.) and amino acid metabolites significantly decreased by d5 in the control group, whereas they remained stable in the experimental group. The content of fatty acid metabolites, such as prostaglandin G2, 13(S)-HOTrE, and linoleic acid, significantly increased in the control group. Statistically significant differences in MA values were observed between the two groups at d1 and d5 (P<0.05). However, in the experimental group, as the storage time extended, the MA values at d10 and d15 showed no significant difference compared to the control group at d5 (P>0.05). The CD62P activation rate between the two groups was statistically significant (P<0.05). Additionally, the CD62P activation rate of platelets in the 22℃ group increased rapidly from d1, while it rose gradually in the 4 ℃ group. [Conclusion] Platelets stored at 4 ℃ exhibit more stable metabolic activity and slower functional deterioration, which is beneficial for extending the effective storage period of platelets.
3.Predictive Modeling of Symptomatic Intracranial Hemorrhage Following Endovascular Thrombectomy: Insights From the Nationwide TREAT-AIS Registry
Jia-Hung CHEN ; I-Chang SU ; Yueh-Hsun LU ; Yi-Chen HSIEH ; Chih-Hao CHEN ; Chun-Jen LIN ; Yu-Wei CHEN ; Kuan-Hung LIN ; Pi-Shan SUNG ; Chih-Wei TANG ; Hai-Jui CHU ; Chuan-Hsiu FU ; Chao-Liang CHOU ; Cheng-Yu WEI ; Shang-Yih YAN ; Po-Lin CHEN ; Hsu-Ling YEH ; Sheng-Feng SUNG ; Hon-Man LIU ; Ching-Huang LIN ; Meng LEE ; Sung-Chun TANG ; I-Hui LEE ; Lung CHAN ; Li-Ming LIEN ; Hung-Yi CHIOU ; Jiunn-Tay LEE ; Jiann-Shing JENG ;
Journal of Stroke 2025;27(1):85-94
Background:
and Purpose Symptomatic intracranial hemorrhage (sICH) following endovascular thrombectomy (EVT) is a severe complication associated with adverse functional outcomes and increased mortality rates. Currently, a reliable predictive model for sICH risk after EVT is lacking.
Methods:
This study used data from patients aged ≥20 years who underwent EVT for anterior circulation stroke from the nationwide Taiwan Registry of Endovascular Thrombectomy for Acute Ischemic Stroke (TREAT-AIS). A predictive model including factors associated with an increased risk of sICH after EVT was developed to differentiate between patients with and without sICH. This model was compared existing predictive models using nationwide registry data to evaluate its relative performance.
Results:
Of the 2,507 identified patients, 158 developed sICH after EVT. Factors such as diastolic blood pressure, Alberta Stroke Program Early CT Score, platelet count, glucose level, collateral score, and successful reperfusion were associated with the risk of sICH after EVT. The TREAT-AIS score demonstrated acceptable predictive accuracy (area under the curve [AUC]=0.694), with higher scores being associated with an increased risk of sICH (odds ratio=2.01 per score increase, 95% confidence interval=1.64–2.45, P<0.001). The discriminatory capacity of the score was similar in patients with symptom onset beyond 6 hours (AUC=0.705). Compared to existing models, the TREAT-AIS score consistently exhibited superior predictive accuracy, although this difference was marginal.
Conclusions
The TREAT-AIS score outperformed existing models, and demonstrated an acceptable discriminatory capacity for distinguishing patients according to sICH risk levels. However, the differences between models were only marginal. Further research incorporating periprocedural and postprocedural factors is required to improve the predictive accuracy.
4.Predictive Modeling of Symptomatic Intracranial Hemorrhage Following Endovascular Thrombectomy: Insights From the Nationwide TREAT-AIS Registry
Jia-Hung CHEN ; I-Chang SU ; Yueh-Hsun LU ; Yi-Chen HSIEH ; Chih-Hao CHEN ; Chun-Jen LIN ; Yu-Wei CHEN ; Kuan-Hung LIN ; Pi-Shan SUNG ; Chih-Wei TANG ; Hai-Jui CHU ; Chuan-Hsiu FU ; Chao-Liang CHOU ; Cheng-Yu WEI ; Shang-Yih YAN ; Po-Lin CHEN ; Hsu-Ling YEH ; Sheng-Feng SUNG ; Hon-Man LIU ; Ching-Huang LIN ; Meng LEE ; Sung-Chun TANG ; I-Hui LEE ; Lung CHAN ; Li-Ming LIEN ; Hung-Yi CHIOU ; Jiunn-Tay LEE ; Jiann-Shing JENG ;
Journal of Stroke 2025;27(1):85-94
Background:
and Purpose Symptomatic intracranial hemorrhage (sICH) following endovascular thrombectomy (EVT) is a severe complication associated with adverse functional outcomes and increased mortality rates. Currently, a reliable predictive model for sICH risk after EVT is lacking.
Methods:
This study used data from patients aged ≥20 years who underwent EVT for anterior circulation stroke from the nationwide Taiwan Registry of Endovascular Thrombectomy for Acute Ischemic Stroke (TREAT-AIS). A predictive model including factors associated with an increased risk of sICH after EVT was developed to differentiate between patients with and without sICH. This model was compared existing predictive models using nationwide registry data to evaluate its relative performance.
Results:
Of the 2,507 identified patients, 158 developed sICH after EVT. Factors such as diastolic blood pressure, Alberta Stroke Program Early CT Score, platelet count, glucose level, collateral score, and successful reperfusion were associated with the risk of sICH after EVT. The TREAT-AIS score demonstrated acceptable predictive accuracy (area under the curve [AUC]=0.694), with higher scores being associated with an increased risk of sICH (odds ratio=2.01 per score increase, 95% confidence interval=1.64–2.45, P<0.001). The discriminatory capacity of the score was similar in patients with symptom onset beyond 6 hours (AUC=0.705). Compared to existing models, the TREAT-AIS score consistently exhibited superior predictive accuracy, although this difference was marginal.
Conclusions
The TREAT-AIS score outperformed existing models, and demonstrated an acceptable discriminatory capacity for distinguishing patients according to sICH risk levels. However, the differences between models were only marginal. Further research incorporating periprocedural and postprocedural factors is required to improve the predictive accuracy.
5.Predictive Modeling of Symptomatic Intracranial Hemorrhage Following Endovascular Thrombectomy: Insights From the Nationwide TREAT-AIS Registry
Jia-Hung CHEN ; I-Chang SU ; Yueh-Hsun LU ; Yi-Chen HSIEH ; Chih-Hao CHEN ; Chun-Jen LIN ; Yu-Wei CHEN ; Kuan-Hung LIN ; Pi-Shan SUNG ; Chih-Wei TANG ; Hai-Jui CHU ; Chuan-Hsiu FU ; Chao-Liang CHOU ; Cheng-Yu WEI ; Shang-Yih YAN ; Po-Lin CHEN ; Hsu-Ling YEH ; Sheng-Feng SUNG ; Hon-Man LIU ; Ching-Huang LIN ; Meng LEE ; Sung-Chun TANG ; I-Hui LEE ; Lung CHAN ; Li-Ming LIEN ; Hung-Yi CHIOU ; Jiunn-Tay LEE ; Jiann-Shing JENG ;
Journal of Stroke 2025;27(1):85-94
Background:
and Purpose Symptomatic intracranial hemorrhage (sICH) following endovascular thrombectomy (EVT) is a severe complication associated with adverse functional outcomes and increased mortality rates. Currently, a reliable predictive model for sICH risk after EVT is lacking.
Methods:
This study used data from patients aged ≥20 years who underwent EVT for anterior circulation stroke from the nationwide Taiwan Registry of Endovascular Thrombectomy for Acute Ischemic Stroke (TREAT-AIS). A predictive model including factors associated with an increased risk of sICH after EVT was developed to differentiate between patients with and without sICH. This model was compared existing predictive models using nationwide registry data to evaluate its relative performance.
Results:
Of the 2,507 identified patients, 158 developed sICH after EVT. Factors such as diastolic blood pressure, Alberta Stroke Program Early CT Score, platelet count, glucose level, collateral score, and successful reperfusion were associated with the risk of sICH after EVT. The TREAT-AIS score demonstrated acceptable predictive accuracy (area under the curve [AUC]=0.694), with higher scores being associated with an increased risk of sICH (odds ratio=2.01 per score increase, 95% confidence interval=1.64–2.45, P<0.001). The discriminatory capacity of the score was similar in patients with symptom onset beyond 6 hours (AUC=0.705). Compared to existing models, the TREAT-AIS score consistently exhibited superior predictive accuracy, although this difference was marginal.
Conclusions
The TREAT-AIS score outperformed existing models, and demonstrated an acceptable discriminatory capacity for distinguishing patients according to sICH risk levels. However, the differences between models were only marginal. Further research incorporating periprocedural and postprocedural factors is required to improve the predictive accuracy.
6.Targeting PPARα for The Treatment of Cardiovascular Diseases
Tong-Tong ZHANG ; Hao-Zhuo ZHANG ; Li HE ; Jia-Wei LIU ; Jia-Zhen WU ; Wen-Hua SU ; Ju-Hua DAN
Progress in Biochemistry and Biophysics 2025;52(9):2295-2313
Cardiovascular disease (CVD) remains one of the leading causes of mortality among adults globally, with continuously rising morbidity and mortality rates. Metabolic disorders are closely linked to various cardiovascular diseases and play a critical role in their pathogenesis and progression, involving multifaceted mechanisms such as altered substrate utilization, mitochondrial structural and functional dysfunction, and impaired ATP synthesis and transport. In recent years, the potential role of peroxisome proliferator-activated receptors (PPARs) in cardiovascular diseases has garnered significant attention, particularly peroxisome proliferator-activated receptor alpha (PPARα), which is recognized as a highly promising therapeutic target for CVD. PPARα regulates cardiovascular physiological and pathological processes through fatty acid metabolism. As a ligand-activated receptor within the nuclear hormone receptor family, PPARα is highly expressed in multiple organs, including skeletal muscle, liver, intestine, kidney, and heart, where it governs the metabolism of diverse substrates. Functioning as a key transcription factor in maintaining metabolic homeostasis and catalyzing or regulating biochemical reactions, PPARα exerts its cardioprotective effects through multiple pathways: modulating lipid metabolism, participating in cardiac energy metabolism, enhancing insulin sensitivity, suppressing inflammatory responses, improving vascular endothelial function, and inhibiting smooth muscle cell proliferation and migration. These mechanisms collectively reduce the risk of cardiovascular disease development. Thus, PPARα plays a pivotal role in various pathological processes via mechanisms such as lipid metabolism regulation, anti-inflammatory actions, and anti-apoptotic effects. PPARα is activated by binding to natural or synthetic lipophilic ligands, including endogenous fatty acids and their derivatives (e.g., linoleic acid, oleic acid, and arachidonic acid) as well as synthetic peroxisome proliferators. Upon ligand binding, PPARα activates the nuclear receptor retinoid X receptor (RXR), forming a PPARα-RXR heterodimer. This heterodimer, in conjunction with coactivators, undergoes further activation and subsequently binds to peroxisome proliferator response elements (PPREs), thereby regulating the transcription of target genes critical for lipid and glucose homeostasis. Key genes include fatty acid translocase (FAT/CD36), diacylglycerol acyltransferase (DGAT), carnitine palmitoyltransferase I (CPT1), and glucose transporter (GLUT), which are primarily involved in fatty acid uptake, storage, oxidation, and glucose utilization processes. Advancing research on PPARα as a therapeutic target for cardiovascular diseases has underscored its growing clinical significance. Currently, PPARα activators/agonists, such as fibrates (e.g., fenofibrate and bezafibrate) and thiazolidinediones, have been extensively studied in clinical trials for CVD prevention. Traditional PPARα agonists, including fenofibrate and bezafibrate, are widely used in clinical practice to treat hypertriglyceridemia and low high-density lipoprotein cholesterol (HDL-C) levels. These fibrates enhance fatty acid metabolism in the liver and skeletal muscle by activating PPARα, and their cardioprotective effects have been validated in numerous clinical studies. Recent research highlights that fibrates improve insulin resistance, regulate lipid metabolism, correct energy metabolism imbalances, and inhibit the proliferation and migration of vascular smooth muscle and endothelial cells, thereby ameliorating pathological remodeling of the cardiovascular system and reducing blood pressure. Given the substantial attention to PPARα-targeted interventions in both basic research and clinical applications, activating PPARα may serve as a key therapeutic strategy for managing cardiovascular conditions such as myocardial hypertrophy, atherosclerosis, ischemic cardiomyopathy, myocardial infarction, diabetic cardiomyopathy, and heart failure. This review comprehensively examines the regulatory roles of PPARα in cardiovascular diseases and evaluates its clinical application value, aiming to provide a theoretical foundation for further development and utilization of PPARα-related therapies in CVD treatment.
7.Protective Effect of Liuwei Dihuangwan on Mitochondrial Damage in AD Model of Caenorhabditis Elegans
Jinfeng ZHANG ; Yuliang TONG ; Jiapeng WANG ; Ting SU ; Deping ZHAO ; Hao YU ; Kun ZUO ; Ziyue ZHU ; Meiling JIN ; Ning ZHANG ; Xia LEI
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(3):18-25
ObjectiveTo investigate the protective effect of the extract of Liuwei Dihuangwan (LW) on mitochondrial damage in the Alzheimer's disease (AD) model of Caenorhabditis elegans (C. elegans). MethodC. elegans transfected with human β-amyloid protein (Aβ) 1-42 gene was used as an AD model. The rats were divided into blank group, model group, metformin group (50 mmol·L-1), and low, medium, and high dose (1.04, 2.08, 4.16 g·kg-1) LW groups. Behavioral methods were used to observe the sensitivity of 5-hydroxytryptamine (5-HT) in nematodes. Western blot was used to detect the expression of Aβ in nematodes. Total ATP content in nematodes was detected by the adenine nucleoside triphosphate (ATP) kit, and mitochondrial membrane potential was detected by the JC-1 method. In addition, the mRNA expression of Aβ expression gene (Amy-1), superoxide dismutase-1 (SOD-1), mitochondrial transcription factor A homologous gene-5 (HMG-5), mitochondrial power-associated protein 1 (DRP1), and mitochondrial mitoprotein 1 (FIS1) was detected by real-time fluorescence quantitative polymerase chain reaction (RT-PCR). ResultThe extract of LW could reduce the hypersensitivity of the AD model of nematodes to exogenous 5-HT (P<0.05) and delay the AD-like pathological characteristics of hypersensitivity to exogenous 5-HT caused by toxicity from overexpression of Aβ in neurons of the AD model of nematodes. Compared with the blank group, in the model group, the mRNA expression of Aβ protein and Amy-1 increased (P<0.01), and the mRNA expression of SOD-1 and HMG-5 decreased (P<0.01). The mRNA expression of DRP1 and FIS1 increased (P<0.01), and the level of mitochondrial membrane potential decreased (P<0.05). The content of ATP decreased (P<0.01). Compared with the model group, in the positive medicine group and medium and high dose LW groups, the mRNA expression of Aβ protein and Amy-1 decreased (P<0.05,P<0.01), and the mRNA expression of SOD-1 and HMG-5 increased (P<0.01). The mRNA expression of DRP1 decreased (P<0.05,P<0.01), and that of FIS1 decreased (P<0.01). The level of mitochondrial membrane potential increased (P<0.01), and the content of ATP increased (P<0.05,P<0.01). ConclusionThe extract of LW may enhance the antioxidant ability of mitochondria, protect mitochondrial DNA, reduce the fragmentation of mitochondrial division, repair the damaged mitochondria, adjust the mitochondrial membrane potential, restore the level of neuronal ATP, and reduce the neuronal damage caused by Aβ deposition.
8.Effects of dihydromyricetin on myocardial oxidative damage in exhaustive exercise mice
Ze-Hai SU ; Ling QIN ; Quan-Shui HAO ; Jia-Bao XU
The Chinese Journal of Clinical Pharmacology 2024;40(10):1443-1447
Objective To investigate the effect of dihydromyricetin(DMY)on myocardial oxidative damage in exhaustive exercise mice.Methods C57BL/6 mice were divided into control group,model group,positive control group and low,medium and high dose experimental groups and with 10 mice in each group.Mice in control group and model group were intragastricated with distilled water;20,40 and 80 mg·kg-1 dihydromyricetin were given by gavage in low,medium and high dose experimental groups,while mice in positive control group were intragastricated with 100 mg·kg-1 Vitamin C once a day for 4 weeks.After administration,superoxide dismutase(SOD),malondialdehyde(MDA)and lactate dehydrogenase(LDH)were detected by the kit.The expression of nuclear factor E2-related factor 2(Nrf2)and heme oxygenase-1(HO-1)protein were detected by Western blot.Results SOD levels in control group,model group and low,medium,high dose experimental groups and positive control group were(57.81±6.92),(26.85±2.74),(33.68±4.52),(39.74±3.95),(48.97±4.26)and(39.22±3.54)U·mg-1;MDA were(4.72±0.36),(10.48±1.68),(8.75±0.82),(6.43±0.71),(5.11±0.48)and(6.36±0.64)nmol·mg-1;LDH were(268.71±23.94),(726.58±81.26),(621.32±47.59),(479.12±50.24),(337.91±34.99)and(486.15±50.98)U·L-1;Nrf2 protein expression were 0.75±0.06,0.19±0.02,0.30±0.04,0.47±0.05,0.63±0.06 and 0.49±0.06;the protein expression of HO-1 were 0.83±0.08,0.27±0.05,0.39±0.04,0.52±0.03,0.77±0.07 and 0.55±0.06,respectively.There were statistically significant differences between control group and model group(all P<0.05);there were statistically significant differences in the above indexes between model group and positive control group,low dose experimental group,medium dose experimental group,high dose experimental group(all P<0.05).Conclusion Dihydromyricetin can delay myocardial oxidative injury in exhaustive exercise mice,which may be related to Nrf2/HO-1 pathway.
9.Effects of verbascoside on oxygen consumption and mitochondrial enzyme activities in skeletal muscle of rats during intense exercise
Ze-Hai SU ; Ling QIN ; Quan-Shui HAO
The Chinese Journal of Clinical Pharmacology 2024;40(14):2098-2102
Objective To investigate the effects of verbascoside on oxygen consumption and mitochondrial enzyme activities in skeletal muscle of rats with intense exercise.Methods Fifty SD rats were randomly divided into control group,model group,experimental-L,-M,-H groups.Exercise training was performed in all groups except the control group.The control group and model group were given 2 mL of 0.9%NaCl,the experimental-L,-M,-H groups was given 20,40,80 mg·kg-1·d-1 verbascoside.The activities of Na+/K+-ATP and Ca2+/Mg2+-ATP were detected by kit.Protein expressions of optic atrophy 1(Opa1),mitochondrial fusion(Mfn)1 and Mfn2 were detected by Western blot.Results The Na+/K+-ATP of experimental-L,-M,-H groups,model group and blank group were(2.74±0.44),(3.50±0.38),(4.39±0.41),(2.13±0.32)and(5.75±0.42)U·mg-1;Ca2+/Mg2+-ATP were(4.01±0.32),(4.82±0.79),(6.57±0.70),(3.51±0.35)and(8.92±1.14)U·mg-1;Opa-1 were 0.40±0.05,0.52±0.04,0.69±0.09,0.25±0.06 and 0.78±0.11;Mfn1 were 0.47±0.06,0.59±0.07,0.74±0.08,0.32±0.05 and 0.89±0.12;Mfn2 were 0.51±0.07,0.65±0.06,0.83±0.06,0.35±0.06 and 1.02±0.13,respectively.There was statistical significance between control group and model group(all P<0.05);there were statistically significant differences in the above indexes between the experimental-L,-M,-H groups and the model group(all P<0.05).Conclusion Verminoside can improve the oxygen consumption and mitochondrial enzyme activity of skeletal muscle and increase the antioxidant capacity of rats with intense exercise.
10.Clinical efficacy of CalliSpheres drug-loaded microspheres versus blank microspheres in the treatment of advanced non-small cell lung cancer by transarterial chemoembolization
Ruiwen CHENG ; Ruobing HAO ; Ping LI ; Kun ZHANG ; Liping DENG ; Yaheng CAO ; Lin SU ; Hongrong SHEN
The Journal of Practical Medicine 2024;40(1):32-37
Objective To analyze and compare the clinical efficacy of CalliSpheres drug-eluting micro-spheres and blank microspheres in the treatment of advanced non-small cell lung cancer by bronchial arterial chemoembolization.Methods Fifty patients with advanced non-small cell lung cancer who had failed or relapsed after radiotherapy,chemotherapy,targeting and immunotherapy were collected and treated with super-selective bronchial artery chemoembolization.A retrospective analysis was conducted to compare the tumor response rate and survival between CalliSpheres drug-eluting and blank microspheres.Results The PR,ORR and DCR in the drug-eluted microsphere group were higher than those in the blank microsphere group,and there was a statistical difference in DCR between the two groups 1 month after surgery(χ2 = 4.08,P = 0.04).PD in the drug-eluted microsphere group was lower than that in the blank microsphere group.The CEA,CYF and SCC in the drug-eluted microsphere group after surgery were lower than those in the blank microsphere group,and the CEA,CYF and SCC in the two groups after surgery were lower than those before surgery,and there were statistical differences in CEA and CYF 1 month after surgery between the two groups.The PFS and OS in drug-eluted microsphere group were higher than those in blank microsphere group.Conclusion CalliSpheres drug-eluting microspheres could improve the effective rate of tumor treatment and prolong the survival time more effectively than the blank micro-spheres via arterial chemoembolization,providing reliable clinical practice basis for the treatment of advanced non-small cell lung cancer.

Result Analysis
Print
Save
E-mail