1.Effects of honey-processed Astragalus on energy metabolism and polarization of RAW264.7 cells
Hong-chang LI ; Ke PEI ; Wang-yang XIE ; Xiang-long MENG ; Zi-han YU ; Wen-ling LI ; Hao CAI
Acta Pharmaceutica Sinica 2025;60(2):459-470
In this study, RAW264.7 cells were employed to investigate the effects of honey-processed
2.Updates and amendments of the Chinese Pharmacopoeia 2025 Edition (Volume Ⅰ)
LI Hao ; SHEN Mingrui ; ZHANG Pang ; ZHAI Weimin ; NI Long ; HAO Bo ; ZHAO Yuxin ; HE Yi ; MA Shuangcheng ; SHU Rong
Drug Standards of China 2025;26(1):017-022
The Chinese Pharmacopoeia is the legal technical standard which should be followed during the research, production, use, and administration of drugs. At present, the new edition of the Chinese Pharmacopoeia is planned to be promulgated and implemented. This article summarizes and analyzes the main characteristics and the content of updates and amendments of the Chinese Pharmacopoeia 2025 Edition(Volume Ⅰ), to provide a reference for the correct understanding and accurate implementation the new edition of the pharmacopoeia.
3.Impact of the number of microsatellite markers on the analysis of population genetic diversity of Schistosoma japonicum
Juan LONG ; Lang MA ; Hongying ZONG ; Zhipeng ZHOU ; Hao YAN ; Qinping ZHAO
Chinese Journal of Schistosomiasis Control 2025;37(3):239-246
Objective To examine the impact of different numbers of microsatellite markers on the analysis of population genetic diversity of Schistosoma japonicum, so as to provide insights into studies on the population genetic diversity of S. japonicum. Methods Oncomelania hupensis snails were collected from a wasteland in Gong’an County, Hubei Province, and 37 S. japonicum-infected O. hupensis snails were identified using the cercarial shedding method. A single cercaria released from each S. japonicum-infected O. hupensis snail was collected, and 10 cercariae were randomly collected from DNA extraction. Nine previously validated microsatellite loci and 15 additional microsatellite loci screened from literature review and the GenBank database and confirmed with stable amplification efficiency were selected as molecular markers. Genomic DNA from cercariae was subjected to three multiplex PCR amplifications of microsatellite markers with the Type-it Microsatellite PCR kit, and genotyped using capillary electrophoresis. The population genetic diversity of S. japonicum cercariae DNA was analyzed with observed number of alleles (Na), effective number of alleles (Ae), observed heterozygosity (Ho), expected heterozygosity (He), and polymorphism information content (PIC), and tested for Hardy-Weinberg equilibrium (HWE) and linkage disequilibrium (LD). To further investigate the impact of the number of microsatellite loci on the population genetic diversity of S. japonicum, the number of microsatellite markers was sequentially assigned from 1 to 24, and the mean and standard deviation of Na were calculated for S. japonicum populations at different locus numbers. In addition, the coefficient of variation (CV) of allelic number (defined as the ratio of the standard deviation to the mean) was determined, and the variation in Na with increasing microsatellite locus numbers was analyzed. Results Genomic DNA from 345 S. japonicum cercariae was selected for genotyping of 24 microsatellite markers, and all 24 microsatellite loci met linkage equilibrium (standardized linkage disequilibrium coefficient D′ < 0.7, r2 < 0.3) and deviated from Hardy-Weinberg equilibrium (P < 0.001). The mean Na, Ae, Ho and He were 27.46 ± 2.18, 12.46 ± 0.95, 0.46 ± 0.03, and 0.91 ± 0.01 for 24 microsatellite loci in S. japonicum cercarial populations, respectively, and PIC ranged from 0.85 to 0.96, indicating high genome-wide representativeness of 24 microsatellite loci. The mean value of Na-Ae was higher in genotyping with 9 previously validated microsatellite loci (19.88 ± 8.43) than with all 24 loci (14.99 ± 8.09). As the number of microsatellite loci increased, the mean Na showed no significant variation; however, the standard deviation gradually decreased. Notably, if the locus number reached 18 or more, the variation in the standard deviation of Na remarkably reduced. In addition, the standard deviation of Na at 18 loci was less than 5% of the mean Na at 24 loci, with a CV of 4.6%. Conclusions The number of microsatellite loci significantly affects the population genetic diversity analysis of S. japonicum. Eighteen or more microsatellite loci are recommended for analysis of the population genetic diversity of S. japonicum under the current conditions of low-prevalence infection and unbalanced genetic distribution of S. japonicum.
4.The Near-infrared II Emission of Gold Clusters and Their Applications in Biomedicine
Zhen-Hua LI ; Hui-Zhen MA ; Hao WANG ; Chang-Long LIU ; Xiao-Dong ZHANG
Progress in Biochemistry and Biophysics 2025;52(8):2068-2086
Optical imaging is highly valued for its superior temporal and spatial resolution. This is particularly important in near-infrared II (NIR-II, 1 000-3 000 nm) imaging, which offers advantages such as reduced tissue absorption, minimal scattering, and low autofluorescence. These characteristics make NIR-II imaging especially suitable for deep tissue visualization, where high contrast and minimal background interference are critical for accurate diagnosis and monitoring. Currently, inorganic fluorescent probes—such as carbon nanotubes, rare earth nanoparticles, and quantum dots—offer high brightness and stability. However, they are hindered by ambiguous structures, larger sizes, and potential accumulation toxicity in vivo. In contrast, organic fluorescent probes, including small molecules and polymers, demonstrate higher biocompatibility but are limited by shorter emission wavelengths, lower quantum yields, and reduced stability. Recently, gold clusters have emerged as a promising class of nanomaterials with potential applications in biocatalysis, fluorescence sensing, biological imaging, and more. Water-soluble gold clusters are particularly attractive as fluorescent probes due to their remarkable optical properties, including strong photoluminescence, large Stokes shifts, and excellent photostability. Furthermore, their outstanding biocompatibility—attributed to good aqueous stability, ultra-small hydrodynamic size, and high renal clearance efficiency—makes them especially suitable for biomedical applications. Gold clusters hold significant potential for NIR-II fluorescence imaging. Atomic-precision gold clusters, typically composed of tens to hundreds of gold atoms and measuring only a few nanometers in diameter, possess well-defined three-dimensional structures and clear spatial coordination. This atomic-level precision enables fine-tuned structural regulation, further enhancing their fluorescence properties. Variations in cluster size, surface ligands, and alloying elements can result in distinct physicochemical characteristics. The incorporation of different atoms can modulate the atomic and electronic structures of gold clusters, while diverse ligands can influence surface polarity and steric hindrance. As such, strategies like alloying and ligand engineering are effective in enhancing both fluorescence and catalytic performance, thereby meeting a broader range of clinical needs. In recent years, gold clusters have attracted growing attention in the biomedical field. Their application in NIR-II imaging has led to significant progress in vascular, organ, and tumor imaging. The resulting high-resolution, high signal-to-noise imaging provides powerful tools for clinical diagnostics. Moreover, biologically active gold clusters can aid in drug delivery and disease diagnosis and treatment, offering new opportunities for clinical therapeutics. Despite the notable achievements in fundamental research and clinical translation, further studies are required to address challenges related to the standardized synthesis and complex metabolic behavior of gold clusters. Resolving these issues will help accelerate their clinical adoption and broaden their biomedical applications.
5.Urban-rural disparities in mortality due to stroke subtypes in China and its provinces, 2015-2020.
Yi REN ; Jia YANG ; Peng YIN ; Wei LIU ; Zheng LONG ; Chen ZHANG ; Zixin WANG ; Haijie LIU ; Maigeng ZHOU ; Qingfeng MA ; Junwei HAO
Chinese Medical Journal 2025;138(11):1345-1354
BACKGROUND:
Death burden of stroke is severe with over one-third rural residents in China, but there is still a lack of specific national and high-quality reports on the urban-rural differences in stroke burden, especially for subtypes. We aimed to update the understanding of urban-rural differences in stroke deaths.
METHODS:
This is a descriptive observational study. Data from the national mortality surveillance system, which covers 323.8 million with 605 disease surveillance points (DSPs) across all 31 provinces, municipalities, and autonomous regions in China. All deaths from stroke as the underlying cause from 2015 to 2020 according to DSPs. Crude mortality rate and age-standardized mortality rate (ASMR) were estimated through DSPs. Average annual percentage change was used to explain the change in mortality rate.
RESULTS:
From 2015 to 2020, the majority of deaths from all stroke subtypes occurred in rural areas. There were significant differences between the changes of urban and rural ASMRs. On the whole, the changes in urban areas were evidently better, and the ASMR differences were basically expanding. Stroke ASMR in urban China decreased by 15.5%. The rural ASMR of ischemic stroke increased by 12.9%. The rural and urban ASMRs of intracerebral hemorrhage decreased by 24.9% and 27.4%, and those of subarachnoid hemorrhage decreased by 29.5% and 40.4%, respectively. The highest ASMRs of all stroke subtypes and the increasing trend of ischemic stroke ASMR make rural males the focus of stroke management.
CONCLUSIONS
The death burden of stroke varies greatly between urban and rural China. Rural residents face unique challenges.
Humans
;
China/epidemiology*
;
Stroke/mortality*
;
Rural Population/statistics & numerical data*
;
Male
;
Female
;
Urban Population/statistics & numerical data*
;
Middle Aged
;
Aged
;
Aged, 80 and over
;
Adult
6.Research progress on the comorbidity mechanism of sarcopenia and obesity in the aging population.
Hao-Dong TIAN ; Yu-Kun LU ; Li HUANG ; Hao-Wei LIU ; Hang-Lin YU ; Jin-Long WU ; Han-Sen LI ; Li PENG
Acta Physiologica Sinica 2025;77(5):905-924
The increasing prevalence of aging has led to a rising incidence of comorbidity of sarcopenia and obesity, posing significant burdens on socioeconomic and public health. Current research has systematically explored the pathogenesis of each condition; however, the mechanisms underlying their comorbidity remain unclear. This study reviews the current literature on sarcopenia and obesity in the aging population, focusing on their shared biological mechanisms, which include loss of autophagy, abnormal macrophage function, mitochondrial dysfunction, and reduced sex hormone secretion. It also identifies metabolic mechanisms such as insulin resistance, vitamin D metabolism abnormalities, dysregulation of iron metabolism, decreased levels of nicotinamide adenine dinucleotide, and gut microbiota imbalances. Additionally, this study also explores the important role of genetic factors, such as alleles and microRNAs, in the co-occurrence of sarcopenia and obesity. A better understanding of these mechanisms is vital for developing clinical interventions and preventive strategies.
Humans
;
Sarcopenia/physiopathology*
;
Obesity/physiopathology*
;
Aging/physiology*
;
Autophagy/physiology*
;
Insulin Resistance
;
Comorbidity
;
Vitamin D/metabolism*
;
Gonadal Steroid Hormones/metabolism*
;
Gastrointestinal Microbiome
;
Mitochondria
;
MicroRNAs
7.Xinyang Tablets ameliorate ventricular remodeling in heart failure via FTO/m6A signaling pathway.
Dong-Hua LIU ; Zi-Ru LI ; Si-Jing LI ; Xing-Ling HE ; Xiao-Jiao ZHANG ; Shi-Hao NI ; Wen-Jie LONG ; Hui-Li LIAO ; Zhong-Qi YANG ; Xiao-Ming DONG
China Journal of Chinese Materia Medica 2025;50(4):1075-1086
The study was conducted to investigate the mechanism of Xinyang Tablets( XYP) in modulating the fat mass and obesity-associated protein(FTO)/N6-methyladenosine(m6A) signaling pathway to ameliorate ventricular remodeling in heart failure(HF). A mouse model of HF was established by transverse aortic constriction(TAC). Mice were randomized into sham, model, XYP(low, medium, and high doses), and positive control( perindopril) groups(n= 10). From day 3 post-surgery, mice were administrated with corresponding drugs by gavage for 6 consecutive weeks. Following the treatment, echocardiography was employed to evaluate the cardiac function, and RT-qPCR was employed to determine the relative m RNA levels of key markers, including atrial natriuretic peptide( ANP), B-type natriuretic peptide( BNP), β-myosin heavy chain(β-MHC), collagen type I alpha chain(Col1α), collagen type Ⅲ alpha chain(Col3α), alpha smooth muscle actin(α-SMA), and FTO. The cardiac tissue was stained with Masson's trichrome and wheat germ agglutinin(WGA) to reveal the pathological changes. Immunohistochemistry was employed to detect the expression levels of Col1α, Col3α, α-SMA, and FTO in the myocardial tissue. The m6A modification level in the myocardial tissue was measured by the m6A assay kit. An H9c2 cell model of cardiomyocyte injury was induced by angiotensin Ⅱ(AngⅡ), and small interfering RNA(siRNA) was employed to knock down FTO expression. RT-qPCR was conducted to assess the relative m RNA levels of FTO and other genes associated with cardiac remodeling. The m6A modification level was measured by the m6A assay kit, and Western blot was employed to determine the phosphorylated phosphatidylinositol 3-kinase(p-PI3K)/phosphatidylinositol 3-kinase(PI3K) and phosphorylated serine/threonine kinase(p-Akt)/serine/threonine kinase(Akt) ratios in cardiomyocytes. The results of animal experiments showed that the XYP treatment significantly improved the cardiac function, reduced fibrosis, up-regulated the m RNA and protein levels of FTO, and lowered the m6A modification level compared with the model group. The results of cell experiments showed that the XYP-containing serum markedly up-regulated the m RNA level of FTO while decreasing the m6A modification level and the p-PI3K/PI3K and p-Akt/Akt ratios in cardiomyocytes. Furthermore, FTO knockdown reversed the protective effects of XYP-containing serum on Ang Ⅱ-induced cardiomyocyte hypertrophy. In conclusion, XYP may ameliorate ventricular remodeling by regulating the FTO/m6A axis, thereby inhibiting the activation of the PI3K/Akt signaling pathway.
Animals
;
Ventricular Remodeling/drug effects*
;
Heart Failure/physiopathology*
;
Signal Transduction/drug effects*
;
Mice
;
Male
;
Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics*
;
Drugs, Chinese Herbal/administration & dosage*
;
Mice, Inbred C57BL
;
Humans
;
Adenosine/analogs & derivatives*
;
Myocytes, Cardiac/metabolism*
;
Disease Models, Animal
8.Anti-tumor effect of metal ion-mediated natural small molecules carrier-free hydrogel combined with CDT/PDT.
Wen-Min PI ; Gen LI ; Xin-Ru TAN ; Zhi-Xia WANG ; Xiao-Yu LIN ; Hai-Ling QIU ; Fu-Hao CHU ; Bo WANG ; Peng-Long WANG
China Journal of Chinese Materia Medica 2025;50(7):1770-1780
Metal ion-promoted chemodynamic therapy(CDT) combined with photodynamic therapy(PDT) offers broad application prospects for enhancing anti-tumor effects. In this study, glycyrrhizic acid(GA), copper ions(Cu~(2+)), and norcantharidin(NCTD) were co-assembled to successfully prepare a natural small-molecule, carrier-free hydrogel(NCTD Gel) with excellent material properties. Under 808 nm laser irradiation, NCTD Gel responded to the tumor microenvironment(TME) and acted as an efficient Fenton reagent and photosensitizer, catalyzing the conversion of endogenous hydrogen peroxide(H_2O_2) within the tumor into oxygen(O_2), and hydroxyl radicals(·OH, type Ⅰ reactive oxygen species) and singlet oxygen(~1O_2, type Ⅱ reactive oxygen species), while depleting glutathione(GSH) to stabilize reactive oxygen species and alleviate tumor hypoxia. In vitro and in vivo experiments demonstrated that NCTD Gel exhibited significant CDT/PDT synergistic therapeutic effects. Further safety evaluation and metabolic testing confirmed its good biocompatibility and safety. This novel hydrogel is not only simple to prepare, safe, and cost-effective but also holds great potential for clinical transformation, providing insights and references for the research and development of metal ion-mediated hydrogel-based anti-tumor therapies.
Hydrogels/chemistry*
;
Animals
;
Photochemotherapy
;
Humans
;
Mice
;
Antineoplastic Agents/administration & dosage*
;
Photosensitizing Agents/chemistry*
;
Neoplasms/metabolism*
;
Female
;
Copper/chemistry*
;
Reactive Oxygen Species/metabolism*
;
Tumor Microenvironment/drug effects*
;
Cell Line, Tumor
;
Male
9.Efficacy and mechanism of Guizhi Tongluo Tablets in alleviating atherosclerosis by inhibiting CD72hi macrophages.
Xing-Ling HE ; Si-Jing LI ; Zi-Ru LI ; Dong-Hua LIU ; Xiao-Jiao ZHANG ; Huan HE ; Xiao-Ming DONG ; Wen-Jie LONG ; Wei-Wei ZHANG ; Hui-Li LIAO ; Lu LU ; Zhong-Qi YANG ; Shi-Hao NI
China Journal of Chinese Materia Medica 2025;50(5):1298-1309
This study investigates the effect and underlying mechanism of Guizhi Tongluo Tablets(GZTL) in treating atherosclerosis(AS) in a mouse model. Apolipoprotein E-knockout(ApoE~(-/-)) mice were randomly assigned to the following groups: model, high-, medium-, and low-dose GZTL, and atorvastatin(ATV), and age-matched C57BL/6J mice were selected as the control group. ApoE~(-/-) mice in other groups except the control group were fed with a high-fat diet for the modeling of AS and administrated with corresponding drugs via gavage for 8 weeks. General conditions, signs of blood stasis, and body mass of mice were monitored. Aortic plaques and their stability were assessed by hematoxylin-eosin, Masson, and oil red O staining. Serum levels of total cholesterol(TC), triglycerides(TG), and low-density lipoprotein cholesterol(LDL-C) were measured by biochemical assays, and those of interleukin-1β(IL-1β), tumor necrosis factor-α(TNF-α), and interleukin-6(IL-6) were determined via enzyme-linked immunosorbent assay. Apoptosis was assessed by terminal deoxynucleotidyl transferase dUTP nick end labeling(TUNEL). Single-cell RNA sequencing(scRNA-seq) was employed to analyze the differential expression of CD72hi macrophages(CD72hi-Mφ) in the aortas of AS patients and mice. The immunofluorescence assay was employed to visualize CD72hi-Mφ expression in mouse aortic plaques, and real-time fluorescence quantitative PCR was utilized to determine the mRNA levels of IL-1β, TNF-α, and IL-6 in the aorta. The results demonstrated that compared with the control group, the model group exhibited significant increases in body mass, aortic plaque area proportion, necrotic core area proportion, and lipid deposition, a notable decrease in collagen fiber content, and an increase in apoptosis. Additionally, the model group showcased elevated serum levels of TC, TG, LDL-C, IL-1β, TNF-α, and IL-6, alongside marked upregulations in the mRNA levels of IL-1β, TNF-α, and IL-6 in the aorta. In comparison with the model group, the GZTL groups and the ATV group showed a reduction in body mass, and the medium-and high-dose GZTL groups and the ATV group demonstrated reductions in aortic plaque area proportion, necrotic core area proportion, and lipid deposition, an increase in collagen fiber content, and a decrease in apoptosis. Furthermore, the treatment goups showcased lowered serum levels of TC, TG, LDL-C, IL-1β, TNF-α, and IL-6. The data of scRNA-seq revealed significantly elevated CD72hi-Mφ signaling in carotid plaques of AS patients compared with that in the normal arterial tissue. Animal experiments confirmed that CD72hi-Mφ expression, along with several pro-inflammatory cytokines, was significantly upregulated in the aortas of AS mice, which were downregulated by GZTL treatment. In conclusion, GZTL may alleviate AS by inhibiting CD72hi-Mφ activity.
Animals
;
Drugs, Chinese Herbal/administration & dosage*
;
Atherosclerosis/immunology*
;
Mice
;
Mice, Inbred C57BL
;
Macrophages/immunology*
;
Male
;
Humans
;
Apolipoproteins E/genetics*
;
Tablets
;
Tumor Necrosis Factor-alpha/genetics*
;
Apoptosis/drug effects*
;
Interleukin-1beta/genetics*
;
Interleukin-6/genetics*
;
Disease Models, Animal
;
Mice, Knockout
10.Construction of oleanolic acid-producing Saccharomyces cerevisiae cells.
Yue ZHANG ; Xue-Mi HAO ; Cai-Xia WANG ; Long-Shan ZHAO
China Journal of Chinese Materia Medica 2025;50(9):2365-2372
In this study, Saccharomyces cerevisiae R0 was used as the chassis cell to synthesize oleanolic acid from scratch through the heterologous expression of β-amyrin synthase(β-AS) from Glycyrrhiza uralensis, cytochrome P450 enzyme CYP716A154 from Catharanthus roseus, and cytochrome P450 reductase AtCPR from Arabidopsis thaliana. The engineered strain R1 achieved shake flask titres of 5.19 mg·L~(-1). By overexpressing enzymes in the pentose phosphate pathway(PPP)(ZWF1, GND1, TKL1, and TAL), the NADH kinase gene in the mitochondrial matrix(POS5), truncated 3-hydroxy-3-methylglutaryl-CoA reductase(tPgHMGR1) from Panax ginseng, and farnesyl diphosphate synthase gene(SmFPS) from Salvia miltiorrhiza, the precursor supply and intracellular reduced nicotinamide adenine dinucleotide phosphate(NADPH) supply were enhanced, resulting in an 11.4-fold increase in squalene yield and a 3.6-fold increase in oleanolic acid yield. Subsequently, increasing the copy number of the heterologous genes tPgHMGR1, β-AS, CYP716A154, and AtCPR promoted the metabolic flow towards the final product, oleanolic acid, and increased the yield by three times. Shake flask fermentation data showed that, by increasing the copy number, precursor supply, and intracellular NADPH supply, the final engineered strain R3 could achieve an oleanolic acid yield of 53.96 mg·L~(-1), which was 10 times higher than that of the control strain R1. This study not only laid the foundation for the green biosynthesis of oleanolic acid but also provided a reference for metabolic engineering research on other pentacyclic triterpenoids in S. cerevisiae.
Oleanolic Acid/biosynthesis*
;
Saccharomyces cerevisiae/metabolism*
;
Industrial Microbiology
;
Microorganisms, Genetically-Modified/metabolism*
;
Plants/enzymology*
;
Fermentation
;
Metabolic Engineering

Result Analysis
Print
Save
E-mail