1.Neuroplasticity Mechanisms of Exercise-induced Brain Protection
Li-Juan HOU ; Lan-Qun MAO ; Wei CHEN ; Ke LI ; Xu-Dong ZHAO ; Yin-Hao WANG ; Zi-Zheng YANG ; Tian-He WEI
Progress in Biochemistry and Biophysics 2025;52(6):1435-1452
Neuroscience is a significant frontier discipline within the natural sciences and has become an important interdisciplinary frontier scientific field. Brain is one of the most complex organs in the human body, and its structural and functional analysis is considered the “ultimate frontier” of human self-awareness and exploration of nature. Driven by the strategic layout of “China Brain Project”, Chinese scientists have conducted systematic research focusing on “understanding the brain, simulating the brain, and protecting the brain”. They have made breakthrough progress in areas such as the principles of brain cognition, mechanisms and interventions for brain diseases, brain-like computation, and applications of brain-machine intelligence technology, aiming to enhance brain health through biomedical technology and improve the quality of human life. Due to limited understanding and comprehension of neuroscience, there are still many important unresolved issues in the field of neuroscience, resulting in a lack of effective measures to prevent and protect brain health. Therefore, in addition to actively developing new generation drugs, exploring non pharmacological treatment strategies with better health benefits and higher safety is particularly important. Epidemiological data shows that, exercise is not only an indispensable part of daily life but also an important non-pharmacological approach for protecting brain health and preventing neurodegenerative diseases, forming an emerging research field known as motor neuroscience. Basic research in motor neuroscience primarily focuses on analyzing the dynamic coding mechanisms of neural circuits involved in motor control, breakthroughs in motor neuroscience research depend on the construction of dynamic monitoring systems across temporal and spatial scales. Therefore, high spatiotemporal resolution detection of movement processes and movement-induced changes in brain structure and neural activity signals is an important technical foundation for conducting motor neuroscience research and has developed a set of tools based on traditional neuroscience methods combined with novel motor behavior decoding technologies, providing an innovative technical platform for motor neuroscience research. The protective effect of exercise in neurodegenerative diseases provides broad application prospects for its clinical translation. Applied research in motor neuroscience centers on deciphering the regulatory networks of neuroprotective molecules mediated by exercise. From the perspectives of exercise promoting neurogenesis and regeneration, enhancing synaptic plasticity, modulating neuronal functional activity, and remodeling the molecular homeostasis of the neuronal microenvironment, it aims to improve cognitive function and reduce the incidence of Parkinson’s disease and Alzheimer’s disease. This has also advanced research into the molecular regulatory networks mediating exercise-induced neuroprotection and facilitated the clinical application and promotion of exercise rehabilitation strategies. Multidimensional analysis of exercise-regulated neural plasticity is the theoretical basis for elucidating the brain-protective mechanisms mediated by exercise and developing intervention strategies for neurological diseases. Thus,real-time analysis of different neural signals during active exercise is needed to study the health effects of exercise throughout the entire life cycle and enhance lifelong sports awareness. Therefore, this article will systematically summarize the innovative technological developments in motor neuroscience research, review the mechanisms of neural plasticity that exercise utilizes to protect the brain, and explore the role of exercise in the prevention and treatment of major neurodegenerative diseases. This aims to provide new ideas for future theoretical innovations and clinical applications in the field of exercise-induced brain protection.
2.Construction and application of the "Huaxi Hongyi" large medical model
Rui SHI ; Bing ZHENG ; Xun YAO ; Hao YANG ; Xuchen YANG ; Siyuan ZHANG ; Zhenwu WANG ; Dongfeng LIU ; Jing DONG ; Jiaxi XIE ; Hu MA ; Zhiyang HE ; Cheng JIANG ; Feng QIAO ; Fengming LUO ; Jin HUANG
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(05):587-593
Objective To construct large medical model named by "Huaxi HongYi"and explore its application effectiveness in assisting medical record generation. Methods By the way of a full-chain medical large model construction paradigm of "data annotation - model training - scenario incubation", through strategies such as multimodal data fusion, domain adaptation training, and localization of hardware adaptation, "Huaxi HongYi" with 72 billion parameters was constructed. Combined with technologies such as speech recognition, knowledge graphs, and reinforcement learning, an application system for assisting in the generation of medical records was developed. Results Taking the assisted generation of discharge records as an example, in the pilot department, after using the application system, the average completion times of writing a medical records shortened (21 min vs. 5 min) with efficiency increased by 3.2 time, the accuracy rate of the model output reached 92.4%. Conclusion It is feasible for medical institutions to build independently controllable medical large models and incubate various applications based on these models, providing a reference pathway for artificial intelligence development in similar institutions.
3.Associations between statins and all-cause mortality and cardiovascular events among peritoneal dialysis patients: A multi-center large-scale cohort study.
Shuang GAO ; Lei NAN ; Xinqiu LI ; Shaomei LI ; Huaying PEI ; Jinghong ZHAO ; Ying ZHANG ; Zibo XIONG ; Yumei LIAO ; Ying LI ; Qiongzhen LIN ; Wenbo HU ; Yulin LI ; Liping DUAN ; Zhaoxia ZHENG ; Gang FU ; Shanshan GUO ; Beiru ZHANG ; Rui YU ; Fuyun SUN ; Xiaoying MA ; Li HAO ; Guiling LIU ; Zhanzheng ZHAO ; Jing XIAO ; Yulan SHEN ; Yong ZHANG ; Xuanyi DU ; Tianrong JI ; Yingli YUE ; Shanshan CHEN ; Zhigang MA ; Yingping LI ; Li ZUO ; Huiping ZHAO ; Xianchao ZHANG ; Xuejian WANG ; Yirong LIU ; Xinying GAO ; Xiaoli CHEN ; Hongyi LI ; Shutong DU ; Cui ZHAO ; Zhonggao XU ; Li ZHANG ; Hongyu CHEN ; Li LI ; Lihua WANG ; Yan YAN ; Yingchun MA ; Yuanyuan WEI ; Jingwei ZHOU ; Yan LI ; Caili WANG ; Jie DONG
Chinese Medical Journal 2025;138(21):2856-2858
4.Impact of posterior cruciate ligament resection on the elasticity of the periarticular soft tissue sleeve in the knee joint.
Yun-Feng ZHANG ; De-Jin YANG ; Zhao-Lun WANG ; Yi-Xin ZHOU ; Hao TANG ; Xiang-Dong WU ; Han-Long ZHENG
China Journal of Orthopaedics and Traumatology 2025;38(10):1055-1060
OBJECTIVE:
To evaluate the effects of posterior cruciate ligament(PCL) resection on soft tissue elasticity and knee stability in total knee arthroplasty(TKA).
METHODS:
Six adult cadaveric knee specimens (involving 10 knees) were included in the study. With the assistance of the robotic system(TiRobot Recon, TINAVI, Beijing), total knee arthroplasty (TKA) was performed sequentially using cruciate retaining (CR) prostheses and posterior stabilizing (PS) prostheses. Between the two surgical procedures, the femoral and tibial osteotomy surfaces were not altered;only the posterior cruciate ligament (PCL) was resected and the intercondylar fossa was treated. After installing the femoral trial component, a soft tissue balance solver was used to apply tension ranging from 30 N to 90 N in 5 N increments at 0°, 10°, and 90° of knee flexion. Meanwhile, the medial and lateral joint gaps were measured synchronously. Based on the tension-gap coupling data, the equivalent elastic coefficients of the medial and lateral soft tissue sleeves at different knee flexion angles, as well as the range of the joint line convergence angle (JLCA) under fixed varus-valgus stress, were calculated. Additionally, the gap balance status under 80 N of tension was analyzed. Self-control comparisons of each indicator were conducted before and after PCL resection to analyze the change patterns.
RESULTS:
After PCL resection, in the fully extended position (knee flexion 0°). The medial equivalent elastic coefficient was 32.2 (25.7, 63.3) N·mm-1 for the CR prosthesis and 27.7 (22.0, 51.9) N·mm-1 for the PS prosthesis, and the statistically significant difference (P=0.013). The range of JLCA was 0.41°(0.26, 0.55)° for the CR prosthesis, which was smaller than 0.75° (0.40, 0.98)° for the PS prosthesis, and the difference was statistically significant(P=0.041). At 90° of knee flexion, the medial joint gap was 10.7(10.1, 11.7) mm for the CR prosthesis, which was smaller than 12.1(10.9, 15.1) mm for the PS prosthesis, with a statistically significant difference(P=0.011). No statistically significant differences were observed in other joint gaps.
CONCLUSION
PCL resection reduces the rigidity of the medial soft tissues in the fully extended knee and increases the medial joint gap in the flexed position, thereby affecting knee stability and balance. This finding suggests that PS and CR prostheses may require different morphological designs, and there should be differences in indications and osteotomy strategies between CR-TKA and PS-TKA. CR-TKA is more suitable for patients with preoperative medial soft tissue laxity.
Humans
;
Posterior Cruciate Ligament/physiopathology*
;
Knee Joint/physiopathology*
;
Arthroplasty, Replacement, Knee
;
Elasticity
;
Male
;
Female
;
Middle Aged
;
Aged
;
Biomechanical Phenomena
;
Adult
5.Prognostic value of quantitative flow ratio measured immediately after percutaneous coronary intervention for chronic total occlusion.
Zheng QIAO ; Zhang-Yu LIN ; Qian-Qian LIU ; Rui ZHANG ; Chang-Dong GUAN ; Sheng YUAN ; Tong-Qiang ZOU ; Xiao-Hui BIAN ; Li-Hua XIE ; Cheng-Gang ZHU ; Hao-Yu WANG ; Guo-Feng GAO ; Ke-Fei DOU
Journal of Geriatric Cardiology 2025;22(4):433-442
BACKGROUND:
The clinical impact of post-percutaneous coronary intervention (PCI) quantitative flow ratio (QFR) in patients treated with PCI for chronic total occlusion (CTO) was still undetermined.
METHODS:
All CTO vessels treated with successful anatomical PCI in patients from PANDA III trial were retrospectively measured for post-PCI QFR. The primary outcome was 2-year vessel-oriented composite endpoints (VOCEs, composite of target vessel-related cardiac death, target vessel-related myocardial infarction, and ischemia-driven target vessel revascularization). Receiver operator characteristic curve analysis was conducted to identify optimal cutoff value of post-PCI QFR for predicting the 2-year VOCEs, and all vessels were stratified by this optimal cutoff value. Cox proportional hazards models were employed to calculate the hazard ratio (HR) with 95% CI.
RESULTS:
Among 428 CTO vessels treated with PCI, 353 vessels (82.5%) were analyzable for post-PCI QFR. 31 VOCEs (8.7%) occurred at 2 years. Mean value of post-PCI QFR was 0.92 ± 0.13. Receiver operator characteristic curve analysis shown the optimal cutoff value of post-PCI QFR for predicting 2-year VOCEs was 0.91. The incidence of 2-year VOCEs in the vessel with post-PCI QFR < 0.91 (n = 91) was significantly higher compared with the vessels with post-PCI QFR ≥ 0.91 (n = 262) (22.0% vs. 4.2%, HR = 4.98, 95% CI: 2.32-10.70).
CONCLUSIONS
Higher post-PCI QFR values were associated with improved prognosis in the PCI practice for coronary CTO. Achieving functionally optimal PCI results (post-PCI QFR value ≥ 0.91) tends to get better prognosis for patients with CTO lesions.
6.Development and application on a full process disease diagnosis and treatment assistance system based on generative artificial intelligence.
Wanjie YANG ; Hao FU ; Xiangfei MENG ; Changsong LI ; Ce YU ; Xinting ZHAO ; Weifeng LI ; Wei ZHAO ; Qi WU ; Zheng CHEN ; Chao CUI ; Song GAO ; Zhen WAN ; Jing HAN ; Weikang ZHAO ; Dong HAN ; Zhongzhuo JIANG ; Weirong XING ; Mou YANG ; Xuan MIAO ; Haibai SUN ; Zhiheng XING ; Junquan ZHANG ; Lixia SHI ; Li ZHANG
Chinese Critical Care Medicine 2025;37(5):477-483
The rapid development of artificial intelligence (AI), especially generative AI (GenAI), has already brought, and will continue to bring, revolutionary changes to our daily production and life, as well as create new opportunities and challenges for diagnostic and therapeutic practices in the medical field. Haihe Hospital of Tianjin University collaborates with the National Supercomputer Center in Tianjin, Tianjin University, and other institutions to carry out research in areas such as smart healthcare, smart services, and smart management. We have conducted research and development of a full-process disease diagnosis and treatment assistance system based on GenAI in the field of smart healthcare. The development of this project is of great significance. The first goal is to upgrade and transform the hospital's information center, organically integrate it with existing information systems, and provide the necessary computing power storage support for intelligent services within the hospital. We have implemented the localized deployment of three models: Tianhe "Tianyuan", WiNGPT, and DeepSeek. The second is to create a digital avatar of the chief physician/chief physician's voice and image by integrating multimodal intelligent interaction technology. With generative intelligence as the core, this solution provides patients with a visual medical interaction solution. The third is to achieve deep adaptation between generative intelligence and the entire process of patient medical treatment. In this project, we have developed assistant tools such as intelligent inquiry, intelligent diagnosis and recognition, intelligent treatment plan generation, and intelligent assisted medical record generation to improve the safety, quality, and efficiency of the diagnosis and treatment process. This study introduces the content of a full-process disease diagnosis and treatment assistance system, aiming to provide references and insights for the digital transformation of the healthcare industry.
Artificial Intelligence
;
Humans
;
Delivery of Health Care
;
Generative Artificial Intelligence
7.Association of Longitudinal Change in Fasting Blood Glucose with Risk of Cerebral Infarction in a Patients with Diabetes.
Tai Yang LUO ; Xuan DENG ; Xue Yu CHEN ; Yu He LIU ; Shuo Hua CHEN ; Hao Ran SUN ; Zi Wei YIN ; Shou Ling WU ; Yong ZHOU ; Xing Dong ZHENG
Biomedical and Environmental Sciences 2025;38(8):926-934
OBJECTIVE:
To investigate the association between long-term glycemic control and cerebral infarction risk in patients with diabetes through a large-scale cohort study.
METHODS:
This prospective, community-based cohort study included 12,054 patients with diabetes. From 2006 to 2012, 38,272 fasting blood glucose (FBG) measurements were obtained from these participants. FBG trajectory patterns were generated using latent mixture modelling. Cox proportional hazards models were applied to assess the subsequent risk of cerebral infarction associated with different FBG trajectory patterns.
RESULTS:
At baseline, the mean age of the participants was 55.2 years. Four distinct FBG trajectories were identified based on FBG concentrations and their changes over the 6-year follow-up period. After a median follow-up of 6.9 years, 786 cerebral infarction events were recorded. Different trajectory patterns were associated with significantly varied outcome risks (Log-Rank P < 0.001). Compared with the low-stability group, Hazard Ratio ( HR) adjusted for potential confounders were 1.37 for the moderate-increasing group, 1.23 for the elevated-decreasing group, and 2.08 for the elevated-stable group.
CONCLUSION
Sustained high FBG levels were found to play a critical role in the development of ischemic stroke among patients with diabetes. Controlling FBG levels may reduce the risk of cerebral infarction.
Humans
;
Cerebral Infarction/blood*
;
Middle Aged
;
Male
;
Female
;
Blood Glucose/analysis*
;
Fasting/blood*
;
Aged
;
Prospective Studies
;
Risk Factors
;
Diabetes Mellitus/blood*
;
Adult
;
Proportional Hazards Models
8.Therapeutic results of three-dimensional aortic valve anatomic repair for regurgitant bicuspid aortic valve
Jun LI ; Chunsheng WANG ; Zheng ZUO ; Hao LAI ; Lili DONG ; Kai ZHU ; Junyu ZHAI ; Yongxin SUN ; Wenjun DING ; Tao HONG
Chinese Journal of Surgery 2024;62(11):1024-1031
Objective:To explore the surgical technique and results of three-dimensional aortic valve anatomic repair for bicuspid aortic valve (BAV) with aortic regurgitation (AR).Methods:This is a retrospective case series study. From August 2021 to December 2023, 130 consecutive patients with BAV-AR underwent aortic valve anatomic repair at the Department of Cardiothoracic Surgery, Zhongshan Hospital, Fudan University,and the data were retrospectively analyzed. There were 115 males and 15 females, aged (38.6±11.7) years (range: 15 to 67 years). All patients received modified aortic root reconstruction, to do three-dimensional root remodeling, including the basal ring, sinus of Valsalva and sino-tubular junction simultaneously. Perioperative and follow-up data were collected and analyzed. Comparisons between groups were performed using independent samples t-test, Wilcoxon paired signed-rank test, or χ2 test. Results:No patient transferred to valve replacement during the operation. The cardiopulmonary bypass time ( M(IQR)) was 109(34) minutes (range:67 to 247 minutes), and the aortic cross-clamp time was 76(26) minutes (range: 32 to 158 minutes). Preoperative transesophageal echocardiography showed 123 patients (94.6%) presented with moderate or severe regurgitation. Immediately postoperative transesophageal echocardiography showed no regurgitation in 22 patients (16.9%), trace regurgitation in 81 patients (62.3%) and mild regurgitation in 27 patients (20.8%). Follow up was completed in all patients, with a follow-up of 5.5(9.4) months (range: 0.1 to 27.6 months). No mortality was observed during follow-up. Echocardiography was obtained in 112 patients at the latest follow-up, including no regurgitation in 4 patients (3.6%), trace regurgitation in 58 patients (51.8%), mild regurgitation in 45 patients (40.2%), moderate regurgitation in 4 patients (3.6%), and severe regurgitation in 1 patient (0.9%). Conclusion:For patients with BAV-AR who have good valve quality and no severe aortic sinus dilation, the recent outcomes of three-dimensional anatomical repair technique, focusing on overall remodeling of the aortic root, are satisfactory.
9.Effect of microRNA-145 delivered by exosomes on platelet activation and vascular endothelial function in rats with coronary atherosclerotic heart disease
Jian-Mei WANG ; Wei-Dong JIN ; Zhen LIU ; Zheng-Hao LIU
Acta Anatomica Sinica 2024;55(6):761-768
Objective To investigate the effects of microRNA(miR)-145 delivered by exosomes(Exo)on platelet activation and vascular endothelial function in rats with coronary atherosclerotic heart disease(CAHD).Methods HEK239 cells were transfected with miR-negative control(NC)and miR-145,and the transfection effect was detected by Real-time PCR.Exo was isolated from HEK239 cells transfected with miRNA-NC and miR-145.The morphology and size distribution were observed by transmission electron microscopy.The expressions of CD81,heat shock protein 70(HSP70)and tumor susceptibility gene 101(TSG101)were detected by Western blotting.The experiment included control group,model group,miR-NC Exo group and miR-145 Exo group,with 8 rats in each group.After treatment,the ejection fraction(EF),fractional shortening rate(FS),left ventricular end-diastolic diameter(LVIDD)and left ventricular end-systolic diameter(LVIDS)of rats were determined by ultrasonic diagnostic instrument.HE staining was performed to observe the pathological changes of myocardial tissue and aortic tissue,and ELISA was used to determine serum platelet activating factor(PAF),β-platelet globulin(β-TG),platelet membrane glycoprotein Ⅱa/Ⅲb(GP Ⅱa/Ⅲb),nitric oxide(NO),endothelin-1(ET-1)and vascular endothelial growth factor(VEGF).Immunohistochemical staining was used to detect the expression of endothelial nitric oxide synthase(eNOS)in aorta tissue.Results The relative expression level of miR-145 in HEK239 cells transfected with miR-145 was significantly higher than that in untransfected and transfected miR-NC cells(P<0.05).The isolated particles showed typical cup-shaped or disk-shaped vesicles,most of which were distributed at 100 nm in diameter.CD81,HSP70 and TSG101 proteins were highly expressed,and the relative expression level of miR-145 in Exo transfected with miR-NC was significantly lower than that in Exo transfected with miR-145(P<0.05).Compared with the miR-NC Exo group,EF and FS of miR-145 Exo group increased significantly(P<0.05),while LVIDD and LVIDS decreased significantly(P<0.05),and the pathological changes of myocardial tissue and aortic tissue were better improved.The contents of PAF,β-TG,GP Ⅱ a/Ⅲb,ET-1 and VEGF in serum were further significantly decreased(P<0.05),while the content of NO was also significantly increased(P<0.05),and the positive expression rate of eNOS in aortic tissue was further significantly increased(P<0.05).Conclusion MiR-145 delivered by Exo could inhibit platelet activation and improve vascular endothelial function in coronary heart disease model rats,and plays a protective role in coronary heart disease model rats.
10.Atp2b2 Oblivion heterozygous mutation causes progressive vestibular dysfunction in mice
Yiqing LIU ; Chenxi JIN ; Baoyi FENG ; Zhenzhe CHENG ; Yilin SUN ; Xiaofei ZHENG ; Tingting DONG ; Hao WU ; Yong TAO
Journal of Shanghai Jiaotong University(Medical Science) 2024;44(6):723-732
Objective·To study the alterations in vestibular hair cell morphology and function of ATPase plasma membrane Ca2+transporting 2 oblivion(Atp2b2 Oblivion)heterozygous mice at different ages.Methods·Atp2b2 Oblivion heterozygous male mice aged 2 months and 8 months were selected with ten in each kind and C57BL/6J wild-type mice with the same gender,age and number were selected as the control group.Expression patterns of ATP2B2 in vestibular hair cells and numbers of hair cells in the striola zone and the extra striola zone in the two groups of mice at different ages were observed and calculated respectively through immunofluorescence assay.Hair bundle structures were detected by scanning electron microscopy(SEM),and mitochondria and ribbon synapse structures were observed by transmission electron microscopy(TEM).Vestibular evoked potential(VsEP),vestibular evoked myogenic potential(VEMP),rotarod rod test,and balance beam test were adopted for the evaluation of vestibular functions.Results·ATP2B2 was mainly expressed in the hair bundle of vestibular hair cells in the two groups of mice.Hair cell numbers in the striola zone and the extra-striola zone did not exhibit any differences between Atp2b2 Oblivion heterozygous mutant mice and wild-type mice of 2-month-old and 8-month-old.No visible structural abnormality in the hair bundle could be seen through SEM.TEM results implied no morphological abnormality in mitochondria or ribbon synapses in the 2-month-old heterozygous mutant mice,while vacuolar degeneration was discovered in the mitochondria under the cuticular plate in the 8-month-old heterozygous mutant mice with the normal ribbon synapses and the normal mitochondria near the innervation site.VsEP and VEMP thresholds of 2-month-old and 8-month-old Atp2b2 Oblivion heterozygous mutant mice were significantly elevated compared with the wild-type mice.Analysis of VsEP waveform manifested prolonged P1 latency and declined P1N1 amplitude in heterozygous mutant mice(P<0.05).Results of rotarod rod test and balance beam test acquired from 2-month-old Atp2b2 Oblivion heterozygous mutant mice were not significantly different from the wild-type mice,while the ability of the mutant mice to accomplish the tests descended significantly at 8 months of age compared with the wild-type mice(P<0.05).Conclusion·Atp2b2 Oblivion heterozygous mutant mice showed defective vestibular electrophysiological function at 2 months old,and abnormalities in vestibule-related behaviors can be detected at 8 months old.The vestibular function ofAtp2b2 Oblivion heterozygous mutant mice deteriorate progressively.

Result Analysis
Print
Save
E-mail