1.Translational Research of Electromagnetic Fields on Diseases Related With Bone Remodeling: Review and Prospects
Peng SHANG ; Jun-Yu LIU ; Sheng-Hang WANG ; Jian-Cheng YANG ; Zhe-Yuan ZHANG ; An-Lin LI ; Hao ZHANG ; Yu-Hong ZENG
Progress in Biochemistry and Biophysics 2025;52(2):439-455
Electromagnetic fields can regulate the fundamental biological processes involved in bone remodeling. As a non-invasive physical therapy, electromagnetic fields with specific parameters have demonstrated therapeutic effects on bone remodeling diseases, such as fractures and osteoporosis. Electromagnetic fields can be generated by the movement of charged particles or induced by varying currents. Based on whether the strength and direction of the electric field change over time, electromagnetic fields can be classified into static and time-varying fields. The treatment of bone remodeling diseases with static magnetic fields primarily focuses on fractures, often using magnetic splints to immobilize the fracture site while studying the effects of static magnetic fields on bone healing. However, there has been relatively little research on the prevention and treatment of osteoporosis using static magnetic fields. Pulsed electromagnetic fields, a type of time-varying field, have been widely used in clinical studies for treating fractures, osteoporosis, and non-union. However, current clinical applications are limited to low-frequency, and research on the relationship between frequency and biological effects remains insufficient. We believe that different types of electromagnetic fields acting on bone can induce various “secondary physical quantities”, such as magnetism, force, electricity, acoustics, and thermal energy, which can stimulate bone cells either individually or simultaneously. Bone cells possess specific electromagnetic properties, and in a static magnetic field, the presence of a magnetic field gradient can exert a certain magnetism on the bone tissue, leading to observable effects. In a time-varying magnetic field, the charged particles within the bone experience varying Lorentz forces, causing vibrations and generating acoustic effects. Additionally, as the frequency of the time-varying field increases, induced currents or potentials can be generated within the bone, leading to electrical effects. When the frequency and power exceed a certain threshold, electromagnetic energy can be converted into thermal energy, producing thermal effects. In summary, external electromagnetic fields with different characteristics can generate multiple physical quantities within biological tissues, such as magnetic, electric, mechanical, acoustic, and thermal effects. These physical quantities may also interact and couple with each other, stimulating the biological tissues in a combined or composite manner, thereby producing biological effects. This understanding is key to elucidating the electromagnetic mechanisms of how electromagnetic fields influence biological tissues. In the study of electromagnetic fields for bone remodeling diseases, attention should be paid to the biological effects of bone remodeling under different electromagnetic wave characteristics. This includes exploring innovative electromagnetic source technologies applicable to bone remodeling, identifying safe and effective electromagnetic field parameters, and combining basic research with technological invention to develop scientifically grounded, advanced key technologies for innovative electromagnetic treatment devices targeting bone remodeling diseases. In conclusion, electromagnetic fields and multiple physical factors have the potential to prevent and treat bone remodeling diseases, and have significant application prospects.
2.Application of Yttrium-90 microsphere selective internal radiation therapy in downstaging and conversion of hepatocellular carcinoma: a case report
Ziwei LIANG ; Tiantian ZHANG ; Yong LIAO ; Xin HUANG ; Bin LIANG ; Zhongbin HANG ; Yan ZHANG ; Lin ZHANG ; Xiaobin FENG ; Li HUO
Chinese Journal of Clinical Medicine 2025;32(1):41-45
This case report describes a 68-year-old male patient diagnosed with primary hepatocellular carcinoma (HCC). After receiving Yttrium-90 microsphere selective internal radiation therapy (90Y-SIRT), the tumor significantly reduced in size, and tumor markers alpha fetoprotein (AFP) and abnormal prothrombin (PIVKA-Ⅱ) decreased. Postoperative pathological results showed minimal residual tumor cells, indicating that 90Y-SIRT has good efficacy and safety in downstaging and conversion of HCC, thereby facilitating subsequent surgical resection.
3.Chlorhexidine and Fondaparinux-Induced Kounis Syndrome: a Case Report
Fangzheng YU ; Yajing WANG ; Hang LIN ; Lifeng ZHANG ; Yuhui ZHU ; Xiaomeng SHI ; Huimin ZHOU ; Nan LIN ; Xiang GAO
JOURNAL OF RARE DISEASES 2025;4(3):334-340
Kounis syndrome is an acute coronary syndrome triggered by an allergic reaction, which is clinically rare and frequently subject to misdiagnosis or missed diagnosis. This article presents a case report of a 70-year-old male patient who developed a rash, pruritus, and chest pain following colon polyp resection. Coronary angiography revealed occlusion of the left anterior descending artery, and blood flow was restored after stent implantation. However, the patient experienced recurrent symptoms accompanied by loss of consciousness. Drug skin tests confirmed positive reactions to chlorhexidine and fondaparinux sodium, leading to a diagnosis of type Ⅱ Kounis syndrome. By avoiding allergenic drugs and combining antihistamines with symptomatic treatment to correct myocardial ischemia, the patient′s clinical symptoms significantly improved, and he eventually recovered and was discharged from the hospital. This case underscores the importance of maintaining vigilance for this syndrome in patients with allergies accompanied by chest pain and promptly identifying and avoiding allergens.
4.Development and validation of a prediction score for subtype diagnosis of primary aldosteronism.
Ping LIU ; Wei ZHANG ; Jiao WANG ; Hongfei JI ; Haibin WANG ; Lin ZHAO ; Jinbo HU ; Hang SHEN ; Yi LI ; Chunhua SONG ; Feng GUO ; Xiaojun MA ; Qingzhu WANG ; Zhankui JIA ; Xuepei ZHANG ; Mingwei SHAO ; Yi SONG ; Xunjie FAN ; Yuanyuan LUO ; Fangyi WEI ; Xiaotong WANG ; Yanyan ZHAO ; Guijun QIN
Chinese Medical Journal 2025;138(23):3206-3208
5.Scientific connotation of "blood stasis toxin" in hypoxic microenvironment: its "soil" function in tumor progression and micro-level treatment approaches.
Wei FAN ; Yuan-Lin LYU ; Xiao-Chen NI ; Kai-Yuan ZHANG ; Chu-Hang WANG ; Jia-Ning GUO ; Guang-Ji ZHANG ; Jian-Bo HUANG ; Tao JIANG
China Journal of Chinese Materia Medica 2025;50(12):3483-3488
The tumor microenvironment is a crucial factor in tumor occurrence and progression. The hypoxic microenvironment is widely present in tumor tissue and is a key endogenous factor accelerating tumor deterioration. The "blood stasis toxin" theory, as an emerging perspective in tumor research, is regarded as the unique "soil" in tumor progression from the perspective of traditional Chinese medicine(TCM) due to its dynamic evolution mechanism, which closely resembles the formation of the hypoxic microenvironment. Scientifically integrating TCM theories with the biological characteristics of tumors and exploring precise syndrome differentiation and treatment strategies are key to achieving comprehensive tumor prevention and control. This article focused on the hypoxic microenvironment of the tumor, elucidating its formation mechanisms and evolutionary processes and carefully analyzing the internal relationship between the "blood stasis toxin" theory and the hypoxic microenvironment. Additionally, it explored the interaction among blood stasis, toxic pathogens, and hypoxic environment and proposed micro-level prevention and treatment strategies targeting the hypoxic microenvironment based on the "blood stasis toxin" theory, aiming to provide TCM-based theoretical support and therapeutic approaches for precise regulation of the hypoxic microenvironment.
Humans
;
Tumor Microenvironment/drug effects*
;
Neoplasms/therapy*
;
Animals
;
Medicine, Chinese Traditional
;
Disease Progression
;
Drugs, Chinese Herbal
6.Clinical study on the treatment of traumatic osteomyelitis of the upper tibia by membrane-induced technique combined with gastrocnemius muscle flap transposition.
Yi-Yang LIU ; Yi-Hang LU ; Qiong-Lin CHEN ; Bing-Yuan LIN ; Hai-Yong REN ; Kai HUANG ; Yang ZHANG ; Qiao-Feng GUO
China Journal of Orthopaedics and Traumatology 2025;38(9):937-944
OBJECTIVE:
To explore clinical efficacy of membrane-induced technique combined with gastrocnemius muscle flap transposition in treating traumatic osteomyelitis of the upper tibia.
METHODS:
A retrospective analysis was conducted on 7 patients with traumatic osteomyelitis of the upper tibia who were treated with membrane-induced technique combined with gastrocnemius muscle flap transposition from January 2022 to December 2023. Among them, there were 4 males and 3 females; aged from 29 to 57 years old; 4 patients were treated after open fracture, 2 patients were treated after closed fracture, and 1 patient was treated after scalding; the courses of disease ranges from 2 weeks to 8 years; sinus tracts were present in all patients, and the lesion range of the tibia ranged from 5 to 9 cm. The results of deep tissue bacterial culture showed that 2 patients were negative, 3 patients were staphylococcus aureus, 1 patient was methicillin-resistant staphylococcus aureus, and 1 patient was pseudomonas aeruginosa and 1 patient was klebsiella pneumoniae. After debridement, the range of bone defect ranged from 8 to 12 cm, and the cortical defect accounted for approximately 30% of the circumference. The area of soft tissue defect ranged from 8.0 cm×2.0 cm to 10.0 cm×6.0 cm. At the first stage, vancomycin-loaded/meropenem/gentamicin-loaded bone cement was implanted. The gastrocnemius muscle flap was repositioned to cover the wound surface and free skin grafting was performed. After an interval of 7 to 10 weeks, the stageⅡsurgery was performed to remove bone cement. Autologous iliac bone mixed with vancomycin/gentamicin and calcium sulfate artificial bone was transplanted, and the wound was sutured. One patient retained the original internal plants, one patient removed the internal plants and replaced them with steel plate external fixation, one patient replaced the internal plants and added steel plate external fixation, and three patients were simply fixed with steel plate external fixation. One year after operation, the recovery of knee joint and ankle joint functions was evaluated by using Hospital for Special Surgery (HSS) knee joint score and Kofoed ankle joint function score respectively.
RESULTS:
All patients had their wounds closed simultaneously with bone cement implantation and healed well. All patients were followed up for 12 to 17 months after operation, and satisfactory bone healing was achieved at 6 months after stageⅡsurgery. Twelve months after operation, all patients had good bone healing without obvious limping was observed when walking. At 12 months after operation HSS knee joint score ranged from 93 to 100 points, and Kofoed ankle function score ranged from 96 to 100 points.
CONCLUSION
For traumatic osteomyelitis of the upper tibia, a staged treatment plan combining membrane-induced technique and gastrocnemius flap transposition on the basis of thorough debridement could safely cover the wound surface, effectively control bone infection and achieve satisfactory bone healing, without adverse effects on limb function.
Humans
;
Male
;
Female
;
Middle Aged
;
Osteomyelitis/surgery*
;
Adult
;
Surgical Flaps
;
Retrospective Studies
;
Tibia/injuries*
;
Muscle, Skeletal/surgery*
7.Design and Implementation of Non-Invasive Hemodynamic Monitoring System Based on Impedance Cardiogram Method.
Fuhao KANG ; Qi YIN ; Yanan LIU ; Lin HUANG ; Yan HANG ; Jilun YE ; Xu ZHANG
Chinese Journal of Medical Instrumentation 2025;49(1):80-88
Hemodynamic monitoring can reflect cardiac function and blood perfusion and is an indispensable monitoring method in clinical practice. Invasive hemodynamic monitoring methods represented by the thermodilution method are limited in their clinical application scope because they require vascular cannulation. Non-invasive hemodynamic monitoring has attracted extensive attention from medical companies and clinicians at home and abroad in recent years due to its advantages such as safety, non-invasiveness, continuous monitoring, simple operation, and low cost. This paper designs a non-invasive hemodynamic monitoring system based on the impedance cardiography, including hardware, algorithm, software design, and performance parameter evaluation. Among them, the hardware part mainly includes a differential high-frequency constant current source stimulation circuit, impedance cardiogram signal acquisition, and ECG signal acquisition circuit. Signal processing includes wave filtering, impedance cardiogram signal calibration, and ECG signal and impedance cardiogram signal feature point recognition. According to the collected impedance cardiogram and ECG signals, hemodynamic parameters such as heart rate (HR), stroke volume (SV), cardiac output (CO), stroke index (SI), cardiac index (CI), and cardiac contractility index (ICON) are calculated based on the Nyboer thoracic cylinder model. After testing, the key technical indicators of the system hardware are better than that of the relevant medical device standards. The system was used to collect impedance cardiogram and ECG signal data from 40 volunteers. The calculated HR, SV, and CO, three important hemodynamic indicators, were compared with the ICONCore non-invasive cardiac output monitor of OSYPKA Medical in Germany. Their Pearson correlation coefficients were 0.992 ( P<0.001), 0.948 ( P<0.001), and 0.933 ( P<0.001), respectively, verifying that the designed system has high accuracy and reliability.
Cardiography, Impedance/methods*
;
Humans
;
Hemodynamic Monitoring/methods*
;
Equipment Design
;
Signal Processing, Computer-Assisted
;
Hemodynamics
;
Algorithms
;
Monitoring, Physiologic/methods*
;
Electrocardiography
8.Development of a Multimodal Transcranial Electrical Stimulation System with Integrated Four-Channel EEG Recordings.
Yan HANG ; Chaoyang WANG ; Qi YIN ; Yanan LIU ; Lin HUANG ; Jilun YE ; Xu ZHANG
Chinese Journal of Medical Instrumentation 2025;49(3):313-322
In order to improve the effect of transcranial electrical stimulation treatment and realize personalized treatment for patients with varying severity levels, this paper designed an integrated four-channel EEG recording multimodal transcranial electrical stimulation system. This system can conduct real-time monitoring on EEG and related characteristic analysis before stimulation, in stimulation, and after stimulation. This enables physicians and researchers to resolve real-time brain states, evaluate transcranial electrical stimulation effect, and then artificially adjust the stimulation parameters. After relevant testing and verification, the system can select four stimulation modes: TACS, TDCS, TPCS and TRNS, which can output the constant stimulation current of 0.03 mA accuracy in the range of ±2 mA and the stimulation frequency of low frequency of 0~4 kHz (precision of 0.01 Hz) and high frequency 50~100 kHz, which can obtain more accurate EEG signals under stimulation interference, demonstrating a good market application prospect.
Electroencephalography/methods*
;
Transcranial Direct Current Stimulation/instrumentation*
;
Humans
;
Equipment Design
9.Sixteen-Channel Multimodal High-Precision Transcranial Electrical Stimulation System Development.
Yan HANG ; Qi YIN ; Lin HUANG ; Fuhao KANG ; Yanan LIU ; Jilun YE ; Xu ZHANG
Chinese Journal of Medical Instrumentation 2025;49(4):435-443
This paper introduces a 16-channel multimodal high-precision transcranial electrical stimulation system specifically for non-invasive brain stimulation. This system added TMCS mixed four traditional stimulation modes with TACS, TDCS, TPCS and TRNS. By designing a compensated high-precision constant current source, the constant stimulation current with an accuracy of 0.03 mA in the range of ±2 mA and the stimulation frequency of 50~200 kHz with low frequency of 0~4 kHz (high frequency of 0.1 Hz) are realized. In TACS stimulation mode, there are five adjustable wave forms: triangular wave, sine wave, sawtooth wave, square wave and mixed wave. The system has dual closed-loop control overcurrent detection and simultaneous real-time electrode contact impedance detection. After relevant tests and verification, the system has good stimulation accuracy, high safety and reliability. Compared with the existing products at home and abroad, it features lower cost, richer stimulation mode and waveforms, demonstrating a certain market application value.
Transcranial Direct Current Stimulation/instrumentation*
;
Equipment Design
;
Humans
10.The cutting-edge progress of novel biomedicines in ovulatory dysfunction therapy.
Xuzhi LIANG ; Shiyu ZHANG ; Dahai LI ; Hao LIANG ; Yueping YAO ; Xiuhong XIA ; Hang YU ; Mingyang JIANG ; Ying YANG ; Ming GAO ; Lin LIAO ; Jiangtao FAN
Acta Pharmaceutica Sinica B 2025;15(10):5145-5166
Ovulatory dysfunction (OD) is one of the main causes of infertility in women of childbearing age, which not only affects their reproductive ability, but also physical and mental health. Traditional treatment strategies have limited efficacies, and the emergence of biomedicines provides a promising alternative solution via the strategies of combining engineered design with modern advanced technology. This review explores the pathophysiological characteristics and related induction mechanisms of OD, and evaluates the current cutting-edge advances in its treatments. It emphasizes the potentials of biomedicines strategies such as hydrogels, nanoparticles and extracellular vesicles in improving therapeutic precision and efficacy. By mimicking natural physiological processes, and achieving controlled drug release, these advanced drug carriers are expected to address the challenges in ovarian microenvironment reprogramming, tissue repair, and metabolic and immune regulation. Despite the promising progress, there are still challenges in terms of biomedical complexity, differences between animal models and human physiology, and the demand for intelligent drug carriers in the therapy of OD. Future researches are mainly dedicated to developing precise personalized biomedicines in OD therapy through interdisciplinary collaboration, promoting the development of reproductive regenerative medicine.

Result Analysis
Print
Save
E-mail