1.Hippocampal neuroinflammation and neuronal injury in the acute phase of pentylenetetrazol induced epilepsy mouse model
Linyu ZHI ; Wanruo HAN ; WANG BENJAMIN HONGYE ; Guoxiang WANG ; Xu LIU
Chinese Journal of Clinical Medicine 2025;32(2):238-247
Objective To investigate the activation of microglia and astrocytes, the secretion of pro-inflammatory factors, and the survival of neurons in the hippocampus of mice with acute seizures induced by pentylenetetrazol (PTZ) 24 hours after the onset of seizures. Methods Adult male C57BL/6 mice were randomly assigned to the control group and the PTZ-induced acute epileptic seizure group using random numbers, with 28 mice in each group. The activation status of microglia and astrocytes in the CA1 region of the hippocampus was evaluated by immunofluorescence 24 hours after the onset of seizures. RNA was extracted from the hippocampal tissue to detect the expression level of inflammatory factor mRNA, and HE staining was used to assess the survival of neurons in the hippocampus. Results Twenty-four hours after PTZ-induced acute seizures in mice, the numbers of activated Iba1+ microglia (55.72±4.29 vs 35.71±9.66, P<0.001) and GFAP+ astrocytes (51.61±8.21 vs 37.64±5.27, P<0.01) in the CA1 region were significantly increased compared with the control group; the proportion of M1 microglia was significantly increased (0.58±0.02 vs 0.35±0.08, P<
2.Intelligent handheld ultrasound improving the ability of non-expert general practitioners in carotid examinations for community populations: a prospective and parallel controlled trial
Pei SUN ; Hong HAN ; Yi-Kang SUN ; Xi WANG ; Xiao-Chuan LIU ; Bo-Yang ZHOU ; Li-Fan WANG ; Ya-Qin ZHANG ; Zhi-Gang PAN ; Bei-Jian HUANG ; Hui-Xiong XU ; Chong-Ke ZHAO
Ultrasonography 2025;44(2):112-123
Purpose:
The aim of this study was to investigate the feasibility of an intelligent handheld ultrasound (US) device for assisting non-expert general practitioners (GPs) in detecting carotid plaques (CPs) in community populations.
Methods:
This prospective parallel controlled trial recruited 111 consecutive community residents. All of them underwent examinations by non-expert GPs and specialist doctors using handheld US devices (setting A, setting B, and setting C). The results of setting C with specialist doctors were considered the gold standard. Carotid intima-media thickness (CIMT) and the features of CPs were measured and recorded. The diagnostic performance of GPs in distinguishing CPs was evaluated using a receiver operating characteristic curve. Inter-observer agreement was compared using the intragroup correlation coefficient (ICC). Questionnaires were completed to evaluate clinical benefits.
Results:
Among the 111 community residents, 80, 96, and 112 CPs were detected in settings A, B, and C, respectively. Setting B exhibited better diagnostic performance than setting A for detecting CPs (area under the curve, 0.856 vs. 0.749; P<0.01). Setting B had better consistency with setting C than setting A in CIMT measurement and the assessment of CPs (ICC, 0.731 to 0.923). Moreover, measurements in setting B required less time than the other two settings (44.59 seconds vs. 108.87 seconds vs. 126.13 seconds, both P<0.01).
Conclusion
Using an intelligent handheld US device, GPs can perform CP screening and achieve a diagnostic capability comparable to that of specialist doctors.
3.Intelligent handheld ultrasound improving the ability of non-expert general practitioners in carotid examinations for community populations: a prospective and parallel controlled trial
Pei SUN ; Hong HAN ; Yi-Kang SUN ; Xi WANG ; Xiao-Chuan LIU ; Bo-Yang ZHOU ; Li-Fan WANG ; Ya-Qin ZHANG ; Zhi-Gang PAN ; Bei-Jian HUANG ; Hui-Xiong XU ; Chong-Ke ZHAO
Ultrasonography 2025;44(2):112-123
Purpose:
The aim of this study was to investigate the feasibility of an intelligent handheld ultrasound (US) device for assisting non-expert general practitioners (GPs) in detecting carotid plaques (CPs) in community populations.
Methods:
This prospective parallel controlled trial recruited 111 consecutive community residents. All of them underwent examinations by non-expert GPs and specialist doctors using handheld US devices (setting A, setting B, and setting C). The results of setting C with specialist doctors were considered the gold standard. Carotid intima-media thickness (CIMT) and the features of CPs were measured and recorded. The diagnostic performance of GPs in distinguishing CPs was evaluated using a receiver operating characteristic curve. Inter-observer agreement was compared using the intragroup correlation coefficient (ICC). Questionnaires were completed to evaluate clinical benefits.
Results:
Among the 111 community residents, 80, 96, and 112 CPs were detected in settings A, B, and C, respectively. Setting B exhibited better diagnostic performance than setting A for detecting CPs (area under the curve, 0.856 vs. 0.749; P<0.01). Setting B had better consistency with setting C than setting A in CIMT measurement and the assessment of CPs (ICC, 0.731 to 0.923). Moreover, measurements in setting B required less time than the other two settings (44.59 seconds vs. 108.87 seconds vs. 126.13 seconds, both P<0.01).
Conclusion
Using an intelligent handheld US device, GPs can perform CP screening and achieve a diagnostic capability comparable to that of specialist doctors.
4.Intelligent handheld ultrasound improving the ability of non-expert general practitioners in carotid examinations for community populations: a prospective and parallel controlled trial
Pei SUN ; Hong HAN ; Yi-Kang SUN ; Xi WANG ; Xiao-Chuan LIU ; Bo-Yang ZHOU ; Li-Fan WANG ; Ya-Qin ZHANG ; Zhi-Gang PAN ; Bei-Jian HUANG ; Hui-Xiong XU ; Chong-Ke ZHAO
Ultrasonography 2025;44(2):112-123
Purpose:
The aim of this study was to investigate the feasibility of an intelligent handheld ultrasound (US) device for assisting non-expert general practitioners (GPs) in detecting carotid plaques (CPs) in community populations.
Methods:
This prospective parallel controlled trial recruited 111 consecutive community residents. All of them underwent examinations by non-expert GPs and specialist doctors using handheld US devices (setting A, setting B, and setting C). The results of setting C with specialist doctors were considered the gold standard. Carotid intima-media thickness (CIMT) and the features of CPs were measured and recorded. The diagnostic performance of GPs in distinguishing CPs was evaluated using a receiver operating characteristic curve. Inter-observer agreement was compared using the intragroup correlation coefficient (ICC). Questionnaires were completed to evaluate clinical benefits.
Results:
Among the 111 community residents, 80, 96, and 112 CPs were detected in settings A, B, and C, respectively. Setting B exhibited better diagnostic performance than setting A for detecting CPs (area under the curve, 0.856 vs. 0.749; P<0.01). Setting B had better consistency with setting C than setting A in CIMT measurement and the assessment of CPs (ICC, 0.731 to 0.923). Moreover, measurements in setting B required less time than the other two settings (44.59 seconds vs. 108.87 seconds vs. 126.13 seconds, both P<0.01).
Conclusion
Using an intelligent handheld US device, GPs can perform CP screening and achieve a diagnostic capability comparable to that of specialist doctors.
5.Progress on antisense oligonucleotide in the field of antibacterial therapy
Jia LI ; Xiao-lu HAN ; Shi-yu SONG ; Jin-tao LIN ; Zhi-qiang TANG ; Zeng-ming WANG ; Liang XU ; Ai-ping ZHENG
Acta Pharmaceutica Sinica 2025;60(2):337-347
With the widespread use of antibiotics, drug-resistant bacterial infections have become a significant threat to human health. Finding new antibacterial strategies that can effectively control drug-resistant bacterial infections has become an urgent task. Unlike small molecule drugs that target bacterial proteins, antisense oligonucleotide (ASO) can target genes related to bacterial resistance, pathogenesis, growth, reproduction and biofilm formation. By regulating the expression of these genes, ASO can inhibit or kill bacteria, providing a novel approach for the development of antibacterial drugs. To overcome the challenge of delivering antisense oligonucleotide into bacterial cells, various drug delivery systems have been applied in this field, including cell-penetrating peptides, lipid nanoparticles and inorganic nanoparticles, which have injected new momentum into the development of antisense oligonucleotide in the antibacterial realm. This review summarizes the current development of small nucleic acid drugs, the antibacterial mechanisms, targets, sequences and delivery vectors of antisense oligonucleotide, providing a reference for the research and development of antisense oligonucleotide in the treatment of bacterial infections.
6.Intelligent handheld ultrasound improving the ability of non-expert general practitioners in carotid examinations for community populations: a prospective and parallel controlled trial
Pei SUN ; Hong HAN ; Yi-Kang SUN ; Xi WANG ; Xiao-Chuan LIU ; Bo-Yang ZHOU ; Li-Fan WANG ; Ya-Qin ZHANG ; Zhi-Gang PAN ; Bei-Jian HUANG ; Hui-Xiong XU ; Chong-Ke ZHAO
Ultrasonography 2025;44(2):112-123
Purpose:
The aim of this study was to investigate the feasibility of an intelligent handheld ultrasound (US) device for assisting non-expert general practitioners (GPs) in detecting carotid plaques (CPs) in community populations.
Methods:
This prospective parallel controlled trial recruited 111 consecutive community residents. All of them underwent examinations by non-expert GPs and specialist doctors using handheld US devices (setting A, setting B, and setting C). The results of setting C with specialist doctors were considered the gold standard. Carotid intima-media thickness (CIMT) and the features of CPs were measured and recorded. The diagnostic performance of GPs in distinguishing CPs was evaluated using a receiver operating characteristic curve. Inter-observer agreement was compared using the intragroup correlation coefficient (ICC). Questionnaires were completed to evaluate clinical benefits.
Results:
Among the 111 community residents, 80, 96, and 112 CPs were detected in settings A, B, and C, respectively. Setting B exhibited better diagnostic performance than setting A for detecting CPs (area under the curve, 0.856 vs. 0.749; P<0.01). Setting B had better consistency with setting C than setting A in CIMT measurement and the assessment of CPs (ICC, 0.731 to 0.923). Moreover, measurements in setting B required less time than the other two settings (44.59 seconds vs. 108.87 seconds vs. 126.13 seconds, both P<0.01).
Conclusion
Using an intelligent handheld US device, GPs can perform CP screening and achieve a diagnostic capability comparable to that of specialist doctors.
7.Intelligent handheld ultrasound improving the ability of non-expert general practitioners in carotid examinations for community populations: a prospective and parallel controlled trial
Pei SUN ; Hong HAN ; Yi-Kang SUN ; Xi WANG ; Xiao-Chuan LIU ; Bo-Yang ZHOU ; Li-Fan WANG ; Ya-Qin ZHANG ; Zhi-Gang PAN ; Bei-Jian HUANG ; Hui-Xiong XU ; Chong-Ke ZHAO
Ultrasonography 2025;44(2):112-123
Purpose:
The aim of this study was to investigate the feasibility of an intelligent handheld ultrasound (US) device for assisting non-expert general practitioners (GPs) in detecting carotid plaques (CPs) in community populations.
Methods:
This prospective parallel controlled trial recruited 111 consecutive community residents. All of them underwent examinations by non-expert GPs and specialist doctors using handheld US devices (setting A, setting B, and setting C). The results of setting C with specialist doctors were considered the gold standard. Carotid intima-media thickness (CIMT) and the features of CPs were measured and recorded. The diagnostic performance of GPs in distinguishing CPs was evaluated using a receiver operating characteristic curve. Inter-observer agreement was compared using the intragroup correlation coefficient (ICC). Questionnaires were completed to evaluate clinical benefits.
Results:
Among the 111 community residents, 80, 96, and 112 CPs were detected in settings A, B, and C, respectively. Setting B exhibited better diagnostic performance than setting A for detecting CPs (area under the curve, 0.856 vs. 0.749; P<0.01). Setting B had better consistency with setting C than setting A in CIMT measurement and the assessment of CPs (ICC, 0.731 to 0.923). Moreover, measurements in setting B required less time than the other two settings (44.59 seconds vs. 108.87 seconds vs. 126.13 seconds, both P<0.01).
Conclusion
Using an intelligent handheld US device, GPs can perform CP screening and achieve a diagnostic capability comparable to that of specialist doctors.
8.The Invariant Neural Representation of Neurons in Pigeon’s Ventrolateral Mesopallium to Stereoscopic Shadow Shapes
Xiao-Ke NIU ; Meng-Bo ZHANG ; Yan-Yan PENG ; Yong-Hao HAN ; Qing-Yu WANG ; Yi-Xin DENG ; Zhi-Hui LI
Progress in Biochemistry and Biophysics 2025;52(10):2614-2626
ObjectiveIn nature, objects cast shadows due to illumination, forming the basis for stereoscopic perception. Birds need to adapt to changes in lighting (meaning they can recognize stereoscopic shapes even when shadows look different) to accurately perceive different three-dimensional forms. However, how neurons in the key visual brain area in birds handle these lighting changes remains largely unreported. In this study, pigeons (Columba livia) were used as subjects to investigate how neurons in pigeon’s ventrolateral mesopallium (MVL) represent stereoscopic shapes consistently, regardless of changes in lighting. MethodsVisual cognitive training combined with neuronal recording was employed. Pigeons were first trained to discriminate different stereoscopic shapes (concave/convex). We then tested whether and how light luminance angle and surface appearance of the stereoscopic shapes affect their recognition accuracy, and further verify whether the results rely on specify luminance color. Simultaneously, neuronal firing activity of neurons was recorded with multiple electrode array implanted from the MVL during the presentation of difference shapes. The response was finally analyzed how selectively they responded to different stereoscopic shapes and whether their selectivity was affected by the changes of luminance condition (like lighting angle) or surface look. Support vector machine (SVM) models were trained on neuronal population responses recorded under one condition (light luminance angle of 45°) and used to decode responses under other conditions (light luminance angle of 135°, 225°, 315°) to verify the invariance of responses to different luminance conditions. ResultsBehavioral results from 6 pigeons consistently showed that the pigeons could reliably identify the core 3D shape (over 80% accuracy), and this ability wasn’t affected by changes in light angle or surface appearance. Statistical analysis of 88 recorded neurons from 6 pigeons revealed that 83% (73/88) showed strong selectivity for specific 3D shapes (selectivity index>0.3), and responses to convex shapes were consistently stronger than to concave shapes. These shape-selective responses remained stable across changes in light angle and surface appearance. Neural patterns were consistent under both blue and orange lighting. The decoding accuracy achieves above 70%, suggesting stable responses under different conditions (e.g., different lighting angles or surface appearance). ConclusionNeurons in the pigeon MVL maintain a consistent neural encoding pattern for different stereoscopic shapes, unaffected by illumination or surface appearance. This ensures stable object recognition by pigeons in changing visual environments. Our findings provide new physiological evidence for understanding how birds achieve stable perception (“invariant neural representations”) while coping with variations in the visual field.
9.Microecological analysis of tongue coating microbiota in patients with pancreatic neuroendocrine neoplasms
Zhi WANG ; Han WU ; Chao LI ; Zhenyu ZHANG ; Zongdan JIANG
Chinese Journal of Pancreatology 2024;24(5):345-349
Objective:To explore the characteristics of tongue microbiota in patients with pancreatic neuroendocrine neoplasms (pNENs).Methods:The tongue coating microbiota of 15 pathologically diagnosed pNENs patients from Nanjing First Hospital between November 2019 and July 2020 were selected, and 15 healthy volunteers were recruited as the healthy control group. Oral pharyngeal swab was used to scrape the tongue coating, and DNA extraction and detection of the tongue coating samples from two groups were performed, 16S rRNA gene high-volume sequencing was applied to analyze the differences on the microbiome. The α and β diversity differences were tested by Chao1 index, Shannon index and principal component analysis, respectively. The inter-group analysis of variances was used to compare the species composition of tongue coating microbiota at the phylum, genus, and species levels between two groups. Differences in dominant bacterial genera between two groups were analyzed by using linear discriminant analysis (LEfSe).Results:Compared with the healthy control group, the types and quantities of tongue coating microbiota in pNENs patients were similar, but the structural composition was significantly different. At the phylum level, Proteobacteria, Bacteroides, Firmicutes, Fusobacteria and Actinobacteria were mainly present in both two groups, but Firmicutes and Actinobacteria were relatively more in pNENs patients compared with healthy groupy with more Bacteroides. The dominant genera of tongue coating microbiota in pNENs patients and healthy individuals included Haemophilus, Neisseria, and Prevotella_7, Streptococcus, Fusobacterium, Alloprevotella and Veillonella. The relative abundance of Fusobacterium, Alloprevotella, Prevotella and Aggregatibacter in the healthy control group's tongue coating microbiota was higher, while Veillonella had a higher relative abundance in the tongue coating microbiota of pNENs patients. LEfSe results showed that the dominant microflora were Actinobacteria at phylum level and Roseburia at genera level in pNENs patients, which were Aggregatibacter at genera level in healthy group. Conclusions:The distribution of tongue coating microbiota in pNENs patients are different from those in healthy people. The increase in abundance of Actinobacteria and Roseburia, as well as the decrease in abundance of Aggregatibacter, may have potential implications for the diagnosis of pNENs.
10.Artificial intelligence and radiomics-assisted X-ray in diagnosis of lumbar osteoporotic vertebral compression fractures
Kang-En HAN ; Hong-Wei WANG ; Hong-Wen GU ; Yin HU ; Shi-Lei TANG ; Zhi-Hao ZHANG ; Hai-Long YU
Journal of Regional Anatomy and Operative Surgery 2024;33(7):579-583
Objective To explore the efficiency of artificial intelligence and radiomics-assisted X-ray in diagnosis of lumbar osteoporotic vertebral compression fractures(OVCF).Methods The clinical data of 455 patients diagnosed as lumbar OVCF by MRI in our hospital were selected.The patients were divided into the training group(n=364)and the validation group(n=91),X-ray films were extracted,the image delineation,feature extraction and data analysis were carried out,and the artificial intelligence radiomics deep learning was applied to establish a diagnostic model for OVCF.After verifying the effectiveness of the model by receiver operating characteristic(ROC)curve,area under the curve(AUC),calibration curve,and decision curve analysis(DCA),the efficiencies of manual reading,model reading,and model-assisted manual reading of X-ray in the early diagnosis of OVCF were compared.Results The ROC curve,AUC and calibration curve proved that the model had good discrimination and calibration,and excellent diagnostic performance.DCA demonstrated that the model had a higher clinical net benefit.The diagnostic efficiency of the manual reading group:the accuracy rate was 0.89,the recall rate was 0.62.The diagnostic efficiency of the model reading group:the accuracy rate was 0.93,the recall rate was 0.86,the model diagnosis showed good predictive performance,which was significantly better than the manual reading group.The diagnostic efficiency of the model-assisted manual reading group:the accuracy rate was 0.92,the recall rate was 0.72,and the recall rate of the model-assisted manual reading group was higher than that of the manual reading group,but lower than that of the model reading group,indicating the superiority of the model diagnosis.Conclusion The diagnostic model established based on artificial intelligence and radiomics in this study has reached an ideal level of efficacy,with better diagnostic efficacy compared with manual reading,and can be used to assist X-ray in the early diagnosis of OVCF.

Result Analysis
Print
Save
E-mail