1.Treatment Principles and Paradigm of Diabetic Microvascular Complications Responding Specifically to Traditional Chinese Medicine
Anzhu WANG ; Xing HANG ; Lili ZHANG ; Xiaorong ZHU ; Dantao PENG ; Ying FAN ; Min ZHANG ; Wenliang LYU ; Guoliang ZHANG ; Xiai WU ; Jia MI ; Jiaxing TIAN ; Wei ZHANG ; Han WANG ; Yuan XU ; .LI PINGPING ; Zhenyu WANG ; Ying ZHANG ; Dongmei SUN ; Yi HE ; Mei MO ; Xiaoxiao ZHANG ; Linhua ZHAO
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(5):272-279
To explore the advantages of traditional Chinese medicine (TCM) and integrative TCM-Western medicine approaches in the treatment of diabetic microvascular complications (DMC), refine key pathophysiological insights and treatment principles, and promote academic innovation and strategic research planning in the prevention and treatment of DMC. The 38th session of the Expert Salon on Diseases Responding Specifically to Traditional Chinese Medicine, hosted by the China Association of Chinese Medicine, was held in Beijing, 2024. Experts in TCM, Western medicine, and interdisciplinary fields convened to conduct a systematic discussion on the pathogenesis, diagnostic and treatment challenges, and mechanism research related to DMC, ultimately forming a consensus on key directions. Four major research recommendations were proposed. The first is addressing clinical bottlenecks in the prevention and control of DMC by optimizing TCM-based evidence evaluation systems. The second is refining TCM core pathogenesis across DMC stages and establishing corresponding "disease-pattern-time" framework. The third is innovating mechanism research strategies to facilitate a shift from holistic regulation to targeted intervention in TCM. The fourth is advancing interdisciplinary collaboration to enhance the role of TCM in new drug development, research prioritization, and guideline formulation. TCM and integrative approaches offer distinct advantages in managing DMC. With a focus on the diseases responding specifically to TCM, strengthening evidence-based support and mechanism interpretation and promoting the integration of clinical care and research innovation will provide strong momentum for the modernization of TCM and the advancement of national health strategies.
2.Expert consensus on neoadjuvant PD-1 inhibitors for locally advanced oral squamous cell carcinoma (2026)
LI Jinsong ; LIAO Guiqing ; LI Longjiang ; ZHANG Chenping ; SHANG Chenping ; ZHANG Jie ; ZHONG Laiping ; LIU Bing ; CHEN Gang ; WEI Jianhua ; JI Tong ; LI Chunjie ; LIN Lisong ; REN Guoxin ; LI Yi ; SHANG Wei ; HAN Bing ; JIANG Canhua ; ZHANG Sheng ; SONG Ming ; LIU Xuekui ; WANG Anxun ; LIU Shuguang ; CHEN Zhanhong ; WANG Youyuan ; LIN Zhaoyu ; LI Haigang ; DUAN Xiaohui ; YE Ling ; ZHENG Jun ; WANG Jun ; LV Xiaozhi ; ZHU Lijun ; CAO Haotian
Journal of Prevention and Treatment for Stomatological Diseases 2026;34(2):105-118
Oral squamous cell carcinoma (OSCC) is a common head and neck malignancy. Approximately 50% to 60% of patients with OSCC are diagnosed at a locally advanced stage (clinical staging III-IVa). Even with comprehensive and sequential treatment primarily based on surgery, the 5-year overall survival rate remains below 50%, and patients often suffer from postoperative functional impairments such as difficulties with speaking and swallowing. Programmed death receptor-1 (PD-1) inhibitors are increasingly used in the neoadjuvant treatment of locally advanced OSCC and have shown encouraging efficacy. However, clinical practice still faces key challenges, including the definition of indications, optimization of combination regimens, and standards for efficacy evaluation. Based on the latest research advances worldwide and the clinical experience of the expert group, this expert consensus systematically evaluates the application of PD-1 inhibitors in the neoadjuvant treatment of locally advanced OSCC, covering combination strategies, treatment cycles and surgical timing, efficacy assessment, use of biomarkers, management of special populations and immune related adverse events, principles for immunotherapy rechallenge, and function preservation strategies. After multiple rounds of panel discussion and through anonymous voting using the Delphi method, the following consensus statements have been formulated: 1) Neoadjuvant therapy with PD-1 inhibitors can be used preoperatively in patients with locally advanced OSCC. The preferred regimen is a PD-1 inhibitor combined with platinum based chemotherapy, administered for 2-3 cycles. 2) During the efficacy evaluation of neoadjuvant therapy, radiographic assessment should follow the dual criteria of Response Evaluation Criteria in Solid Tumors (RECIST) version 1.1 and immune RECIST (iRECIST). After surgery, systematic pathological evaluation of both the primary lesion and regional lymph nodes is required. For combination chemotherapy regimens, PD-L1 expression and combined positive score need not be used as mandatory inclusion or exclusion criteria. 3) For special populations such as the elderly (≥ 70 years), individuals with stable HIV viral load, and carriers of chronic HBV/HCV, PD-1 inhibitors may be used cautiously under the guidance of a multidisciplinary team (MDT), with close monitoring for adverse events. 4) For patients with a poor response to neoadjuvant therapy, continuation of the original treatment regimen is not recommended; the subsequent treatment plan should be adjusted promptly after MDT assessment. Organ transplant recipients and patients with active autoimmune diseases are not recommended to receive neoadjuvant PD-1 inhibitor therapy due to the high risk of immune related activation. Rechallenge is generally not advised for patients who have experienced high risk immune related adverse events such as immune mediated myocarditis, neurotoxicity, or pneumonitis. 5) For patients with a good pathological response, individualized de escalation surgery and function preservation strategies can be explored. This consensus aims to promote the standardized, safe, and precise application of neoadjuvant PD-1 inhibitor strategies in the management of locally advanced OSCC patients.
3.Clinical practice guidelines for intraoperative cell salvage in patients with malignant tumors
Changtai ZHU ; Ling LI ; Zhiqiang LI ; Xinjian WAN ; Shiyao CHEN ; Jian PAN ; Yi ZHANG ; Xiang REN ; Kun HAN ; Feng ZOU ; Aiqing WEN ; Ruiming RONG ; Rong XIA ; Baohua QIAN ; Xin MA
Chinese Journal of Blood Transfusion 2025;38(2):149-167
Intraoperative cell salvage (IOCS) has been widely applied as an important blood conservation measure in surgical operations. However, there is currently a lack of clinical practice guidelines for the implementation of IOCS in patients with malignant tumors. This report aims to provide clinicians with recommendations on the use of IOCS in patients with malignant tumors based on the review and assessment of the existed evidence. Data were derived from databases such as PubMed, Embase, the Cochrane Library and Wanfang. The guideline development team formulated recommendations based on the quality of evidence, balance of benefits and harms, patient preferences, and health economic assessments. This study constructed seven major clinical questions. The main conclusions of this guideline are as follows: 1) Compared with no perioperative allogeneic blood transfusion (NPABT), perioperative allogeneic blood transfusion (PABT) leads to a more unfavorable prognosis in cancer patients (Recommended); 2) Compared with the transfusion of allogeneic blood or no transfusion, IOCS does not lead to a more unfavorable prognosis in cancer patients (Recommended); 3) The implementation of IOCS in cancer patients is economically feasible (Recommended); 4) Leukocyte depletion filters (LDF) should be used when implementing IOCS in cancer patients (Strongly Recommended); 5) Irradiation treatment of autologous blood to be reinfused can be used when implementing IOCS in cancer patients (Recommended); 6) A careful assessment of the condition of cancer patients (meeting indications and excluding contraindications) should be conducted before implementing IOCS (Strongly Recommended); 7) Informed consent from cancer patients should be obtained when implementing IOCS, with a thorough pre-assessment of the patient's condition and the likelihood of blood loss, adherence to standardized internally audited management procedures, meeting corresponding conditions, and obtaining corresponding qualifications (Recommended). In brief, current evidence indicates that IOCS can be implemented for some malignant tumor patients who need allogeneic blood transfusion after physician full evaluation, and LDF or irradiation should be used during the implementation process.
4.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
Objective:
To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer.
Materials and Methods:
A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs.
Results:
All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027).
Conclusion
The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer.
5.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
Objective:
To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer.
Materials and Methods:
A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs.
Results:
All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027).
Conclusion
The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer.
6.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
Objective:
To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer.
Materials and Methods:
A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs.
Results:
All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027).
Conclusion
The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer.
7.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
Objective:
To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer.
Materials and Methods:
A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs.
Results:
All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027).
Conclusion
The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer.
8.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
Objective:
To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer.
Materials and Methods:
A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs.
Results:
All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027).
Conclusion
The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer.
9.Hypoxia Exercise Mediates The miR-27/PPARγ Pathway to Improve Lipid Metabolism in Obese Rats at Target Genes and Protein Levels
Wei KONG ; Jie SHAO ; Teng ZHAI ; Qian CHENG ; Fang-Zheng HAN ; Yi QU ; Lei ZHU
Progress in Biochemistry and Biophysics 2025;52(6):1386-1400
ObjectiveTo explore the sequential effects of hypoxic exercising on miR-27/PPARγ and lipid metabolism target gene and protein expression levels in the obesity rats’ liver. Methods13-week-old male diet-induced obesity rats were randomly divided into three groups (n=10): normal oxygen concentration quiet group (N), hypoxia quiet group (H), hypoxic exercise group (HE). Exercise training on the horizontal animal treadmill for 1 h/d, 5 d/week for a total of 4 week, and the intensity of horizontal treadmill training was 20 m/min (hypoxic concentration was 13.6%). Comparison of the weights of perirenal fat and epididymal fat in rats across different groups and calculation of Lee’s index based on body weight and body length of rats in each group were done. And the serum concentrations of total cholesterol (TC), triglyceride (TG), low density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C) levels were detected. RT-PCR and Western Blot were used to detect the levels of miR-27, PPARγ, CYP7A1 and CD36. ResultsHypoxic exercise decreased the expression levels of miR-27 in the obese rats’ liver, however, the expression level of PPARγ was gradually increased. The expression levels of miR-27 in HE group were significantly lower than N group (P<0.05). The expression levels of PPARγ mRNA in N group were significantly lower than H group (P<0.05), especially lower than HE group (P<0.01). The protein expression of PPARγ protein in N group was significantly lower than that other groups (P<0.01). The expression of lipid metabolism-related genes and proteins increased in the obese rats’ liver. The expression of CYP7A1 mRNA in N group was significantly lower than H group (P<0.05), especially lower than HE group (P<0.01). The expression of CYP7A1 protein in the obese rats’ liver in N group was extremely lower than H group and HE group (P<0.01). The protein expression of CD36 in N group was significantly lower than that in HE group (P<0.05). Hypoxia exercise improved the related physiological and biochemical indexes of lipid metabolism disorder. The perirenal fat weight of obese rats in HE group was extremely lower than N group and H group (P<0.01), and the perirenal fat weight in N group was significantly higher than H group (P<0.05). The epididymal fat weight in N group was significantly higher than H group (P<0.05), and extremely higher than HE group (P<0.01). The Lee’s index in HE group was extremely lower than N group and H group (P<0.01). The serum concentration of TC in obese rats in HE group was extremely lower than N group and H group (P<0.01). The serum concentration of TG in HE group was extremely lower than N group and H group (P<0.01). The serum concentration of LDL-C in N group was extremely higher than HE group (P<0.01). The serum concentration of HDL-C in N group was extremely lower than H group (P<0.01). ConclusionHypoxia and hypoxia exercise may negatively regulate the levels of PPARγ by inhibiting miR-27 in the obese rats’ liver, thereby affecting the expression of downstream target genes CYP7A1 and CD36, and promoting cholesterol, fatty acid oxidation and HDL-C transport in the liver, and ultimately the lipid levels in obese rats were improved. The effect of hypoxia exercise on improving blood lipid is better than simple hypoxia intervention.
10.Comprehensive Review on Rhodiola crenulata: Ethnopharmacology, Phytochemistry, Pharmacological Properties and Clinical Applications.
Rui ZHU ; Cui-Fen FANG ; Shu-Jing ZHANG ; Zhu HAN ; Ge-Hui ZHU ; Shang-Zuo CAI ; Cheng ZHENG ; Yu TANG ; Yi WANG
Chinese journal of integrative medicine 2025;31(8):752-759


Result Analysis
Print
Save
E-mail