1.Effect of Qingfei Shenshi Decoction (清肺渗湿汤) Combined with Western Medicine on Clinical Effectiveness and Immune Function for Patients with Bronchial Asthma of Heat Wheezing Syndrome
Ying SUN ; Haibo HU ; Na LIU ; Fengchan WANG ; Jinbao ZONG ; Ping HAN ; Peng LI ; Guojing ZHAO ; Haoran WANG ; Xuechao LU
Journal of Traditional Chinese Medicine 2026;67(1):38-44
ObjectiveTo observe the clinical effectiveness and safety of Qingfei Shenshi Decoction (清肺渗湿汤) combined with western medicine for patients with bronchial asthma of heat wheezing syndrome, and to explore its potential mechanism of action. MethodsEighty-six participants with bronchial asthma of heat wheezing syndrome were randomly divided into treatment group and control group, each group with 43 participants. The control group received conventional western medicine, and the treatment group was additionally administered Qingfei Shenshi Decoction orally on the basis of the control group, 1 dose per day. Both groups were treated for 14 days. The primary outcome measure was clinical effectiveness; secondary outcome measures included traditional Chinese medicine (TCM) syndrome score, asthma control test (ACT) score, pulmonary function indices such as forced expiratory volume in 1 second (FEV1), forced vital capacity (FVC), peak expiratory flow (PEF), serum inflammatory factor levels including interleukin-4 (IL-4), tumour necrosis factor-α (TNF-α), and high-sensitivity C-reactive protein (hs-CRP), and immune function indices including CD3+, CD4+, CD8+, CD4+/CD8+. All outcome measures were evaluated before and after treatment. Vital signs were monitored, and electrocardiography, blood routine, urine routine, liver function, and renal function tests were performed before and after treatment. Adverse events and reactions during the study were recorded. ResultsA total of 80 patients completed the trial with 40 in each group. The total clinical effective rate of the treatment group was 97.5% (39/40), which was significantly higher than that of the control group (85.0%, 34/40, P<0.05). After treatment, both groups showed decreased TCM syndrome scores, IL-4, TNF-α, hs-CRP, and CD8+ levels, as well as increased ACT scores, CD3+, CD4+, CD4+/CD8+, FEV1, FVC, and PEF levels (P<0.05 or P<0.01). Moreover, the improvements in these indices were more significant in the treatment group than in the control group (P<0.05 or P<0.01). No significant abnormalities in safety indicators were observed in either group, and no adverse events or reactions occurred. ConclusionQingfei Shenshi Decoction combined with conventional western medicine for patients with bronchial asthma of heat wheezing syndrome can effectively improve the clinical symptoms, pulmonary function, and clinical effectiveness, with good safety. Its mechanism may be related to reducing inflammatory factor levels and regulating T lymphocyte subsets to improve immune function.
2.Progress on antisense oligonucleotide in the field of antibacterial therapy
Jia LI ; Xiao-lu HAN ; Shi-yu SONG ; Jin-tao LIN ; Zhi-qiang TANG ; Zeng-ming WANG ; Liang XU ; Ai-ping ZHENG
Acta Pharmaceutica Sinica 2025;60(2):337-347
With the widespread use of antibiotics, drug-resistant bacterial infections have become a significant threat to human health. Finding new antibacterial strategies that can effectively control drug-resistant bacterial infections has become an urgent task. Unlike small molecule drugs that target bacterial proteins, antisense oligonucleotide (ASO) can target genes related to bacterial resistance, pathogenesis, growth, reproduction and biofilm formation. By regulating the expression of these genes, ASO can inhibit or kill bacteria, providing a novel approach for the development of antibacterial drugs. To overcome the challenge of delivering antisense oligonucleotide into bacterial cells, various drug delivery systems have been applied in this field, including cell-penetrating peptides, lipid nanoparticles and inorganic nanoparticles, which have injected new momentum into the development of antisense oligonucleotide in the antibacterial realm. This review summarizes the current development of small nucleic acid drugs, the antibacterial mechanisms, targets, sequences and delivery vectors of antisense oligonucleotide, providing a reference for the research and development of antisense oligonucleotide in the treatment of bacterial infections.
3.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
Objective:
To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer.
Materials and Methods:
A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs.
Results:
All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027).
Conclusion
The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer.
4.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
Objective:
To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer.
Materials and Methods:
A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs.
Results:
All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027).
Conclusion
The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer.
5.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
Objective:
To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer.
Materials and Methods:
A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs.
Results:
All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027).
Conclusion
The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer.
6.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
Objective:
To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer.
Materials and Methods:
A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs.
Results:
All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027).
Conclusion
The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer.
7.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
Objective:
To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer.
Materials and Methods:
A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs.
Results:
All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027).
Conclusion
The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer.
8.Chinese expert consensus on integrated case management by a multidisciplinary team in CAR-T cell therapy for lymphoma.
Sanfang TU ; Ping LI ; Heng MEI ; Yang LIU ; Yongxian HU ; Peng LIU ; Dehui ZOU ; Ting NIU ; Kailin XU ; Li WANG ; Jianmin YANG ; Mingfeng ZHAO ; Xiaojun HUANG ; Jianxiang WANG ; Yu HU ; Weili ZHAO ; Depei WU ; Jun MA ; Wenbin QIAN ; Weidong HAN ; Yuhua LI ; Aibin LIANG
Chinese Medical Journal 2025;138(16):1894-1896
9.Study on mechanism of Yourenji Capsules in improving osteoporosis based on network pharmacology and proteomics.
Yun-Hang GAO ; Han LI ; Jian-Liang LI ; Ling SONG ; Teng-Fei CHEN ; Hong-Ping HOU ; Bo PENG ; Peng LI ; Guang-Ping ZHANG
China Journal of Chinese Materia Medica 2025;50(2):515-526
This study aimed to explore the pharmacological mechanism of Yourenji Capsules(YRJ) in improving osteoporosis by combining network pharmacology and proteomics technologies. The SD rats were randomly divided into a blank control group and a 700 mg·kg~(-1) YRJ group. The rats were subjected to gavage administration with the corresponding drugs, and the blank serum, drug-containing serum, and YRJ samples were compared using ultra performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry(UPLC-Q-TOF-MS/MS) to analyze the main components absorbed into blood. Network pharmacology analysis was conducted based on the YRJ components absorbed into blood to obtain related targets of the components and target genes involved in osteoporosis, and Venn diagrams were used to identify the intersection of drug action targets and disease targets. The STRING database was used for protein-protein interaction(PPI) network analysis of potential target proteins to construct a PPI network. Gene Ontology(GO) functional enrichment and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment were performed using Enrichr to investigate the potential mechanism of action of YRJ. Ovariectomy(OVX) was performed to establish a rat model of osteoporosis, and the rats were divided into a sham group, a model group, and a 700 mg·kg~(-1) YRJ group. The rats were given the corresponding drugs by gavage. The femurs of the rats were subjected to label-free proteomics analysis to detect differentially expressed proteins, and GO functional enrichment and KEGG pathway enrichment analyses were performed on the differentially expressed proteins. With the help of network pharmacology and proteomics results, the mechanism by which YRJ improves osteoporosis was predicted. The analysis of the YRJ components absorbed into blood revealed 23 bioactive components of YRJ, and network pharmacology results indicated that key targets involved include tumor necrosis factor(TNF), tumor protein p53(TP53), protein kinase(AKT1), and matrix metalloproteinase 9(MMP9). These targets are mainly involved in osteoclast differentiation, estrogen signaling pathways, and nuclear factor-kappa B(NF-κB) signaling pathways. Additionally, the proteomics analysis highlighted important pathways such as peroxisome proliferator-activated receptor(PPAR) signaling pathways, mitogen-activated protein kinase(MAPK) signaling pathways, and β-alanine metabolism. The combined approaches of network pharmacology and proteomics have revealed that the mechanism by which YRJ improves osteoporosis may be closely related to the regulation of inflammation, osteoblast, and osteoclast metabolic pathways. The main pathways involved include the NF-κB signaling pathways, MAPK signaling pathways, and PPAR signaling pathways, among others.
Animals
;
Drugs, Chinese Herbal/administration & dosage*
;
Osteoporosis/metabolism*
;
Proteomics
;
Rats
;
Rats, Sprague-Dawley
;
Network Pharmacology
;
Female
;
Protein Interaction Maps/drug effects*
;
Capsules
;
Humans
;
Signal Transduction/drug effects*
10.Carbon footprint accounting of traditional Chinese medicine extracts based on life cycle assessment: a case study of mulberry leaf extract from an enterprise.
Zhi-Min CI ; Jian-Xiang OU ; Qiang YU ; Chuan ZHENG ; Zhao-Qing PEI ; Li-Ping QU ; Ming YANG ; Li HAN ; Ding-Kun ZHANG
China Journal of Chinese Materia Medica 2025;50(1):120-129
Under the background of carbon peaking and carbon neutrality goals, the Ministry of Ecology and Environment, together with 15 national ministries and commissions, has formulated the Implementation Plan on Establishing a Carbon Footprint Management System, and it is urgent for traditional Chinese medicine(TCM) pharmaceutical enterprises to carry out research on carbon footprint accounting methods of related products. Based on the life cycle assessment(LCA) theory, taking mulberry leaf extract produced by a certain enterprise as an example, this study analyzed the carbon footprint of TCM extracts during the life cycle. The results show that for every 1 kg of product produced, the carbon emissions from the stages of raw material acquisition, transportation, and extract production are-20.569, 1.205, and 173.577 kgCO_2eq(CO_2 equivalent), respectively. The carbon footprint of the product is 154.213 kgCO_2eq·kg~(-1). In addition, the carbon emission is the highest in the production stage, in which the consumption of ethanol solvents makes the greatest contribution to the carbon footprint, accounting for 25.71%, more than one-fourth of the total carbon footprint. The second contribution was from the treatment process of TCM residues, accounting for 19.67%, closely followed by wastewater treatment(17.71%), the consumption of hot steam(17.43%), and drinking water(16.90%). The consumption of electric power and packaging materials has a smaller carbon emission of 2.58%. In particular, the carbon emission caused by the consumption of packaging materials is only 0.04%, which is negligible. The results of the study are expected to provide a reference for TCM enterprises to carry out research on the carbon footprint of products, offer ideas for collaborative innovation in reducing pollution and carbon emissions throughout the entire industry chain of TCM, and develop new quality productivity of modern TCM industry based on green and low-carbon manufacturing.
Morus/chemistry*
;
Plant Leaves/chemistry*
;
Carbon Footprint
;
Drugs, Chinese Herbal/chemistry*
;
Plant Extracts/analysis*
;
Medicine, Chinese Traditional

Result Analysis
Print
Save
E-mail