1.Mechanism of Ferroptosis in Cerebral Ischemia-reperfusion and Interventional Mechanism of Huoxue Huayu Jiedu Prescription Based on "Blood Stasis and Toxin" Pathogenesis
Jiayue HAN ; Danyi PAN ; Jiaxuan XIAO ; Yuchen LIU ; Jiyong LIU ; Yidi ZENG ; Jinxia LI ; Caixing ZHENG ; Hua LI ; Wanghua LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(8):51-60
ObjectiveTo explore the material basis of the "interaction of blood stasis and toxin" mechanism in cerebral ischemia-reperfusion injury, as well as the protective role of Huoxue Huayu Jiedu prescription (HXHYJDF) against ferroptosis. MethodsSixty SPF-grade male SD rats were randomly divided into six groups: sham group, model group, deferoxamine (DFO) group (100 mg·kg-1), low-dose HXHYJDF group (4.52 g·kg-1), medium-dose HXHYJDF group (9.04 g·kg-1), and high-dose HXHYJDF group (18.07 g·kg-1), with ten rats in each group. Except for the sham group, the other groups were used to replicate the model of focal cerebral ischemia-reperfusion in the middle cerebral artery of rats by the reforming Longa method. Neurological function was assessed at 1st, 3rd, 5th, and 7th days post-reperfusion using the modified neurological severity scores (m-NSS). Brain tissue pathology and the morphology of mitochondria were observed using hematoxylin-eosin (HE) staining and transmission electron microscopy. The contents of malondialdehyde (MDA), glutathione (GSH), divalent iron ions (Fe2+), and reactive oxygen species (ROS) in the ischemic cerebral tissue were detected using enzyme-linked immunosorbent assay (ELISA). Immunohistochemistry and Western blot (WB) were used to detect the expression of iron death marker proteins glutathione peroxidase 4 (GPX4), ferroportin-1 (FPN1), transferrin receptor protein 1 (TfR1), and ferritin mitochondrial (FtMt) in brain tissue. ResultsCompared with the sham group, the mNSS score of the model group was significantly increased (P<0.01). HE staining showed that the number of neurons in the cortex of brain tissue was seriously reduced, and the intercellular space was widened. The nucleus was fragmented, and the cytoplasm was vacuolated. The results of transmission electron microscopy showed that the mitochondria in the cytoplasm contracted and rounded, and the mitochondrial cristae decreased. The matrix was lost and vacuolated, and the density of the mitochondrial bilayer membrane increased. The results of ELISA showed that the content of GSH decreased significantly (P<0.01), and the contents of MDA, Fe2+, and ROS increased significantly (P<0.01). The results of immunohistochemistry and WB showed that the expression of GPX4 and FPN1 proteins was significantly decreased (P<0.01), and the expression of FtMt and TfR1 proteins was significantly increased (P<0.01). Compared with those of the model group, the m-NSS scores of the high-dose and medium-dose HXHYJDF groups began to decrease on the 3rd and 5th days, respectively (P<0.05, P<0.01). The results of HE and transmission electron microscopy showed that the intervention of HXHYJDF improved the pathological changes of neurons and mitochondria. The results of ELISA showed that the content of GSH in the medium-dose and high-dose HXHYJDF groups increased significantly (P<0.01), and the contents of MDA, Fe2+, and ROS decreased significantly (P<0.05, P<0.01). The content of GSH in the low-dose HXHYJDF group increased significantly (P<0.01), and the contents of MDA and ROS decreased significantly (P<0.01). The results of immunohistochemistry showed that the expression of GPX4 and FPN1 in the high-dose HXHYJDF group increased significantly (P<0.01), and the expression of FtMt and TfR1 decreased significantly (P<0.01). The expression of GPX4 and FPN1 in the medium-dose HXHYJDF group increased significantly (P<0.05), and the expression of TfR1 decreased significantly (P<0.01). WB results showed that the expression levels of FPN1 and GPX4 proteins in the high-dose, medium-dose, and low-dose HXHYJDF groups were significantly up-regulated (P<0.01), and the expression levels of FtMt and TfR1 proteins were significantly down-regulated (P<0.01). ConclusionHXHYJDF can significantly improve neurological dysfunction symptoms in rats with cerebral ischemia-reperfusion injury, improve the pathological morphology of the infarcted brain tissue, and protect the brain tissue of rats with cerebral ischemia-reperfusion injury to a certain extent. Neuronal ferroptosis is involved in cerebral ischemia-reperfusion injury, with increased levels of MDA, Fe2+, ROS, and TfR1 and decreased levels of FtMt, FPN1, GPX4, and GSH potentially constituting the material basis of the interaction of blood stasis and toxin mechanism in cerebral ischemia-reperfusion injury. HXHYJDF may exert brain-protective effects by regulating iron metabolism-related proteins, promoting the discharge of free iron, reducing brain iron deposition, alleviating oxidative stress, and inhibiting ferroptosis.
2.Role of silent mutations in KRAS -mutant tumors.
Jun LU ; Chao ZHOU ; Feng PAN ; Hongyu LIU ; Haohua JIANG ; Hua ZHONG ; Baohui HAN
Chinese Medical Journal 2025;138(3):278-288
Silent mutations within the RAS gene have garnered increasing attention for their potential roles in tumorigenesis and therapeutic strategies. Kirsten-RAS ( KRAS ) mutations, predominantly oncogenic, are pivotal drivers in various cancers. While extensive research has elucidated the molecular mechanisms and biological consequences of active KRAS mutations, the functional significance of silent mutations remains relatively understudied. This review synthesizes current knowledge on KRAS silent mutations, highlighting their impact on cancer development. Silent mutations, which do not alter protein sequences but can affect RNA stability and translational efficiency, pose intriguing questions regarding their contribution to tumor biology. Understanding these mutations is crucial for comprehensively unraveling KRAS -driven oncogenesis and exploring novel therapeutic avenues. Moreover, investigations into the clinical implications of silent mutations in KRAS -mutant tumors suggest potential diagnostic and therapeutic strategies. Despite being in early stages, research on KRAS silent mutations holds promise for uncovering novel insights that could inform personalized cancer treatments. In conclusion, this review underscores the evolving landscape of KRAS silent mutations, advocating for further exploration to bridge fundamental biology with clinical applications in oncology.
Humans
;
Mutation/genetics*
;
Neoplasms/genetics*
;
Proto-Oncogene Proteins p21(ras)/genetics*
;
Animals
3.Identification of novel pathogenic variants in genes related to pancreatic β cell function: A multi-center study in Chinese with young-onset diabetes.
Fan YU ; Yinfang TU ; Yanfang ZHANG ; Tianwei GU ; Haoyong YU ; Xiangyu MENG ; Si CHEN ; Fengjing LIU ; Ke HUANG ; Tianhao BA ; Siqian GONG ; Danfeng PENG ; Dandan YAN ; Xiangnan FANG ; Tongyu WANG ; Yang HUA ; Xianghui CHEN ; Hongli CHEN ; Jie XU ; Rong ZHANG ; Linong JI ; Yan BI ; Xueyao HAN ; Hong ZHANG ; Cheng HU
Chinese Medical Journal 2025;138(9):1129-1131
4.Inhibition of the mitochondrial metabolic enzyme OGDC affects erythroid development.
Bin HU ; Mao-Hua LI ; Han GONG ; Lu HAN ; Jing LIU
Acta Physiologica Sinica 2025;77(3):395-407
Mitochondrial metabolism is crucial for providing energy and heme precursors during erythroid development. Oxoglutarate dehydrogenase complex (OGDC) is a key enzyme in the mitochondrial tricarboxylic acid (TCA) cycle, and its level gradually increases during erythroid development, indicating its significant role in erythroid development. The aim of the present study was to explore the role and mechanism of OGDC in erythroid development. In this study, we treated erythroid progenitor cells with CPI-613, a novel lipoic acid analog that competitively inhibits OGDC. The results showed that CPI-613 inhibited erythropoietin (EPO)-induced differentiation and enucleation of human CD34+ hematopoietic stem cells into erythroid cells, suppressed cell proliferation, and induced apoptosis. The results of in vivo experiments showed that CPI-613 also hindered the recovery of mice from acute hemolytic anemia. Further mechanism research results showed that CPI-613 increased reactive oxygen species (ROS) in erythroid progenitor cells, inhibited mitochondrial respiration, caused mitochondrial damage, and suppressed heme synthesis, thereby inhibiting erythroid differentiation. Clinical research results showed that oxoglutarate dehydrogenase (OGDH) protein expression levels were up-regulated in bone marrow cells of polycythemia vera (PV) patients. Treatment with CPI-613 significantly inhibited the excessive proliferation and differentiation of erythroid progenitor cells of the PV patients. These findings demonstrates the critical role of OGDC in normal erythroid development, suggesting that inhibiting its activity could be a novel therapeutic strategy for treating PV.
Animals
;
Humans
;
Mitochondria/metabolism*
;
Mice
;
Ketoglutarate Dehydrogenase Complex/physiology*
;
Cell Differentiation/drug effects*
;
Cells, Cultured
;
Erythropoiesis/drug effects*
;
Reactive Oxygen Species/metabolism*
;
Cell Proliferation/drug effects*
;
Erythroid Precursor Cells/cytology*
;
Apoptosis/drug effects*
;
Thioctic Acid/pharmacology*
;
Caprylates
;
Sulfides
5.Expert consensus on evaluation index system construction for new traditional Chinese medicine(TCM) from TCM clinical practice in medical institutions.
Li LIU ; Lei ZHANG ; Wei-An YUAN ; Zhong-Qi YANG ; Jun-Hua ZHANG ; Bao-He WANG ; Si-Yuan HU ; Zu-Guang YE ; Ling HAN ; Yue-Hua ZHOU ; Zi-Feng YANG ; Rui GAO ; Ming YANG ; Ting WANG ; Jie-Lai XIA ; Shi-Shan YU ; Xiao-Hui FAN ; Hua HUA ; Jia HE ; Yin LU ; Zhong WANG ; Jin-Hui DOU ; Geng LI ; Yu DONG ; Hao YU ; Li-Ping QU ; Jian-Yuan TANG
China Journal of Chinese Materia Medica 2025;50(12):3474-3482
Medical institutions, with their clinical practice foundation and abundant human use experience data, have become important carriers for the inheritance and innovation of traditional Chinese medicine(TCM) and the "cradles" of the preparation of new TCM. To effectively promote the transformation of new TCM originating from the TCM clinical practice in medical institutions and establish an effective evaluation index system for the transformation of new TCM conforming to the characteristics of TCM, consensus experts adopted the literature research, questionnaire survey, Delphi method, etc. By focusing on the policy and technical evaluation of new TCM originating from the TCM clinical practice in medical institutions, a comprehensive evaluation from the dimensions of drug safety, efficacy, feasibility, and characteristic advantages was conducted, thus forming a comprehensive evaluation system with four primary indicators and 37 secondary indicators. The expert consensus reached aims to encourage medical institutions at all levels to continuously improve the high-quality research and development and transformation of new TCM originating from the TCM clinical practice in medical institutions and targeted at clinical needs, so as to provide a decision-making basis for the preparation, selection, cultivation, and transformation of new TCM for medical institutions, improve the development efficiency of new TCM, and precisely respond to the public medication needs.
Medicine, Chinese Traditional/standards*
;
Humans
;
Consensus
;
Drugs, Chinese Herbal/therapeutic use*
;
Surveys and Questionnaires
6.Mechanism related to bile acids metabolism of liver injury induced by long-term administration of emodin.
Jing-Zhuo TIAN ; Lian-Mei WANG ; Yan YI ; Zhong XIAN ; Nuo DENG ; Yong ZHAO ; Chun-Ying LI ; Yu-Shi ZHANG ; Su-Yan LIU ; Jia-Yin HAN ; Chen PAN ; Chen-Yue LIU ; Jing MENG ; Ai-Hua LIANG
China Journal of Chinese Materia Medica 2025;50(11):3079-3087
Emodin is a hydroxyanthraquinone compound that is widely distributed and has multiple pharmacological activities, including anti-diarrheal, anti-inflammatory, and liver-protective effects. Research indicates that emodin may be one of the main components responsible for inducing hepatotoxicity. However, studies on the mechanisms of liver injury are relatively limited, particularly those related to bile acids(BAs) metabolism. This study aims to systematically investigate the effects of different dosages of emodin on BAs metabolism, providing a basis for the safe clinical use of traditional Chinese medicine(TCM)containing emodin. First, this study evaluated the safety of repeated administration of different dosages of emodin over a 5-week period, with a particular focus on its impact on the liver. Next, the composition and content of BAs in serum and liver were analyzed. Subsequently, qRT-PCR was used to detect the mRNA expression of nuclear receptors and transporters related to BAs metabolism. The results showed that 1 g·kg~(-1) emodin induced hepatic damage, with bile duct hyperplasia as the primary pathological manifestation. It significantly increased the levels of various BAs in the serum and primary BAs(including taurine-conjugated and free BAs) in the liver. Additionally, it downregulated the mRNA expression of farnesoid X receptor(FXR), retinoid X receptor(RXR), and sodium taurocholate cotransporting polypeptide(NTCP), and upregulated the mRNA expression of cholesterol 7α-hydroxylase(CYP7A1) in the liver. Although 0.01 g·kg~(-1) and 0.03 g·kg~(-1) emodin did not induce obvious liver injury, they significantly increased the level of taurine-conjugated BAs in the liver, suggesting a potential interference with BAs homeostasis. In conclusion, 1 g·kg~(-1) emodin may promote the production of primary BAs in the liver by affecting the FXR-RXR-CYP7A1 pathway, inhibit NTCP expression, and reduce BA reabsorption in the liver, resulting in BA accumulation in the peripheral blood. This disruption of BA homeostasis leads to liver injury. Even doses of emodin close to the clinical dose can also have a certain effect on the homeostasis of BAs. Therefore, when using traditional Chinese medicine or formulas containing emodin in clinical practice, it is necessary to regularly monitor liver function indicators and closely monitor the risk of drug-induced liver injury.
Emodin/administration & dosage*
;
Bile Acids and Salts/metabolism*
;
Animals
;
Male
;
Liver/injuries*
;
Chemical and Drug Induced Liver Injury/genetics*
;
Drugs, Chinese Herbal/adverse effects*
;
Humans
;
Rats, Sprague-Dawley
;
Mice
;
Rats
7.Mechanisms of puerarin-mediated lipid modulation to enhance glucose-lowering effects via hepatic ChREBP/PPARα/PPARγ in vitro.
Can CUI ; Han-Yue XIAO ; Li-Ke YAN ; Zhong-Hua XU ; Wei-Hua LIU ; Hui-Ping LI ; Jun TU
China Journal of Chinese Materia Medica 2025;50(14):3951-3961
This study aims to investigate the in vitro mechanisms underlying the beneficial effects of puerarin on hepatic insulin resistance(IR) based on the carbohydrate response element-binding protein(ChREBP)/peroxisome proliferator-activated receptor(PPAR)α/PPARγ axis involved in glucose and lipid metabolism. An IR-HepG2 cell model was established by treating cells with dexamethasone for 48 h, and the cells were then treated with 10, 20, and 40 μmol·L~(-1) puerarin for 24 h. Glucose levels and output in the extracellular fluid were measured by the glucose oxidase method, while cell viability was assessed by the cell counting kit-8(CCK-8) assay. The adenosine triphosphate(ATP) content and glycogen synthesis were evaluated through chemiluminescence and periodic acid-Schiff staining, respectively. Western blot was employed to quantify the protein levels of forkhead box protein O1(FoxO1), phosphorylated forkhead box protein O1 [p-FoxO1(Ser256)], glucagon, phosphofructokinase, liver type(PFKL), pyruvate kinase L-R(PKLR), pyruvate dehydrogenase complex 1(PDHA1), insulin receptor substrate 2(IRS2), phosphatidylinositol 3-kinase p85(PI3KR1), phosphorylated protein kinase B [p-Akt(Thr308)], glycogen synthase(GYS), glycogen phosphorylase, liver type(PYGL), adiponectin(ADPN), ChREBP, PPARα, and PPARγ. Additionally, the protein levels of acetyl-CoA carboxylase 1(ACC1), phosphorylated ATP citrate lyase [p-ACLY(Ser455)], sterol regulatory element binding protein 1c(SREBP-1c), peroxisome proliferator-activated receptor gamma coactivator 1α(PGC1α), carnitine palmitoyltransferase 1α(CPT1α), and glucagon receptor(GCGR) were also determined. Immunofluorescence was employed to visualize the expression and nuclear location of ChREBP/PPARα/PPARγ. Furthermore, quantitative PCR with the antagonists GW6471 and GW9662 was employed to assess Pparα, Pparγ, and Chrebp. The findings indicated that puerarin effectively reduced both the glucose level and glucose output in the extracellular fluid of IR-HepG2 cells without obvious effect on the cell viability, and it increased intracellular glycogen and ATP levels. Puerarin down-regulated the protein levels of FoxO1 and glucagon while up-regulating the protein levels of p-FoxO1(Ser256), PFKL, PKLR, PDHA1, IRS2, PI3KR1, p-Akt(Thr308), GYS, PYGL, ADPN, ACC1, SREBP-1c, p-ACLY(Ser455), PGC1α, CPT1α, and GCGR in IR-HepG2 cells. Furthermore, puerarin up-regulated both the mRNA and protein levels of ChREBP, PPARα, and PPARγ and promoted the translocation into the nucleus. GW6471 was observed to down-regulate the expression of Pparα while up-regulating the expression of Chrebp and Pparγ. GW9662 down-regulated the expression of Pparγ while up-regulating the expression of Pparα, with no significant effect on Chrebp. In summary, puerarin activated the hepatic ChREBP/PPARα/PPARγ axis, thereby coordinating the glucose and lipid metabolism, promoting the conversion of glucose to lipids to exert the blood glucose-lowering effect.
Isoflavones/pharmacology*
;
Humans
;
PPAR gamma/genetics*
;
Hep G2 Cells
;
Glucose/metabolism*
;
Lipid Metabolism/drug effects*
;
PPAR alpha/genetics*
;
Liver/drug effects*
;
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics*
;
Insulin Resistance
8.Establishment of different pneumonia mouse models suitable for traditional Chinese medicine screening.
Xing-Nan YUE ; Jia-Yin HAN ; Chen PAN ; Yu-Shi ZHANG ; Su-Yan LIU ; Yong ZHAO ; Xiao-Meng ZHANG ; Jing-Wen WU ; Xuan TANG ; Ai-Hua LIANG
China Journal of Chinese Materia Medica 2025;50(15):4089-4099
In this study, lipopolysaccharide(LPS), ovalbumin(OVA), and compound 48/80(C48/80) were administered to establish non-infectious pneumonia models under simulated clinical conditions, and the correlation between their pathological characteristics and traditional Chinese medicine(TCM) syndromes was compared, providing the basis for the selection of appropriate animal models for TCM efficacy evaluation. An acute pneumonia model was established by nasal instillation of LPS combined with intraperitoneal injection for intensive stimulation. Three doses of OVA mixed with aluminum hydroxide adjuvant were injected intraperitoneally on days one, three, and five and OVA was administered via endotracheal drip for excitation on days 14-18 to establish an OVA-induced allergic pneumonia model. A single intravenous injection of three doses of C48/80 was adopted to establish a C48/80-induced pneumonia model. By detecting the changes in peripheral blood leukocyte classification, lung tissue and plasma cytokines, immunoglobulins(Ig), histamine levels, and arachidonic acid metabolites, the multi-dimensional analysis was carried out based on pathological evaluation. The results showed that the three models could cause pulmonary edema, increased wet weight in the lung, and obvious exudative inflammation in lung tissue pathology, especially for LPS. A number of pyrogenic cytokines, inclading interleukin(IL)-6, interferon(IFN)-γ, IL-1β, and IL-4 were significantly elevated in the LPS pneumonia model. Significantly increased levels of prostacyclin analogs such as prostaglandin E2(PGE2) and PGD2, which cause increased vascular permeability, and neutrophils in peripheral blood were significantly elevated. The model could partly reflect the clinical characteristics of phlegm heat accumulating in the lung or dampness toxin obstructing the lung. The OVA model showed that the sensitization mediators IgE and leukotriene E4(LTE4) were increased, and the anti-inflammatory prostacyclin 6-keto-PGF2α was decreased. Immune cells(lymphocytes and monocytes) were decreased, and inflammatory cells(neutrophils and basophils) were increased, reflecting the characteristics of "deficiency", "phlegm", or "dampness". Lymphocytes, monocytes, and basophils were significantly increased in the C48/80 model. The phenotype of the model was that the content of histamine, a large number of prostacyclins(6-keto-PGE1, PGF2α, 15-keto-PGF2α, 6-keto-PGF1α, 13,14-D-15-keto-PGE2, PGD2, PGE2, and PGH2), LTE4, and 5-hydroxyeicosatetraenoic acid(5S-HETE) was significantly increased, and these indicators were associated with vascular expansion and increased vascular permeability. The pyrogenic inflammatory cytokines were not increased. The C48/80 model reflected the characteristics of cold and damp accumulation. In the study, three non-infectious pneumonia models were constructed. The LPS model exhibited neutrophil infiltration and elevated inflammatory factors, which was suitable for the efficacy study of TCM for clearing heat, detoxifying, removing dampness, and eliminating phlegm. The OVA model, which took allergic inflammation as an index, was suitable for the efficacy study of Yiqi Gubiao formulas. The C48/80 model exhibited increased vasoactive substances(histamine, PGs, and LTE4), which was suitable for the efficacy study and evaluation of TCM for warming the lung, dispersing cold, drying dampness, and resolving phlegm. The study provides a theoretical basis for model selection for the efficacy evaluation of TCM in the treatment of pneumonia.
Animals
;
Disease Models, Animal
;
Mice
;
Pneumonia/genetics*
;
Medicine, Chinese Traditional
;
Male
;
Humans
;
Cytokines/immunology*
;
Female
;
Lipopolysaccharides/adverse effects*
;
Lung/drug effects*
;
Drugs, Chinese Herbal
;
Ovalbumin
;
Mice, Inbred BALB C
9.Hypoglycemic effect and mechanism of berberine in vitro based on regulation of BMAL1:CLOCK complex involved in hepatic glycolysis, glucose oxidation a nd gluconeogenesis to improve energy metabolism.
Zhong-Hua XU ; Li-Ke YAN ; Wei-Hua LIU ; Can CUI ; Han-Yue XIAO ; Hui-Ping LI ; Jun TU
China Journal of Chinese Materia Medica 2025;50(15):4293-4303
This paper aims to investigate the hypoglycemic effect and mechanism of berberine in improving energy metabolism based on the multi-pathway regulation of brain and muscle aromatic hydrocarbon receptor nuclear translocal protein 1(BMAL1): cyclin kaput complex of day-night spontaneous output cyclin kaput(CLOCK). The dexamethasone-induced hepatic insulin resistance(IR) HepG2 cell model was used; 0.5, 1, 5, 10, 20 μmol·L~(-1) berberine were administered at 15, 18, 21, 24, 30, 36 h. The time-dose effect of glucose content in extracellular fluid was detected by glucose oxidase method. The optimal dosage and time of berberine were determined for the follow-up study. Glucose oxidase method and chemiluminescence method were respectively performed to detect hepatic glucose output and relative content of ATP in cells; Ca~(2+), reactive oxygen species(ROS), mitochondrial structure and membrane potential were detected by fluorescent probes. Moreover, ultraviolet colorimetry method was used to detect the liver type of pyruvate kinase(L-PK) and phosphoenol pyruvate carboxykinase(PEPCK). In addition, pyruvate dehydrogenase E1 subunit α1(PDHA1), phosphate fructocrine-liver type(PFKL), forkhead box protein O1(FoxO1), peroxisome proliferator-activated receptor gamma co-activator 1α(PGC1α), glucose-6-phosphatase(G6Pase), glucagon, phosphorylated nuclear factor-red blood cell 2-related factor 2(p-Nrf2)(Ser40), heme oxygenase 1(HO-1), NAD(P)H quinone oxidoreductase 1(NQO1), fibroblast growth factor 21(FGF21), uncoupled protein(UCP) 1 and UCP2 were detected by Western blot. BMAL1:CLOCK complex was detected by immunofluorescence double-staining method, combined with small molecule inhibitor CLK8. Western blot was used to detect PDHA1, PFKL, FoxO1, PGC1α, G6Pase, glucagon, Nrf2, HO-1, NQO1, FGF21, UCP1 and UCP2 in the CLK8 group. The results showed that berberine downregulated the glucose content in extracellular fluid in IR-HepG2 cells in a time-and dose-dependent manner. Moreover, berberine inhibited hepatic glucose output and reduced intracellular Ca~(2+) and ROS whereas elevated JC-1 membrane potential and improved mitochondrial structure to enhance ATP production. In addition, berberine upregulated the rate-limiting enzymes such as PFKL, L-PK and PDHA1 to promote glycolysis and aerobic oxidation but also downregulated PGC1α, FoxO1, G6Pase, PEPCK and glucagon to inhibit hepatic gluconeogenesis. Berberine not only upregulated p-Nrf2(Ser40), HO-1 and NQO1 to enhance antioxidant capacity but also upregulated FGF21, UCP1 and UCP2 to promote energy metabolism. Moreover, berberine increased BMAL1, CLOCK and nuclear BMAL1:CLOCK complex whereas CLK8 reduced the nuclear BMAL1:CLOCK complex. Finally, CLK8 decreased PDHA1, PFKL, Nrf2, HO-1, NQO1, FGF21, UCP1, UCP2 and increased FoxO1, PGC1α, G6Pase and glucagon compared with the 20 μmol·L~(-1) berberine group. BMAL1:CLOCK complex inhibited gluconeogenesis, promoted glycolysis and glucose aerobic oxidation pathways, improved the reduction status within mitochondria, protected mitochondrial structure and function, increased ATP energy storage and promoted energy consumption in IR-HepG2 cells. These results suggested that berberine mediated BMAL1:CLOCK complex to coordinate the regulation of hepatic IR cells to improve energy metabolism in vitro.
Humans
;
Berberine/pharmacology*
;
Gluconeogenesis/drug effects*
;
Hep G2 Cells
;
Glucose/metabolism*
;
Liver/drug effects*
;
Energy Metabolism/drug effects*
;
Hypoglycemic Agents/pharmacology*
;
ARNTL Transcription Factors/genetics*
;
Glycolysis/drug effects*
;
Oxidation-Reduction/drug effects*
10.Clinical study on the effectiveness of bone acupuncture for alleviating pain and improving function in patients with degenerative lumbar spinal stenosis.
Chang-Xiao HAN ; Min-Shan FENG ; Jing-Hua GAO ; Xun-Lu YIN ; Guang-Wei LIU ; Hai-Bao WEN ; Jing LI ; Bo-Chen PENG ; Li-Guo ZHU
China Journal of Orthopaedics and Traumatology 2025;38(2):152-156
OBJECTIVE:
To assess the effectiveness of bone acupuncture in improving pain and function in degenerative lumbar spinal stenosis (DLSS) and compare it with Jiaji acupuncture.
METHODS:
From January to December 2023, 80 DLSS patients were treated with acupuncture and divided into bone acupuncture and Jiaji acupuncture groups. Among them, 40 patients in the bone acupuncture group included 15 males and 25 females, with a mean age of (60.60±6.98) years old;anthor 40 patients in the Jiaji acupuncture group included 16 males and 24 females, with a mean age of (61.48±9.55) years old. The Roland Morris disability questionnaire(RMDQ), walking distance, visual analogue scale(VAS), and the MOS item short from health survey(SF-36) of two groups at baseline, 2 weeks, 4 weeks, and 12 weeks post-treatment were compared.
RESULTS:
Eighty patients were followed up for 3 to 5 months with an average of (3.62±0.59) months. There was no significant differences in general data and the scores before treatment between two groups(P>0.05). The RMDQ scores in both groups decreased significantly at 2, 4 and 12 weeks after treatment compared with before treatment(P<0.05), at each time point after treatment, the decrease was more significant in the bone acupuncture group than in the Jiaji acupuncture group(P<0.05). The VAS of waist and leg in both groups was significantly lower at 2, 4 and 12 weeks after treatment that before treatment(P<0.05). At all time points after treatment, the waist VAS in the bone acupuncture group was reduced more significant than in the Jiaji acupuncture group(P<0.05);there was no significant difference in leg VAS at 2 and 12 weeks after treatment between two groups(P>0.05), the improvement was more significant in the bone acupuncture group in the 4 weeks after treatment than in the Jiaji acupuncture group. The SF-36 scores in both groups were significantly higher at 2, 4, and 12 weeks after treatment than before treatment(P<0.05);the SF-36 score raised more significant in the bone acupuncture group than in the Jiaji acupunture group(P<0.05). No significant difference in the walking distance between two groups at 2 weeks after treatment(P>0.05);the walking distance in the bone acupuncture group was significantly higher than that in the Jiaji acupuncture group at 4 and 12 weeks after treatment(P<0.05).
CONCLUSION
Bone-penetrating acupuncture moderately improves functional impairment, pain, and quality of life in patients with DLSS, showing better efficacy than Jiaji acupuncture.
Humans
;
Female
;
Male
;
Middle Aged
;
Acupuncture Therapy/methods*
;
Spinal Stenosis/physiopathology*
;
Aged
;
Lumbar Vertebrae/physiopathology*
;
Pain Management

Result Analysis
Print
Save
E-mail