1.Research progress in mechanisms of traditional Chinese medicine polysaccharides in prevention and treatment of alcoholic liver disease.
Yu-Fan CHEN ; He JIANG ; Qing MA ; Qi-Han LUO ; Shuo HUANG ; Jiang QIU ; Fu-Zhe CHEN ; Zi-Yi SHAN ; Ping QIU
China Journal of Chinese Materia Medica 2025;50(2):356-362
Alcoholic liver disease(ALD), a major cause of chronic liver disease worldwide, poses a serious threat to human health. Despite the availability of various drugs for treating ALD, their efficacy is often uncertain, necessitating the search for new therapeutic approaches. Traditional Chinese medicine polysaccharides have garnered increasing attention in recent years due to their versatility, high efficiency, and low side effects, and they have demonstrated significant potential in preventing and treating ALD. Emerging studies have suggested that these polysaccharides exert their therapeutic effects through multiple mechanisms, including the inhibition of oxidative stress and the regulation of lipid metabolism, gut microbiota, and programmed cell death. This review summarizes the recent research progress in the pharmacological effects and regulatory mechanisms of traditional Chinese medicine polysaccharides in treating ALD, aiming to provide a scientific basis and theoretical support for their application in the prevention and treatment of ALD.
Humans
;
Liver Diseases, Alcoholic/metabolism*
;
Polysaccharides/administration & dosage*
;
Drugs, Chinese Herbal/administration & dosage*
;
Animals
;
Oxidative Stress/drug effects*
;
Medicine, Chinese Traditional
;
Gastrointestinal Microbiome/drug effects*
;
Lipid Metabolism/drug effects*
2.The addition of 5-aminolevulinic acid to HBSS protects testis grafts during hypothermic transportation: a novel preservation strategy.
Meng-Hui MA ; Pei-Gen CHEN ; Jun-Xian HE ; Hai-Cheng CHEN ; Zhen-Han XU ; Lin-Yan LV ; Yan-Qing LI ; Xiao-Yan LIANG ; Gui-Hua LIU
Asian Journal of Andrology 2025;27(4):454-463
The aim of this investigation was to determine the optimal storage medium for testicular hypothermic transportation and identify the ideal concentration for the application of the protective agent 5-aminolevulinic acid (5-ALA). Furthermore, this study aimed to explore the underlying mechanism of the protective effects of 5-ALA. First, we collected and stored mouse testicular fragments in different media, including Hank's balanced salt solution (HBSS; n = 5), Dulbecco's Modified Eagle Medium/Nutrient Mixture F-12 (DMEM/F12; n = 5), and alpha-minimum essential medium (αMEM; n = 5). Storage of testicular tissue in HBSS preserved the integrity of testicular morphology better than that in the DMEM/F12 group ( P < 0.05) and the αMEM group ( P < 0.01). Testicular fragments were subsequently placed in HBSS with various concentrations of 5-ALA (0 [control], 1 mmol l -1 , 2 mmol l -1 , and 5 mmol l -1 ) to determine the most effective concentration of 5-ALA. The 2 mmol l -1 5-ALA group ( n = 3) presented the highest positive rate of spermatogonial stem cells compared with those in the control, 1 mmol l -1 , and 5 mmol l -1 5-ALA groups. Finally, the tissue fragments were preserved in HBSS with control ( n = 3) and 2 mmol l -1 5-ALA ( n = 3) under low-temperature conditions. A comparative analysis was performed against fresh testes ( n = 3) to elucidate the underlying mechanism of 5-ALA. Gene set enrichment analysis (GSEA) for WikiPathways revealed that the p38 mitogen-activated protein kinase (MAPK) signaling pathway was downregulated in the 2 mmol l -1 5-ALA group compared with that in the control group (normalized enrichment score [NES] = -1.57, false discovery rate [FDR] = 0.229, and P = 0.019). In conclusion, these data suggest that using 2 mmol l -1 5-ALA in HBSS effectively protected the viability of spermatogonial stem cells upon hypothermic transportation.
Male
;
Animals
;
Testis/cytology*
;
Aminolevulinic Acid/pharmacology*
;
Mice
;
Organ Preservation/methods*
;
Organ Preservation Solutions/pharmacology*
;
Cryopreservation/methods*
3.Tongue squamous cell carcinoma-targeting Au-HN-1 nanosystem for CT imaging and photothermal therapy.
Ming HAO ; Xingchen LI ; Xinxin ZHANG ; Boqiang TAO ; He SHI ; Jianing WU ; Yuyang LI ; Xiang LI ; Shuangji LI ; Han WU ; Jingcheng XIANG ; Dongxu WANG ; Weiwei LIU ; Guoqing WANG
International Journal of Oral Science 2025;17(1):9-9
Tongue squamous cell carcinoma (TSCC) is a prevalent malignancy that afflicts the head and neck area and presents a high incidence of metastasis and invasion. Accurate diagnosis and effective treatment are essential for enhancing the quality of life and the survival rates of TSCC patients. The current treatment modalities for TSCC frequently suffer from a lack of specificity and efficacy. Nanoparticles with diagnostic and photothermal therapeutic properties may offer a new approach for the targeted therapy of TSCC. However, inadequate accumulation of photosensitizers at the tumor site diminishes the efficacy of photothermal therapy (PTT). This study modified gold nanodots (AuNDs) with the TSCC-targeting peptide HN-1 to improve the selectivity and therapeutic effects of PTT. The Au-HN-1 nanosystem effectively targeted the TSCC cells and was rapidly delivered to the tumor tissues compared to the AuNDs. The enhanced accumulation of photosensitizing agents at tumor sites achieved significant PTT effects in a mouse model of TSCC. Moreover, owing to its stable long-term fluorescence and high X-ray attenuation coefficient, the Au-HN-1 nanosystem can be used for fluorescence and computed tomography imaging of TSCC, rendering it useful for early tumor detection and accurate delineation of surgical margins. In conclusion, Au-HN-1 represents a promising nanomedicine for imaging-based diagnosis and targeted PTT of TSCC.
Tongue Neoplasms/diagnostic imaging*
;
Carcinoma, Squamous Cell/diagnostic imaging*
;
Animals
;
Gold/chemistry*
;
Mice
;
Photothermal Therapy/methods*
;
Tomography, X-Ray Computed
;
Photosensitizing Agents
;
Metal Nanoparticles
;
Humans
;
Cell Line, Tumor
4.Sirtuin 3 Attenuates Acute Lung Injury by Decreasing Ferroptosis and Inflammation through Inhibiting Aerobic Glycolysis.
Ke Wei QIN ; Qing Qing JI ; Wei Jun LUO ; Wen Qian LI ; Bing Bing HAO ; Hai Yan ZHENG ; Chao Feng HAN ; Jian LOU ; Li Ming ZHAO ; Xing Ying HE
Biomedical and Environmental Sciences 2025;38(9):1161-1167
6.Bionic design,preparation and clinical translation of oral hard tissue restorative materials
Han ZHAO ; Yan WEI ; Xuehui ZHANG ; Xiaoping YANG ; Qing CAI ; Chengyun NING ; Mingming XU ; Wenwen LIU ; Ying HUANG ; Ying HE ; Yaru GUO ; Shengjie JIANG ; Yunyang BAI ; Yujia WU ; Yusi GUO ; Xiaona ZHENG ; Wenjing LI ; Xuliang DENG
Journal of Peking University(Health Sciences) 2024;56(1):4-8
Oral diseases concern almost every individual and are a serious health risk to the popula-tion.The restorative treatment of tooth and jaw defects is an important means to achieve oral function and support the appearance of the contour.Based on the principle of"learning from the nature",Deng Xu-liang's group of Peking University School and Hospital of Stomatology has proposed a new concept of"microstructural biomimetic design and tissue adaptation of tooth/jaw materials"to address the worldwide problems of difficulty in treating dentine hypersensitivity,poor prognosis of restoration of tooth defects,and vertical bone augmentation of alveolar bone after tooth loss.The group has broken through the bottle-neck of multi-stage biomimetic technology from the design of microscopic features to the enhancement of macroscopic effects,and invented key technologies such as crystalline/amorphous multi-level assembly,ion-transportation blocking,and multi-physical properties of the micro-environment reconstruction,etc.The group also pioneered the cationic-hydrogel desensitizer,digital stump and core integrated restora-tions,and developed new crown and bridge restorative materials,gradient functionalisation guided tissue regeneration membrane,and electrically responsive alveolar bone augmentation restorative membranes,etc.These products have established new clinical strategies for tooth/jaw defect repair and achieved inno-vative results.In conclusion,the research results of our group have strongly supported the theoretical im-provement of stomatology,developed the technical system of oral hard tissue restoration,innovated the clinical treatment strategy,and led the progress of the stomatology industry.
7.Advances in antitumor research of bifunctional small molecule inhibitors targeting heat shock protein 90
Hong-ping ZHU ; Xin XIE ; Rui QIN ; Wei HUANG ; Yan-qing LIU ; Cheng PENG ; Gu HE ; Bo HAN
Acta Pharmaceutica Sinica 2024;59(1):1-16
The heat shock protein 90 (Hsp90) protein family is a cluster of highly conserved molecules that play an important role in maintaining cellular homeostasis. Hsp90 and its co-chaperones regulate a variety of pathways and cellular functions, such as cell growth, cell cycle control and apoptosis. Hsp90 is closely associated with the occurrence and development of tumors and other diseases, making it an attractive target for cancer therapeutics. Inhibition of Hsp90 expression can affect multiple oncogenic pathways simultaneously. Most Hsp90 small molecule inhibitors are in clinical trials due to their low efficacy, toxicity or drug resistance, but they have obvious synergistic anti-tumor effect when used with histone deacetylase (HDAC) inhibitors, tubulin inhibitors or topoisomerase II (Topo II) inhibitors. To address this issue, the design of Hsp90 dual-target inhibitors can improve efficacy and reduce drug resistance, making it an effective tumor treatment strategy. In this paper, the domain and biological function of Hsp90 are briefly introduced, and the design, discovery and structure-activity relationship of Hsp90 dual inhibitors are discussed, in order to provide reference for the discovery of novel Hsp90 dual inhibitors and clinical drug research from the perspective of medicinal chemistry.
8.Expert consensus on the evaluation and management of dysphagia after oral and maxillofacial tumor surgery
Xiaoying LI ; Moyi SUN ; Wei GUO ; Guiqing LIAO ; Zhangui TANG ; Longjiang LI ; Wei RAN ; Guoxin REN ; Zhijun SUN ; Jian MENG ; Shaoyan LIU ; Wei SHANG ; Jie ZHANG ; Yue HE ; Chunjie LI ; Kai YANG ; Zhongcheng GONG ; Jichen LI ; Qing XI ; Gang LI ; Bing HAN ; Yanping CHEN ; Qun'an CHANG ; Yadong WU ; Huaming MAI ; Jie ZHANG ; Weidong LENG ; Lingyun XIA ; Wei WU ; Xiangming YANG ; Chunyi ZHANG ; Fan YANG ; Yanping WANG ; Tiantian CAO
Journal of Practical Stomatology 2024;40(1):5-14
Surgical operation is the main treatment of oral and maxillofacial tumors.Dysphagia is a common postoperative complication.Swal-lowing disorder can not only lead to mis-aspiration,malnutrition,aspiration pneumonia and other serious consequences,but also may cause psychological problems and social communication barriers,affecting the quality of life of the patients.At present,there is no systematic evalua-tion and rehabilitation management plan for the problem of swallowing disorder after oral and maxillofacial tumor surgery in China.Combining the characteristics of postoperative swallowing disorder in patients with oral and maxillofacial tumors,summarizing the clinical experience of ex-perts in the field of tumor and rehabilitation,reviewing and summarizing relevant literature at home and abroad,and through joint discussion and modification,a group of national experts reached this consensus including the core contents of the screening of swallowing disorders,the phased assessment of prognosis and complications,and the implementation plan of comprehensive management such as nutrition management,respiratory management,swallowing function recovery,psychology and nursing during rehabilitation treatment,in order to improve the evalua-tion and rehabilitation of swallowing disorder after oral and maxillofacial tumor surgery in clinic.
9.Expert consensus on cryoablation therapy of oral mucosal melanoma
Guoxin REN ; Moyi SUN ; Zhangui TANG ; Longjiang LI ; Jian MENG ; Zhijun SUN ; Shaoyan LIU ; Yue HE ; Wei SHANG ; Gang LI ; Jie ZHNAG ; Heming WU ; Yi LI ; Shaohui HUANG ; Shizhou ZHANG ; Zhongcheng GONG ; Jun WANG ; Anxun WANG ; Zhiyong LI ; Zhiquan HUNAG ; Tong SU ; Jichen LI ; Kai YANG ; Weizhong LI ; Weihong XIE ; Qing XI ; Ke ZHAO ; Yunze XUAN ; Li HUANG ; Chuanzheng SUN ; Bing HAN ; Yanping CHEN ; Wenge CHEN ; Yunteng WU ; Dongliang WEI ; Wei GUO
Journal of Practical Stomatology 2024;40(2):149-155
Cryoablation therapy with explicit anti-tumor mechanisms and histopathological manifestations has a long history.A large number of clinical practice has shown that cryoablation therapy is safe and effective,making it an ideal tumor treatment method in theory.Previously,its efficacy and clinical application were constrained by the limitations of refrigerants and refrigeration equipment.With the development of the new generation of cryoablation equipment represented by argon helium knives,significant progress has been made in refrigeration efficien-cy,ablation range,and precise temperature measurement,greatly promoting the progression of tumor cryoablation technology.This consensus systematically summarizes the mechanism of cryoablation technology,indications for oral mucosal melanoma(OMM)cryotherapy,clinical treatment process,adverse reactions and management,cryotherapy combination therapy,etc.,aiming to provide reference for carrying out the standardized cryoablation therapy of OMM.
10.Nanoplastics aggravate severe asthma by inducing DNA damage of alveolar type Ⅱ epithelial cells
Zelun SHI ; Qing WANG ; Wen HE ; Weijia FU ; Yingwen WANG ; Xiao HAN ; Xiaobo ZHANG
Journal of Shanghai Jiaotong University(Medical Science) 2024;44(11):1391-1405
Objective·To explore the effects and possible molecular mechanisms of nanoplastics(NPs)on severe asthma.Methods·A mouse model of severe asthma was established by using house dust mite(HDM)and lipopolysaccharide(LPS)co-stimulation.Polystyrene nanoplastics(PS-NPs)were instilled into the severe asthma mice's airways.Subsequently,bronchoalveolar lavage fluid(BALF)was collected and lung tissue sections were prepared.Flow cytometry,hematoxylin-eosin(H-E)staining,periodic acid-Schiff(PAS)staining,immunohistochemistry,and terminal dexynucleotidyl transferase-mediated dUTP nick-end labeling(TUNEL)staining,were used to observe the effects of PS-NPs on airway inflammation,mucus secretion,alveolar structure,and the proliferation and apoptosis of alveolar type Ⅱ epithelial cells(AT2 cells)in severe asthma mice.The CCK-8 assay and Annexin Ⅴ/PI double staining were performed to evaluate the effects of PS-NPs on the proliferation and apoptosis of the mouse AT2 cell line MLE-12.DNA damage in AT2 cells caused by PS-NPs was detected by using anti-γ-H2A.X immunofluorescence staining.The expression of genes in the ATR/Chk1/p53 signaling pathway was detected by real-time fluorescent quantitative polymerase chain reaction(qPCR),Western blotting,Tyramide signal amplification(TSA)multiplex immunofluorescence staining,and immunofluorescence co-localization,respectively.The ATR-specific inhibitor Ceralasertib(AZD6738)was administrated to MLE-12 cells in combination with PS-NPs to evaluate the recovery effect on cell proliferation and apoptosis.Results·Flow cytometry revealed that exposure to PS-NPs increased the total number of inflammatory cells and the number of each type of inflammatory cells in the BALF of mice with severe asthma,with a predominance of neutrophils.H-E and PAS staining showed significant increase in airway inflammatory cell infiltration and mucus secretion,as well as disruption of alveolar structure.In vitro,the CCK-8 assay demonstrated significant,dose-dependent inhibition of MLE-12 cell proliferation by PS-NPs.The Annexin V/PI double staining assay indicated a higher apoptosis rate of(56.20±3.84)%in PS-NP-exposed cells compared to(23.22±2.52)%in the control group.Immunofluorescence staining demonstrated that PS-NPs were phagocytosed by MLE-12 cells and localized around the nucleus.TUNEL staining confirmed enhanced apoptosis in AT2 cells in vivo.The immunofluorescence assay revealed that compared to the control group,the expression of the DNA damage marker γ-H2A.X increased in the experimental group.qPCR,Western blotting,and TSA multiplex staining results showed that PS-NP-induced elevated expression of mRNA and proteins was related to the ATR/Chk1/p53 pathway in MLE-12 cells.Moreover,immunofluorescence co-localization also confirmed the induction of ATR and p53 proteins in AT2 cells in vivo.The ATR-specific inhibitor Ceralasertib partially restored the PS-NP-induced inhibition of cell proliferation and enhancement of apoptosis in MLE-12 cells.Conclusion·NPs exposure leads to DNA damage in AT2 cells,activating the ATR/Chk1/p53 signaling pathway and exacerbating airway inflammation and alveolar damage in mice with severe asthma.

Result Analysis
Print
Save
E-mail