1.Huangqi Jianzhongtang Regulates Polarization of Macrophages M1/M2 and Improves Fat Consumption in Cancer Cachexia Mice
Zhiyan FANG ; Haiyan ZHU ; Wenying HUAI ; Cong HUANG ; Ruocong YANG ; Haiyan YU ; Tiane ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(2):61-69
ObjectiveTo investigate the effects of Huangqi Jianzhongtang (HQJZ) on macrophage polarization and fat consumption in cancer cachexia (CC) mice. MethodsUltra-performance liquid chromatography-quadrupole/electrostatic field Orbitrap high-resolution mass spectrometry (UPLC-Q-Orbitrap HRMS) was used to control the quality of HQJZ. (1) In vitro experiment: HQJZ-containing serum was prepared, and the optimal concentration was determined by cytotoxicity assay. Mouse monocyte-derived macrophages (RAW264.7) were cultured and randomly divided into six groups, including a blank group, a classically activated macrophages (M1) group, an alternatively activated macrophages (M2) group, a HQJZ + blank group, a HQJZ+M1 group, and a HQJZ + M2 group. The relative expression of macrophage marker genes CD86, inducible nitric oxide synthase (iNOS), CD206, and arginase-1 (Arg1) was detected by real-time quantitative polymerase chain reaction (Real-time PCR ). (2) In vivo experiment: Thirty-two BALB/c mice were randomly divided into a control group, a model group, a medroxyprogesterone acetate (MPA) group, and a HQJZ group. Except for the control group, the other mice were injected with CT-26 colon cancer cells to establish a CC model. Mice in the MPA and HQJZ groups were given MPA (0.13 g·kg-1·d-1) or HQJZ (13.13 g·kg-1·d-1) by gavage, respectively, while mice in the control and model groups were given an equal volume of saline by gavage, with interventions continued for 10 d. Real-time PCR was used to detect the expression of macrophage markers (iNOS, Arg1, CD86, CD206) and fat browning-related genes uncoupling protein 1 (UCP1) and peroxisome proliferator-activated receptor γ (PPARγ) in epididymal adipose tissue. Western blot (WB) was used to detect protein expression levels of UCP1 and PPARγ. Micro-computed tomography (micro-CT) was used to measure residual fat volume, and hematoxylin-eosin (HE) staining was used to assess fat browning and calculate pathological scores. ResultsIn vitro, the dominant effective concentration of HQJZ-containing serum was 12.5%. Real-time PCR results showed that, compared with the blank group, Arg1 expression decreased in the HQJZ+blank group (P<0.05), CD206 showed a downward trend without statistical significance, while iNOS and CD86 expression were significantly increased (P<0.05). Compared with the M1 group, Arg1 and CD206 expression decreased in the HQJZ+M1 group (P<0.05). Compared with the M2 group, CD206 expression decreased in the HQJZ+M2 group (P<0.05), CD86 expression increased significantly (P<0.01). In vivo, Real-time PCR results showed that, compared with the control group, CD86 and CD206 expression levels were significantly increased in the model group (P<0.01). Compared with the model group, CD206 expression in the MPA group was significantly decreased (P<0.01). In the HQJZ group, CD206 was significantly decreased (P<0.01). WB results showed that, compared with the model group, protein expression of UCP1 and PPARγ was significantly reduced in the HQJZ group (P<0.05, P<0.01). micro-CT results showed that the total white fat volume in the HQJZ group was greater than that in the model group (P<0.05). HE staining results showed that pathological scores in the HQJZ group were lower than those in the model group (P<0.05). ConclusionHQJZ may inhibit white adipose tissue browning by promoting macrophage M1 polarization and suppressing M2 polarization, thereby delaying fat consumption in CC mice.
2.Oligomeric proanthocyanidin ameliorates sepsis-associated renal tubular injury: involvement of oxidative stress, inflammation, PI3K/AKT and NFκκB signaling pathways
Enhui CUI ; Qijing WU ; Haiyan ZHU ; Weiqian TIAN
The Korean Journal of Physiology and Pharmacology 2025;29(2):165-178
Sepsis is a potentially fatal infectious disease that easily causes shock and numerous organ failures. The kidney is one of the most susceptible to injury. Early intervention and renal protection significantly minimize patient mortality. Oligomeric proanthocyanidin (OPC), a naturally occurring plant compound, has a high potential for renal protection. This study was aimed at exploring the potential renoprotective role of OPC in sepsis-related renal tubular injury. C57/B6 mice were intraperitoneally injected with lipopolysaccharide (LPS) to simulate sepsis-related acute kidney injury in vivo. Renal function and pathology were assessed. RNA sequencing examined OPC mechanisms against LPS-induced renal injury. Oxidative stress indicators and inflammatory cytokines in blood serum and renal tissues were evaluated. In vitro, MTT assays assess cell viability. Apoptosis cells were detected using Hoechst 33342 and propidium iodide staining. Western blot assessed PI3K/AKT and NFκB signaling pathway proteins. OPC reduced LPS-induced renal tubular injury, improved renal functions and pathological changes, restored glutathione content, superoxide dismutase activity, and catalase activity, inhibited malondialdehyde overproduction, and suppressed LPS-induced overproduction of pro-inflammatory cytokines and the decline of anti-inflammatory cytokines. OPC attenuated LPS-induced cell morphological injury, reduced cell viability loss, and recovered the changes in proteins involved in PI3K/AKT and NFκB signaling pathways in MTEC cells. OPC protects against LPSinduced renal tubular injury by counteracting oxidative stress, inhibiting inflammatory responses, activating the PI3K/AKT signaling pathway, and inhibiting the NFκB signaling pathway. It may provide a viable solution to lessen renal injury in patients with sepsis.
3.Oligomeric proanthocyanidin ameliorates sepsis-associated renal tubular injury: involvement of oxidative stress, inflammation, PI3K/AKT and NFκκB signaling pathways
Enhui CUI ; Qijing WU ; Haiyan ZHU ; Weiqian TIAN
The Korean Journal of Physiology and Pharmacology 2025;29(2):165-178
Sepsis is a potentially fatal infectious disease that easily causes shock and numerous organ failures. The kidney is one of the most susceptible to injury. Early intervention and renal protection significantly minimize patient mortality. Oligomeric proanthocyanidin (OPC), a naturally occurring plant compound, has a high potential for renal protection. This study was aimed at exploring the potential renoprotective role of OPC in sepsis-related renal tubular injury. C57/B6 mice were intraperitoneally injected with lipopolysaccharide (LPS) to simulate sepsis-related acute kidney injury in vivo. Renal function and pathology were assessed. RNA sequencing examined OPC mechanisms against LPS-induced renal injury. Oxidative stress indicators and inflammatory cytokines in blood serum and renal tissues were evaluated. In vitro, MTT assays assess cell viability. Apoptosis cells were detected using Hoechst 33342 and propidium iodide staining. Western blot assessed PI3K/AKT and NFκB signaling pathway proteins. OPC reduced LPS-induced renal tubular injury, improved renal functions and pathological changes, restored glutathione content, superoxide dismutase activity, and catalase activity, inhibited malondialdehyde overproduction, and suppressed LPS-induced overproduction of pro-inflammatory cytokines and the decline of anti-inflammatory cytokines. OPC attenuated LPS-induced cell morphological injury, reduced cell viability loss, and recovered the changes in proteins involved in PI3K/AKT and NFκB signaling pathways in MTEC cells. OPC protects against LPSinduced renal tubular injury by counteracting oxidative stress, inhibiting inflammatory responses, activating the PI3K/AKT signaling pathway, and inhibiting the NFκB signaling pathway. It may provide a viable solution to lessen renal injury in patients with sepsis.
4.Oligomeric proanthocyanidin ameliorates sepsis-associated renal tubular injury: involvement of oxidative stress, inflammation, PI3K/AKT and NFκκB signaling pathways
Enhui CUI ; Qijing WU ; Haiyan ZHU ; Weiqian TIAN
The Korean Journal of Physiology and Pharmacology 2025;29(2):165-178
Sepsis is a potentially fatal infectious disease that easily causes shock and numerous organ failures. The kidney is one of the most susceptible to injury. Early intervention and renal protection significantly minimize patient mortality. Oligomeric proanthocyanidin (OPC), a naturally occurring plant compound, has a high potential for renal protection. This study was aimed at exploring the potential renoprotective role of OPC in sepsis-related renal tubular injury. C57/B6 mice were intraperitoneally injected with lipopolysaccharide (LPS) to simulate sepsis-related acute kidney injury in vivo. Renal function and pathology were assessed. RNA sequencing examined OPC mechanisms against LPS-induced renal injury. Oxidative stress indicators and inflammatory cytokines in blood serum and renal tissues were evaluated. In vitro, MTT assays assess cell viability. Apoptosis cells were detected using Hoechst 33342 and propidium iodide staining. Western blot assessed PI3K/AKT and NFκB signaling pathway proteins. OPC reduced LPS-induced renal tubular injury, improved renal functions and pathological changes, restored glutathione content, superoxide dismutase activity, and catalase activity, inhibited malondialdehyde overproduction, and suppressed LPS-induced overproduction of pro-inflammatory cytokines and the decline of anti-inflammatory cytokines. OPC attenuated LPS-induced cell morphological injury, reduced cell viability loss, and recovered the changes in proteins involved in PI3K/AKT and NFκB signaling pathways in MTEC cells. OPC protects against LPSinduced renal tubular injury by counteracting oxidative stress, inhibiting inflammatory responses, activating the PI3K/AKT signaling pathway, and inhibiting the NFκB signaling pathway. It may provide a viable solution to lessen renal injury in patients with sepsis.
5.Oligomeric proanthocyanidin ameliorates sepsis-associated renal tubular injury: involvement of oxidative stress, inflammation, PI3K/AKT and NFκκB signaling pathways
Enhui CUI ; Qijing WU ; Haiyan ZHU ; Weiqian TIAN
The Korean Journal of Physiology and Pharmacology 2025;29(2):165-178
Sepsis is a potentially fatal infectious disease that easily causes shock and numerous organ failures. The kidney is one of the most susceptible to injury. Early intervention and renal protection significantly minimize patient mortality. Oligomeric proanthocyanidin (OPC), a naturally occurring plant compound, has a high potential for renal protection. This study was aimed at exploring the potential renoprotective role of OPC in sepsis-related renal tubular injury. C57/B6 mice were intraperitoneally injected with lipopolysaccharide (LPS) to simulate sepsis-related acute kidney injury in vivo. Renal function and pathology were assessed. RNA sequencing examined OPC mechanisms against LPS-induced renal injury. Oxidative stress indicators and inflammatory cytokines in blood serum and renal tissues were evaluated. In vitro, MTT assays assess cell viability. Apoptosis cells were detected using Hoechst 33342 and propidium iodide staining. Western blot assessed PI3K/AKT and NFκB signaling pathway proteins. OPC reduced LPS-induced renal tubular injury, improved renal functions and pathological changes, restored glutathione content, superoxide dismutase activity, and catalase activity, inhibited malondialdehyde overproduction, and suppressed LPS-induced overproduction of pro-inflammatory cytokines and the decline of anti-inflammatory cytokines. OPC attenuated LPS-induced cell morphological injury, reduced cell viability loss, and recovered the changes in proteins involved in PI3K/AKT and NFκB signaling pathways in MTEC cells. OPC protects against LPSinduced renal tubular injury by counteracting oxidative stress, inhibiting inflammatory responses, activating the PI3K/AKT signaling pathway, and inhibiting the NFκB signaling pathway. It may provide a viable solution to lessen renal injury in patients with sepsis.
6.Oligomeric proanthocyanidin ameliorates sepsis-associated renal tubular injury: involvement of oxidative stress, inflammation, PI3K/AKT and NFκκB signaling pathways
Enhui CUI ; Qijing WU ; Haiyan ZHU ; Weiqian TIAN
The Korean Journal of Physiology and Pharmacology 2025;29(2):165-178
Sepsis is a potentially fatal infectious disease that easily causes shock and numerous organ failures. The kidney is one of the most susceptible to injury. Early intervention and renal protection significantly minimize patient mortality. Oligomeric proanthocyanidin (OPC), a naturally occurring plant compound, has a high potential for renal protection. This study was aimed at exploring the potential renoprotective role of OPC in sepsis-related renal tubular injury. C57/B6 mice were intraperitoneally injected with lipopolysaccharide (LPS) to simulate sepsis-related acute kidney injury in vivo. Renal function and pathology were assessed. RNA sequencing examined OPC mechanisms against LPS-induced renal injury. Oxidative stress indicators and inflammatory cytokines in blood serum and renal tissues were evaluated. In vitro, MTT assays assess cell viability. Apoptosis cells were detected using Hoechst 33342 and propidium iodide staining. Western blot assessed PI3K/AKT and NFκB signaling pathway proteins. OPC reduced LPS-induced renal tubular injury, improved renal functions and pathological changes, restored glutathione content, superoxide dismutase activity, and catalase activity, inhibited malondialdehyde overproduction, and suppressed LPS-induced overproduction of pro-inflammatory cytokines and the decline of anti-inflammatory cytokines. OPC attenuated LPS-induced cell morphological injury, reduced cell viability loss, and recovered the changes in proteins involved in PI3K/AKT and NFκB signaling pathways in MTEC cells. OPC protects against LPSinduced renal tubular injury by counteracting oxidative stress, inhibiting inflammatory responses, activating the PI3K/AKT signaling pathway, and inhibiting the NFκB signaling pathway. It may provide a viable solution to lessen renal injury in patients with sepsis.
7.Association of mother-child relationship with sleep quality and executive function among preschool children
CUI Xiaochen*, HE Haiyan, ZHU Min, LI Ruoyu, WU Jun, WAN Yuhui
Chinese Journal of School Health 2025;46(8):1166-1169
Objective:
To investigate the mediating role of children s sleep quality in the association between mother-child relationship and the executive function of preschool children, providing a reference for promoting the development of the executive function of preschool children.
Methods:
A stratified cluster sampling method was used to select 842 preschoolers from 12 kindergartens in Wuhu City, Anhui Province in December 2021 as the subjects of the first follow up study with follow up every six months thereafter. Finally, 746 children were included in the study after 3 follow up. Spearman correlation analysis was used to explore the associations among mother-child relationship, sleep quality and executive function in preschool children. Bootstrap program and PROCESS software were applied to test the mediating effect of sleep quality in the association between mother-child relationship and the executive function of preschool children.
Results:
Conflictual mother-child relationship was positively correlated with the total score of executive function, as well as scores of inhibitory, shifting, emotional control, working memory, and organizational planning ( r=0.40, 0.37, 0.36, 0.41, 0.38 , 0.34, all P <0.05). Dependent mother-child relationship was positively correlated with the total score of executive function, as well as scores of inhibitory, shifting, emotional control, working memory , and organizational planning ( r=0.23, 0.20, 0.21, 0.22 , 0.22, 0.19, all P <0.05). Sleep quality was positively correlated with the total executive function score ( r=0.27, P <0.01). After adjusting for confounding factors, sleep quality played a partial mediating role in the associations between dependent and conflictual mother-child relationships and executive function, the mediating effects were 19.40% and 11.22% respectively.
Conclusions
Sleep quality plays a mediating role in the association between mother-child relationship and the executive function of preschool children. Improving sleep quality in the early stage can promote the executive function of preschool children.
8.Effects of electroacupuncture on cognitive impairment and mitophagy mediated by KIF5A/Miro1 pathway in Parkinson's disease mice.
Mengzhu LI ; Jiafan CHEN ; Mengxuan CHEN ; Haiyan LI ; Zhenyi ZHANG ; Da GAO ; Weicong ZENG ; Lijun ZHAO ; Meiling ZHU
Chinese Acupuncture & Moxibustion 2025;45(8):1111-1119
OBJECTIVE:
To explore the improvement effect of electroacupuncture (EA) based on Xingnao Kaiqiao acupuncture (acupuncture for regaining consciousness and opening orifices) on cognitive impairment in mice with Parkinson's disease (PD), and to explore its regulatory mechanisms on the kinesin family member 5A (KIF5A)/mitochondrial Rho GTPase 1 (Miro1) pathway and mitophagy in prefrontal cortical neurons.
METHODS:
A total of 70 male C57BL/6J mice of clean grade were randomly divided into a normal group (12 mice), a sham operation group (12 mice), and a model pre-screening group (46 mice). Unilateral stereotaxic injection of 6-hydroxydopamine (6-OHDA) into the medial forebrain bundle was adopted to establish the PD model in the model pre-screening group. Twenty-four mice after successful modeling were randomly selected and divided into a model group and an EA group, 12 mice in each one. In the EA group, acupuncture was applied at "Shuigou" (GV26) and bilateral "Sanyinjiao" (SP6) and "Neiguan" (PC6), ipsilateral "Sanyinjiao" (SP6) and "Neiguan" (PC6) were connected to EA respectively, with disperse-dense wave, 5 Hz/20 Hz in frequency, 0.5 mA in current intensity, 20 min a time, 6 times a week for 30 days. Cognitive function was assessed by Y-maze and Morris water maze tests; morphology of prefrontal cortex was observed by H.E. staining; reactive oxygen species (ROS) level in prefrontal cortex was detected by fluorescence probe method; mitochondrial morphology and autophagosome ultrastructure were observed by transmission electron microscopy; the mRNA expression of tyrosine hydroxylase (TH) was detected by quantitative real-time PCR; the protein expression of TH, KIF5A, Miro1, p62, Parkin and PTEN induced kinase 1 (PINK1) was detected by Western blot.
RESULTS:
Compared with the sham operation group, both the model group and the EA group exhibited increased rotation number of per minute (P<0.001). Compared with the sham operation group, in the model group, the novel arm exploration time of Y-maze test was shortened (P<0.001), the escape latency of Morris water maze test was prolonged (P<0.05) and the platform crossing number of Morris water maze test was reduced (P<0.01); in the prefrontal cortex, the number of cellular vacuole and neurons with karyopyknosis was increased (P<0.001), and mitochondrial autophagosomes could be observed; in the prefrontal cortex, the relative expression of ROS was increased (P<0.001), the protein and mRNA expression of TH was decreased (P<0.001), the protein expression of Miro1, PINK1, Parkin was increased (P<0.001, P<0.01), the protein expression of KIF5A and p62 was decreased (P<0.001). Compared with the model group, in the EA group, the novel arm exploration time of Y-maze test was prolonged (P<0.01), the escape latency of Morris water maze test was shortened (P<0.05) and the platform crossing number of Morris water maze test was increased (P<0.05); in the prefrontal cortex, the number of cellular vacuole and neurons with karyopyknosis was decreased (P<0.001), and the number of mitochondrial autophagosomes reduced and the mitochondrial morphology was improved; in the prefrontal cortex, the relative expression of ROS was decreased (P<0.01), the protein and mRNA expression of TH was increased (P<0.001, P<0.01), the protein expression of Miro1, PINK1, Parkin was decreased (P<0.001, P<0.01, P<0.05), the protein expression of KIF5A and p62 was increased (P<0.01, P<0.05).
CONCLUSION
Xingnao Kaiqiao electroacupuncture effectively alleviates cognitive impairment and damage of neuronal function in PD mice, its mechanism may be related to the regulation of KIF5A/Miro1 pathway, hence reducing the mitophagy in prefrontal cortical neurons.
Animals
;
Electroacupuncture
;
Male
;
Mice
;
Parkinson Disease/physiopathology*
;
Cognitive Dysfunction/psychology*
;
Kinesins/genetics*
;
Humans
;
Mitophagy
;
Mice, Inbred C57BL
;
rho GTP-Binding Proteins/genetics*
;
Mitochondria/genetics*
;
Prefrontal Cortex/metabolism*
9.Transplacental digoxin treatment for fetal supraventricular arrhythmias: Insights from Chinese fetuses.
Chuan WANG ; Li ZHAO ; Shuran SHAO ; Haiyan YU ; Shu ZHOU ; Yifei LI ; Qi ZHU ; Xiaoliang LIU ; Hongyu DUAN ; Hanmin LIU ; Yimin HUA ; Kaiyu ZHOU
Chinese Medical Journal 2025;138(12):1499-1501
10.Application value of gracilis muscle flap in repairing urethral perineal fistula after Miles operation.
Ji ZHU ; Ying-Long SA ; Zhe-Wei ZHANG ; Hui-Feng WU
National Journal of Andrology 2025;31(7):625-629
OBJECTIVE:
To investigate the clinical effect of transposition of gracilis muscle flap in repairing urethral perineal fistula after Miles operation.
METHODS:
The clinical data of 3 patients with urethral perineal fistula treated in the Second Affiliated Hospital of Zhejiang University from September 2023 to November 2024 were analyzed retrospectively. All patients were male, aged from 59 to 68 years (mean 63 years). All patients underwent Miles operation because of low rectal cancer. Urethral perineal fistula occurred after 2 months to 13 years of the operation. The underlying comorbidities included diabetes (2/3), preoperative chemoradiotherapy (1/3), and chemotherapy alone (1/3). The endourethral fistula was located in the apical and membranous part of the prostate, with a diameter of 1.5-2.0 cm and a mean of 1.7 cm. Suprapubic cystostomy was performed one month before operation. In all 3 cases, perineal inverted "Y" incision was taken under general anesthesia to expose urethral fistula, cut off necrotic tissue and suture urethral fistula. The gracilis muscle of the right thigh was taken and turned through the perineal subcutaneous tunnel. and 6 stitches were suture at the urethral fistula.
RESULTS:
The operations of all 3 patients were completed successfully. The follow-up period ranged from 2 months to 12 months, with an average of 8 months. There was no case of urinary incontinence after removal of catheter 3 weeks after operation. In two patients, urethrography was reviewed 1 month after surgery to show no fistula residue and urethral stenosis, and the fistula was removed. In one patient with a history of radiotherapy, urethrography was reviewed 1 month after surgery to show a small amount of contrast overflow around the urethra, and urethrography was reviewed again 3 months after surgery to show no contrast overflow around the urethra. All the 3 patients had no disturbance of movement of the right lower limb, and the pain of different degrees of thigh incision was acceptable and basically relieved half a month after operation.
CONCLUSION
Gracilis muscle flap is one of the effective methods for repairing urethral perineal fistula after Miles operation,which has a precise surgical result and few complications.
Humans
;
Male
;
Middle Aged
;
Aged
;
Gracilis Muscle/transplantation*
;
Urinary Fistula/surgery*
;
Retrospective Studies
;
Surgical Flaps
;
Perineum/surgery*
;
Rectal Neoplasms/surgery*
;
Postoperative Complications/surgery*
;
Urethral Diseases/surgery*
;
Urethra/surgery*


Result Analysis
Print
Save
E-mail