1.Applications of ferritin nanoparticles in biological fields.
Yue ZHANG ; Yi RU ; Rongzeng HAO ; Yajun LI ; Longhe ZHAO ; Yang YANG ; Bingzhou LU ; Huanan LIU ; Haixue ZHENG
Chinese Journal of Biotechnology 2025;41(7):2501-2518
Ferritin, a ubiquitous protein in living organisms, plays a crucial role in storing and converting iron, as well as maintaining cellular iron metabolism balance. Due to the ability of self-assembling into unique nanocage-like structures in vitro and the special physicochemical properties, ferritin has garnered extensive attention in the biomedical field. This paper provides a brief overview of the structure and cargo loading strategies of ferritin, with a specific focus on its applications in various biological fields such as nanomedicine, bioimaging, and nanoparticle vaccine carriers. The aim is to offer a valuable reference for the future research involving ferritin nanoparticles.
Ferritins/chemistry*
;
Nanoparticles/chemistry*
;
Humans
;
Nanomedicine/methods*
;
Animals
2.Functional analysis of prolyl oligopeptidase (POP) in foot-and-mouth disease virus replication.
Ziyi WANG ; Rongzeng HAO ; Yi RU ; Bingzhou LU ; Yang YANG ; Longhe ZHAO ; Yajun LI ; Kun MA ; Feifan LENG ; Haixue ZHENG
Chinese Journal of Biotechnology 2025;41(7):2658-2671
The study aims to investigate the impacts of prolyl oligopeptidase (POP) on the replication of foot-and-mouth disease virus (FMDV) in BHK-21 cells. Firstly, the effects of FMDV replication on POP expression in BHK-21 cells were analyzed by Western blotting and Real-time reverse transcription polymerase chain reaction (RT-qPCR). Secondly, a eukaryotic expression plasmid for POP was constructed, and the effects of POP overexpression on the replication of two different serotypes of FMDV were assessed by Western blotting, RT-qPCR, and virus titer assays. Thirdly, specific small interfering RNAs (siRNAs) targeting POP were synthesized, and their efficiency in interfering with endogenous POP expression was identified by RT-qPCR. The impacts of downregulating endogenous POP expression on FMDV replication were further evaluated by Western blotting, RT-qPCR, and virus titer assays. The results indicated that FMDV infection did not significantly affect POP expression in BHK-21 cells. Overexpression of POP dose-dependently enhanced the replication of both FMDV/O and FMDV/A serotypes. Conversely, siRNA-mediated downregulation of endogenous POP expression markedly suppressed FMDV/O replication. This study is the first to demonstrated that the role of the host POP protein in promoting FMDV replication in BHK-21 cells, thereby providing a critical theoretical foundation and potential molecular targets for developing efficient candidate cell strains for foot-and-mouth disease inactivated vaccines.
Foot-and-Mouth Disease Virus/genetics*
;
Virus Replication/genetics*
;
Prolyl Oligopeptidases
;
Serine Endopeptidases/physiology*
;
Animals
;
Cell Line
;
RNA, Small Interfering/genetics*
;
Foot-and-Mouth Disease/virology*
;
Cricetinae
3.Preparation and immunogenicity evaluation of ferritin nanoparticles conjugated with African swine fever virus p30 protein.
Yue ZHANG ; Yi RU ; Rongzeng HAO ; Yang YANG ; Longhe ZHAO ; Yajun LI ; Rui YANG ; Bingzhou LU ; Haixue ZHENG
Chinese Journal of Biotechnology 2024;40(12):4509-4520
This study developed ferritin-based nanoparticles carrying the African swine fever virus (ASFV) p30 protein and evaluated their immunogenicity, aiming to provide an experimental basis for the research on nanoparticle vaccines against ASFV. Initially, the gene sequences encoding the p30 protein and SpyTag were fused and inserted into the pCold-I vector to create the pCold-p30 plasmid. The gene sequences encoding SpyCatcher and ferritin were fused and then inserted into the pET-28a(+) vector to produce the pET-F-np plasmid. Both plasmids were expressed in Escherichia coli upon induction. Subsequently, the affinity chromatography-purified p30 protein was conjugated with ferritin in vitro, and the p30-ferritin (F-p30) nanoparticles were purified by size-exclusion chromatography. The morphology and structural integrity of F-p30 nanoparticles were examined by a particle size analyzer and transmission electron microscopy. Mice were immunized with F-p30 nanoparticles, and the humoral and cellular immune responses were assessed. The results showed that F-p30 nanoparticles were successfully prepared, with the particle size of approximately 20 nm. F-p30 nanoparticles were efficiently internalized by bone marrow-derived dendritic cells (BMDCs) cells in vitro. Compared with the p30 protein alone, F-p30 nanoparticles induced elevated levels of specific antibodies and cytokines in mice and stimulated the proliferation of follicular helper T cell (TFH) and germinal center B cell (GCB) in lymph nodes as well as CD4+ and CD8+ T cells in the spleen. In conclusion, we successfully prepared F-p30 nanoparticles which significantly enhanced the immunogenicity of p30 protein, giving insights into the development of vaccines against ASFV.
Animals
;
Nanoparticles/chemistry*
;
Mice
;
African Swine Fever Virus/genetics*
;
Ferritins/chemistry*
;
Swine
;
Viral Vaccines/genetics*
;
African Swine Fever/immunology*
;
Mice, Inbred BALB C
;
Viral Proteins/genetics*
;
Escherichia coli/metabolism*
;
Dendritic Cells/immunology*
;
Immunogenicity, Vaccine
;
Antibodies, Viral/blood*
;
Female
;
Capsid Proteins/genetics*
4.Recombinant porcine interferon-gamma expressed in CHO cells and its antiviral activity.
Lingyun WANG ; Rongzeng HAO ; Yang YANG ; Yajun LI ; Bingzhou LU ; Yuhan MAO ; Yue ZHANG ; Zhenli GONG ; Yanhong LIU ; Meng QI ; Yi RU ; Haixue ZHENG
Chinese Journal of Biotechnology 2023;39(12):4784-4795
The aim of this study was to produce recombinant porcine interferon gamma (rPoIFN-γ) by Chinese hamster ovarian (CHO) cells expression system and to analyze its antiviral activity. Firstly, we constructed the recombinant eukaryotic expression plasmid pcDNA3.1-PoIFN-γ and transfected into suspension cultured CHO cells for secretory expression of rPoIFN-γ. The rPoIFN-γ was purified by affinity chromatography and identified with SDS-PAGE and Western blotting. Subsequently, the cytotoxicity of rPoIFN-γ was analyzed by CCK-8 test, and the antiviral activity of rPoIFN-γ was evaluated using standard procedures in VSV/PK-15 (virus/cell) test system. Finally the anti-Seneca virus A (SVA) of rPoIFN-γ activity and the induction of interferon-stimulated genes (ISGs) and cytokines were also analyzed. The results showed that rPoIFN-γ could successfully expressed in the supernatant of CHO cells. CCK-8 assays indicated that rPoIFN-γ did not show cytotoxicity on IBRS-2 cells. The biological activity of rPoIFN-γ was 5.59×107 U/mg in VSV/PK-15 system. Moreover, rPoIFN-γ could induced the expression of ISGs and cytokines, and significantly inhibited the replication of SVA. In conclusion, the high activity of rPoIFN-γ was successfully prepared by CHO cells expression system, which showed strong antiviral activity on SVA. This study may facilitate the investigation of rPoIFN-γ function and the development of novel genetically engineered antiviral drugs.
Swine
;
Animals
;
Cricetinae
;
Interferon-gamma/pharmacology*
;
Cricetulus
;
CHO Cells
;
Sincalide
;
Recombinant Proteins/pharmacology*
;
Antiviral Agents/pharmacology*
5.Bovine viral diarrhea virus Erns protein expressed in Chinese hamster ovary cells and its immunogenicity analysis.
Yajun LI ; Yi RU ; Rongzeng HAO ; Xiaodong QIN ; Bingzhou LU ; Yang YANG ; Huanan LIU ; Yue ZHANG ; Zhenli GONG ; Yanhong LIU ; Sijiu YU ; Haixue ZHENG
Chinese Journal of Biotechnology 2023;39(12):4861-4873
The aim of this study was to produce Erns protein of bovine viral diarrhea virus (BVDV) by using suspensively cultured CHO cells expression system and to analyze the immunogenicity of the purified Erns protein. In this study, the recombinant eukaryotic expression plasmid pcDNA3.1-BVDV-Erns was constructed based on the gene sequence of BVDV-1 NADL strain. The Erns protein was secreted and expressed in cells supernatant after transfecting the recombinant expression plasmid pcDNA3.1-BVDV-Erns into CHO cells. The expression and purification of the Erns protein was analyzed by SDS-PAGE, the reactivity was determined with anti-His monoclonal antibodies and BVDV positive serum with Western blotting. Immunogenicity analysis of the Erns protein was determined after immunizing New Zealand white rabbits, and the serum antibodies were tested by indirect ELISA (iELISA) and indirect immunofluorescence (IFA). The serum neutralizing titer of the immunized rabbits was determined by virus neutralization test. The concentration of the purified Erns protein was up to 0.886 mg/mL by BCA protein quantification kit. The results showed that the Erns protein could be detected with anti-His monoclonal antibodies and anti-BVDV sera. Serum antibodies could be detected by iELISA on the 7th day post-prime immunization, and the antibody level was maintained at a high titer until the 28th day post-immunization. The antibody titer was 1:128 000. Furthermore, the expression of the Erns protein in BVDV-infected MDBK cells could be detected with immunized rabbits sera by IFA. Moreover, antigen-specific neutralizing antibodies of 2.71 log10 was induced in rabbits. In this study, purified BVDV Erns protein was successfully produced using CHO suspension culture system, and the recombinant protein was proved to have a good immunogenicity, which may facilitate the development of BVD diagnosis method and novel subunit vaccine.
Rabbits
;
Animals
;
Cricetinae
;
Cricetulus
;
CHO Cells
;
Antibodies, Viral
;
Diarrhea Viruses, Bovine Viral/genetics*
;
Antibodies, Monoclonal/genetics*
;
Diarrhea
;
Viral Vaccines/genetics*
6.The E248R protein of African swine fever virus inhibits the cGAS-STING-mediated innate immunity.
Yinguang LIU ; Wenping YANG ; Yuan WEN ; Qingli NIU ; Jifei YANG ; Guiquan GUAN ; Hong YIN ; Haixue ZHENG ; Dan LI ; Zhijie LIU
Chinese Journal of Biotechnology 2022;38(5):1837-1846
We researched the mechanism of African swine fever virus (ASFV) protein E248R in regulating the cGAS-STING pathway. First, we verified via the dual-luciferase reporter assay system that E248R protein inhibited the secretion of IFN-β induced by cGAS-STING or HT-DNA in a dose-dependent manner. The relative quantitative PCR analysis indicated that the overexpression of E248R inhibited HT-DNA-induced transcription of IFN-b1, RANTES, IL-6, and TNF-α in PK-15 cells. Next, we found that E248R interacted with STING by co-immunoprecipitation assay and laser confocal microscopy. Finally, we demonstrated that E248R inhibited the expression of STING protein by using Western blotting. We demonstrated for the first time that the E248R protein of ASFV suppressed the host innate immune response via inhibiting STING expression. The results are pivotal in extending the understanding of the ASFV immune escape and can guide the design of vaccines against ASFV.
African Swine Fever Virus/genetics*
;
Animals
;
DNA
;
Immunity, Innate
;
Nucleotidyltransferases/metabolism*
;
Signal Transduction
;
Swine
7.Generation and immunogenicity evaluation of Senecavirus A virus-like particles.
Chunping WU ; Yi RU ; Hong TIAN ; Kun MA ; Rongzeng HAO ; Yajun LI ; Juncong LUO ; Zhengwang SHI ; Huanan LIU ; Zhi ZUO ; Haixue ZHENG
Chinese Journal of Biotechnology 2021;37(9):3211-3220
To develop Senecavirus A (SVA) virus-like particles (VLPs), a recombinant prokaryotic expression plasmid pET28a-SVA-VP031 was constructed to co-express SVA structural proteins VP0, VP3 and VP1, according to the genomic sequence of the field isolate CH-FJ-2017 after the recombinant proteins were expressed in E .coli system, and purified by Ni+ ion chromatographic method. The SVA VLPs self-assemble with a high yield in vitro buffer. A typical VLPs with an average diameter of 25-30 nm which is similar to native virions by using TEM detection. Animals immunized by SVA VLPs shown that the VLPs induced high titers neutralizing antibodies in Guinea pigs. This study indicated that the VLPs produced with co-expressing SVA structural proteins VP0, VP3 and VP1 in prokaryotic system is a promising candidate and laid an important foundation for the development of a novel SVA VLPs vaccine.
Animals
;
Antibodies, Neutralizing
;
Escherichia coli/genetics*
;
Genomics
;
Guinea Pigs
;
Picornaviridae/genetics*
8.Effects of five processing methods on compositions and contents of fatty oils in Descurainiae Semen
Hongwei LI ; Yanbang SHI ; Lianqi TIAN ; Haixue KUANG ; Xiaoke ZHENG ; Weisheng FENG
Chinese Traditional Patent Medicine 2017;39(8):1661-1665
AIM To investigate the effects of frost-like powder,steaming,stir-frying with wine,stir-frying with salt-water and stir-frying with vinegar on compositions and contents of fatty oils in Descurainiae Semen.METHODS Descurainiae Semen was processed by five methods,respectively.The fatty oils were extracted from various processed products by petroleum ether,which were then derivatized.GC-MS was adopted in the qualitative identification and quantitative determination.RESULTS Except for frost-like powder,various processing methods could increase the extraction rate of fatty oils.Compared with raw product,the quantities of fatty oils in various processed products were decreased,together with the increased contents.The main compositions of obtained fatty oils were unsaturated fatty acids,whose contents in various processed products (except stir-frying with vinegar product) were higher than those in the raw product.CONCLUSION The effects of different processing methods on compositions and contents of fatty oils in Descurainiae Semen show obvious differences,among which the processing effect of stir-frying with vinegar is not satisfactory.
9.Establishment and evaluation of a murine alphavbeta3-integrin-expressing cell line with increased susceptibility to Foot-and-mouth disease virus.
Wei ZHANG ; Kaiqi LIAN ; Fan YANG ; Yang YANG ; Zhijian ZHU ; Zixiang ZHU ; Weijun CAO ; Ruoqing MAO ; Ye JIN ; Jijun HE ; Jianhong GUO ; Xiangtao LIU ; Haixue ZHENG
Journal of Veterinary Science 2015;16(3):265-272
Integrin alphavbeta3 plays a major role in various signaling pathways, cell apoptosis, and tumor angiogenesis. To examine the functions and roles of alphavbeta3 integrin, a stable CHO-677 cell line expressing the murine alphavbeta3 heterodimer (designated as "CHO-677-malphavbeta3" cells) was established using a highly efficient lentiviral-mediated gene transfer technique. Integrin subunits alphav and beta3 were detected at the gene and protein levels by polymerase chain reaction (PCR) and indirect immunofluorescent assay (IFA), respectively, in the CHO-677-malphavbeta3 cell line at the 20th passage, implying that these genes were successfully introduced into the CHO-677 cells and expressed stably. A plaque-forming assay, 50% tissue culture infective dose (TCID50), real-time quantitative reverse transcription-PCR, and IFA were used to detect the replication levels of Foot-and-mouth disease virus (FMDV) in the CHO-677-malphavbeta3 cell line. After infection with FMDV/O/ZK/93, the cell line showed a significant increase in viral RNA and protein compared with CHO-677 cells. These findings suggest that we successfully established a stable alphavbeta3-receptor-expressing cell line with increased susceptibility to FMDV. This cell line will be very useful for further investigation of alphavbeta3 integrin, and as a cell model for FMDV research.
Animals
;
Animals, Suckling
;
CHO Cells
;
Cloning, Molecular
;
Cricetulus
;
DNA, Complementary/genetics/metabolism
;
Disease Susceptibility/virology
;
Foot-and-Mouth Disease/*genetics/virology
;
Foot-and-Mouth Disease Virus/*physiology
;
Integrin alphaVbeta3/*genetics/metabolism
;
Mice
10.Construction and characterization of an epitope-mutated Asia 1 type foot-and-mouth disease virus.
Yan ZHANG ; Yonghao HU ; Fan YANG ; Bo YANG ; Songhao WANG ; Zixiang ZHU ; Haixue ZHENG
Chinese Journal of Biotechnology 2015;31(1):96-104
To generate an epitope-mutated foot-and-mouth disease virus (FMDV) as a marker vaccine, the infectious clone pAsia 1-FMDV containing the complete genomic cDNA of Asia 1 type FMDV was used as backbone, the residues at positions 27 and 31 in the 3D gene were mutated (H27Y and N31R). The resulting plasmid pAsia 1-FMDV-3DM encoding a mutated epitope was transfected into BHK-21 cells and the recombinant virus rAsia 1-3DM was rescued. The recombinant virus showed similar biological characteristics comparable with the parental virus. In serological neutralization test the antisera against recombine virus have a good reactivity with parental virus. The antisera against the mutant virus were shown to be reactive with the mutated epitope but not the wild-type one. The results indicated that the two virus strains could be distinguished by western blotting using synthetic peptides. This epitope-mutated FMDV strain will be evaluated as a potential marker vaccine against FMDV infections.
Animals
;
Cell Line
;
DNA, Complementary
;
Epitopes
;
genetics
;
Foot-and-Mouth Disease Virus
;
genetics
;
Immune Sera
;
Neutralization Tests
;
Transfection

Result Analysis
Print
Save
E-mail