1.National bloodstream infection bacterial resistance surveillance report (2022) : Gram-negative bacteria
Zhiying LIU ; Yunbo CHEN ; Jinru JI ; Chaoqun YING ; Qing YANG ; Haishen KONG ; Haifeng MAO ; Hui DING ; Pengpeng TIAN ; Jiangqin SONG ; Yongyun LIU ; Jiliang WANG ; Yan JIN ; Yuanyuan DAI ; Yizheng ZHOU ; Yan GENG ; Fenghong CHEN ; Lu WANG ; Yanyan LI ; Dan LIU ; Peng ZHANG ; Junmin CAO ; Xiaoyan LI ; Dijing SONG ; Xinhua QIANG ; Yanhong LI ; Qiuying ZHANG ; Guolin LIAO ; Ying HUANG ; Baohua ZHANG ; Liang GUO ; Aiyun LI ; Haiquan KANG ; Donghong HUANG ; Sijin MAN ; Zhuo LI ; Youdong YIN ; Kunpeng LIANG ; Haixin DONG ; Donghua LIU ; Hongyun XU ; Yinqiao DONG ; Rong XU ; Lin ZHENG ; Shuyan HU ; Jian LI ; Qiang LIU ; Liang LUAN ; Jilu SHEN ; Lixia ZHANG ; Bo QUAN ; Xiaoping YAN ; Xiaoyan QI ; Dengyan QIAO ; Weiping LIU ; Xiusan XIA ; Ling MENG ; Jinhua LIANG ; Ping SHEN ; Yonghong XIAO
Chinese Journal of Clinical Infectious Diseases 2024;17(1):42-57
Objective:To report the results of national surveillance on the distribution and antimicrobial resistance profile of clinical Gram-negative bacteria isolates from bloodstream infections in China in 2022.Methods:The clinical isolates of Gram-negative bacteria from blood cultures in member hospitals of national bloodstream infection Bacterial Resistant Investigation Collaborative System(BRICS)were collected during January 2022 to December 2022. Antibiotic susceptibility tests were conducted by agar dilution or broth dilution methods recommended by Clinical and Laboratory Standards Institute(CLSI). WHONET 5.6 and SPSS 25.0 software were used to analyze the data.Results:During the study period,9 035 strains of Gram-negative bacteria were collected from 51 hospitals,of which 7 895(87.4%)were Enterobacteriaceae and 1 140(12.6%)were non-fermenting bacteria. The top 5 bacterial species were Escherichia coli( n=4 510,49.9%), Klebsiella pneumoniae( n=2 340,25.9%), Pseudomonas aeruginosa( n=534,5.9%), Acinetobacter baumannii complex( n=405,4.5%)and Enterobacter cloacae( n=327,3.6%). The ESBLs-producing rates in Escherichia coli, Klebsiella pneumoniae and Proteus spp. were 47.1%(2 095/4 452),21.0%(427/2 033)and 41.1%(58/141),respectively. The prevalence of carbapenem-resistant Escherichia coli(CREC)and carbapenem-resistant Klebsiella pneumoniae(CRKP)were 1.3%(58/4 510)and 13.1%(307/2 340);62.1%(36/58)and 9.8%(30/307)of CREC and CRKP were resistant to ceftazidime/avibactam combination,respectively. The prevalence of carbapenem-resistant Acinetobacter baumannii(CRAB)complex was 59.5%(241/405),while less than 5% of Acinetobacter baumannii complex was resistant to tigecycline and polymyxin B. The prevalence of carbapenem-resistant Pseudomonas aeruginosa(CRPA)was 18.4%(98/534). There were differences in the composition ratio of Gram-negative bacteria in bloodstream infections and the prevalence of main Gram-negative bacteria resistance among different regions,with statistically significant differences in the prevalence of CRKP and CRPA( χ2=20.489 and 20.252, P<0.001). The prevalence of CREC,CRKP,CRPA,CRAB,ESBLs-producing Escherichia coli and Klebsiella pneumoniae were higher in provinicial hospitals than those in municipal hospitals( χ2=11.953,81.183,10.404,5.915,12.415 and 6.459, P<0.01 or <0.05),while the prevalence of CRPA was higher in economically developed regions(per capita GDP ≥ 92 059 Yuan)than that in economically less-developed regions(per capita GDP <92 059 Yuan)( χ2=6.240, P=0.012). Conclusions:The proportion of Gram-negative bacteria in bloodstream infections shows an increasing trend,and Escherichia coli is ranked in the top,while the trend of CRKP decreases continuously with time. Decreasing trends are noted in ESBLs-producing Escherichia coli and Klebsiella pneumoniae. Low prevalence of carbapenem resistance in Escherichia coli and high prevalence in CRAB complex have been observed. The composition ratio and antibacterial spectrum of bloodstream infections in different regions of China are slightly different,and the proportion of main drug resistant bacteria in provincial hospitals is higher than those in municipal hospitals.
2.National bloodstream infection bacterial resistance surveillance report(2022): Gram-positive bacteria
Chaoqun YING ; Yunbo CHEN ; Jinru JI ; Zhiying LIU ; Qing YANG ; Haishen KONG ; Haifeng MAO ; Hui DING ; Pengpeng TIAN ; Jiangqin SONG ; Yongyun LIU ; Jiliang WANG ; Yan JIN ; Yuanyuan DAI ; Yizheng ZHOU ; Yan GENG ; Fenghong CHEN ; Lu WANG ; Yanyan LI ; Dan LIU ; Peng ZHANG ; Junmin CAO ; Xiaoyan LI ; Dijing SONG ; Xinhua QIANG ; Yanhong LI ; Qiuying ZHANG ; Guolin LIAO ; Ying HUANG ; Baohua ZHANG ; Liang GUO ; Aiyun LI ; Haiquan KANG ; Donghong HUANG ; Sijin MAN ; Zhuo LI ; Youdong YIN ; Kunpeng LIANG ; Haixin DONG ; Donghua LIU ; Hongyun XU ; Yinqiao DONG ; Rong XU ; Lin ZHENG ; Shuyan HU ; Jian LI ; Qiang LIU ; Liang LUAN ; Jilu SHEN ; Lixia ZHANG ; Bo QUAN ; Xiaoping YAN ; Xiaoyan QI ; Dengyan QIAO ; Weiping LIU ; Xiusan XIA ; Ling MENG ; Jinhua LIANG ; Ping SHEN ; Yonghong XIAO
Chinese Journal of Clinical Infectious Diseases 2024;17(2):99-112
Objective:To report the results of national surveillance on the distribution and antimicrobial resistance profile of clinical Gram-positive bacteria isolates from bloodstream infections in China in 2022.Methods:The clinical isolates of Gram-positive bacteria from blood cultures in member hospitals of National Bloodstream Infection Bacterial Resistant Investigation Collaborative System(BRICS)were collected during January 2022 to December 2022. Antibiotic susceptibility tests were conducted by agar dilution or broth dilution methods recommended by Clinical and Laboratory Standards Institute(CLSI). WHONET 5.6 and SPSS 25.0 software were used to analyze the data.Results:A total of 3 163 strains of Gram-positive pathogens were collected from 51 member units,and the top five bacteria were Staphylococcus aureus( n=1 147,36.3%),coagulase-negative Staphylococci( n=928,29.3%), Enterococcus faecalis( n=369,11.7%), Enterococcus faecium( n=296,9.4%)and alpha-hemolyticus Streptococci( n=192,6.1%). The detection rates of methicillin-resistant Staphylococcus aureus(MRSA)and methicillin-resistant coagulase-negative Staphylococci(MRCNS)were 26.4%(303/1 147)and 66.7%(619/928),respectively. No glycopeptide and daptomycin-resistant Staphylococci were detected. The sensitivity rates of Staphylococcus aureus to cefpirome,rifampin,compound sulfamethoxazole,linezolid,minocycline and tigecycline were all >95.0%. Enterococcus faecium was more prevalent than Enterococcus faecalis. The resistance rates of Enterococcus faecium to vancomycin and teicoplanin were both 0.5%(2/369),and no vancomycin-resistant Enterococcus faecium was detected. The detection rate of MRSA in southern China was significantly lower than that in other regions( χ2=14.578, P=0.002),while the detection rate of MRCNS in northern China was significantly higher than that in other regions( χ2=15.195, P=0.002). The detection rates of MRSA and MRCNS in provincial hospitals were higher than those in municipal hospitals( χ2=13.519 and 12.136, P<0.001). The detection rates of MRSA and MRCNS in economically more advanced regions(per capita GDP≥92 059 Yuan in 2022)were higher than those in economically less advanced regions(per capita GDP<92 059 Yuan)( χ2=9.969 and 7.606, P=0.002和0.006). Conclusions:Among the Gram-positive pathogens causing bloodstream infections in China, Staphylococci is the most common while the MRSA incidence decreases continuously with time;the detection rate of Enterococcus faecium exceeds that of Enterococcus faecalis. The overall prevalence of vancomycin-resistant Enterococci is still at a low level. The composition ratio of Gram-positive pathogens and resistant profiles varies slightly across regions of China,with the prevalence of MRSA and MRCNS being more pronounced in provincial hospitals and areas with a per capita GDP≥92 059 yuan.
3.BRICS report of 2021: The distribution and antimicrobial resistance profile of clinical bacterial isolates from blood stream infections in China
Yunbo CHEN ; Jinru JI ; Zhiying LIU ; Chaoqun YING ; Qing YANG ; Haishen KONG ; Jiliang WANG ; Hui DING ; Haifeng MAO ; Yizheng ZHOU ; Yan JIN ; Yongyun LIU ; Yan GENG ; Yuanyuan DAI ; Hong LU ; Peng ZHANG ; Ying HUANG ; Donghong HUANG ; Xinhua QIANG ; Jilu SHEN ; Hongyun XU ; Fenghong CHEN ; Guolin LIAO ; Dan LIU ; Haixin DONG ; Jiangqin SONG ; Lu WANG ; Junmin CAO ; Lixia ZHANG ; Yanhong LI ; Dijing SONG ; Zhuo LI ; Youdong YIN ; Donghua LIU ; Liang GUO ; Qiang LIU ; Baohua ZHANG ; Rong XU ; Yinqiao DONG ; Shuyan HU ; Kunpeng LIANG ; Bo QUAN ; Lin ZHENG ; Ling MENG ; Liang LUAN ; Jinhua LIANG ; Weiping LIU ; Xuefei HU ; Pengpeng TIAN ; Xiaoping YAN ; Aiyun LI ; Jian LI ; Xiusan XIA ; Xiaoyan QI ; Dengyan QIAO ; Yonghong XIAO
Chinese Journal of Clinical Infectious Diseases 2023;16(1):33-47
Objective:To report the results of national surveillance on the distribution and antimicrobial resistance profile of clinical bacterial isolates from bloodstream infections in China in 2021.Methods:The clinical bacterial strains isolated from blood culture from member hospitals of Blood Bacterial Resistant Investigation Collaborative System (BRICS) were collected during January 2021 to December 2021. Antibiotic susceptibility tests were conducted by agar dilution or broth dilution methods recommended by Clinical Laboratory Standards Institute (CLSI). WHONET 5.6 was used to analyze data.Results:During the study period, 11 013 bacterial strains were collected from 51 hospitals, of which 2 782 (25.3%) were Gram-positive bacteria and 8 231 (74.7%) were Gram-negative bacteria. The top 10 bacterial species were Escherichia coli (37.6%), Klebsiella pneumoniae (18.9%), Staphylococcus aureus (9.8%), coagulase-negative Staphylococci (6.3%), Pseudomonas aeruginosa (3.6%), Enterococcus faecium (3.6%), Acinetobacter baumannii (2.8%), Enterococcus faecalis (2.7%), Enterobacter cloacae (2.5%) and Klebsiella spp (2.1%). The prevalence of methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-resistant coagulase-negative Staphylococcus aureus were 25.3% and 76.8%, respectively. No glycopeptide- and daptomycin-resistant Staphylococci was detected; more than 95.0% of Staphylococcus aureus were sensitive to ceftobiprole. No vancomycin-resistant Enterococci strains were detected. The rates of extended spectrum B-lactamase (ESBL)-producing isolated in Escherichia coli, Klebsiella pneumoniae and Proteus mirabilis were 49.6%, 25.5% and 39.0%, respectively. The prevalence rates of carbapenem-resistance in Escherichia coli and Klebsiella pneumoniae were 2.2% and 15.8%, respectively; 7.9% of carbapenem-resistant Klebsiella pneumoniae was resistant to ceftazidime/avibactam combination. Ceftobiprole demonstrated excellent activity against non-ESBL-producing Escherichia coli and Klebsiella pneumoniae. Aztreonam/avibactam was highly active against carbapenem-resistant Escherichia coli and Klebsiella pneumoniae. The prevalence rate of carbapenem-resistance in Acinetobacter baumannii was 60.0%, while polymyxin and tigecycline showed good activity against Acinetobacter baumannii (5.5% and 4.5%). The prevalence of carbapenem-resistance in Pseudomonas aeruginosa was 18.9%. Conclusions:The BRICS surveillance results in 2021 shows that the main pathogens of blood stream infection in China are gram-negative bacteria, in which Escherichia coli is the most common. The MRSA incidence shows a further decreasing trend in China and the overall prevalence of vancomycin-resistant Enterococci is low. The prevalence of Carbapenem-resistant Klebsiella pneumoniae is still on a high level, but the trend is downwards.
4.BRICS report of 2020: The bacterial composition and antimicrobial resistance profile of clinical isolates from bloodstream infections in China
Yunbo CHEN ; Jinru JI ; Chaoqun YING ; Zhiying LIU ; Qing YANG ; Haishen KONG ; Yuanyuan DAI ; Jiliang WANG ; Haifeng MAO ; Hui DING ; Yongyun LIU ; Yizheng ZHOU ; Hong LU ; Youdong YIN ; Yan JIN ; Hongyun XU ; Lixia ZHANG ; Lu WANG ; Haixin DONG ; Zhenghai YANG ; Fenghong CHEN ; Donghong HUANG ; Guolin LIAO ; Pengpeng TIAN ; Dan LIU ; Yan GENG ; Sijin MAN ; Baohua ZHANG ; Ying HUANG ; Liang GUO ; Junmin CAO ; Beiqing GU ; Yanhong LI ; Hongxia HU ; Liang LUAN ; Shuyan HU ; Lin ZHENG ; Aiyun LI ; Rong XU ; Kunpeng LIANG ; Zhuo LI ; Donghua LIU ; Bo QUAN ; Qiang LIU ; Jilu SHEN ; Yiqun LIAO ; Hai CHEN ; Qingqing BAI ; Xiusan XIA ; Shifu WANG ; Jinhua LIANG ; Liping ZHANG ; Yinqiao DONG ; Xiaoyan QI ; Jianzhong WANG ; Xuefei HU ; Xiaoping YAN ; Dengyan QIAO ; Ling MENG ; Yonghong XIAO
Chinese Journal of Clinical Infectious Diseases 2021;14(6):413-426
Objective:To investigate the bacterial composition and antimicrobial resistance profile of clinical isolates from bloodstream infections in China.Methods:The clinical bacterial strains isolated from blood culture were collected during January 2020 to December 2020 in member hospitals of Blood Bacterial Resistant Investigation Collaborative System (BRICS). Antibiotic susceptibility tests were conducted by agar dilution or broth dilution methods recommended by Clinical Laboratory Standards Institute(CLSI, USA). WHONET 5.6 was used to analyze data.Results:During the study period, 10 043 bacterial strains were collected from 54 hospitals, of which 2 664 (26.5%) were Gram-positive bacteria and 7 379 (73.5%) were Gram-negative bacteria. The top 10 bacterial species were Escherichia coli (38.6%), Klebsiella pneumoniae (18.4%), Staphylococcus aureus (9.9%), coagulase-negative Staphylococci (7.5%), Pseudomonas aeruginosa (3.9%), Enterococcus faecium (3.3%), Enterobacter cloacae (2.8%), Enterococcus faecalis (2.6%), Acinetobacter baumannii (2.4%) and Klebsiella spp (1.8%). The prevalence of methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-resistant coagulase-negative Staphylococcus aureus were 27.6% and 74.4%, respectively. No glycopeptide- and daptomycin-resistant Staphylococci were detected. More than 95% of Staphylococcus aureus were sensitive to rifampicin and SMZco. No vancomycin-resistant Enterococci strains were detected. Extended spectrum β-lactamase (ESBL) producing Escherichia coli, Klebsiella pneumoniae and Proteus mirabilis were 48.4%, 23.6% and 36.1%, respectively. The prevalence rates of carbapenem-resistance in Escherichia coli and Klebsiella pneumoniae were 2.3% and 16.1%, respectively; 9.6% of carbapenem-resistant Klebsiella pneumoniae strains were resistant to ceftazidime/avibactam combination. The prevalence rate of carbapenem-resistance in Acinetobacter baumannii was 60.0%, while polymyxin and tigecycline showed good activity against Acinetobacter baumannii. The prevalence rate of carbapenem-resistance of Pseudomonas aeruginosa was 23.2%. Conclusions:The surveillance results in 2020 showed that the main pathogens of bloodstream infection in China were gram-negative bacteria, while Escherichia coli was the most common pathogen, and ESBL-producing strains declined while carbapenem-resistant Klebsiella pneumoniae kept on high level. The proportion and the prevalence of carbapenem-resistant Pseudomonas aeruginosa were on the rise slowly. On the other side, the MRSA incidence got lower in China, while the overall prevalence of vancomycin-resistant Enterococci was low.
5.BRICS report of 2018-2019: the distribution and antimicrobial resistance profile of clinical isolates from blood culture in China
Yunbo CHEN ; Jinru JI ; Chaoqun YING ; Peipei WANG ; Zhiying LIU ; Qing YANG ; Haishen KONG ; Hui DING ; Yongyun LIU ; Haifeng MAO ; Ying HUANG ; Zhenghai YANG ; Yuanyuan DAI ; Guolin LIAO ; Lisha ZHU ; Liping ZHANG ; Yanhong LI ; Hongyun XU ; Junmin CAO ; Baohua ZHANG ; Liang GUO ; Haixin DONG ; Shuyan HU ; Sijin MAN ; Lu WANG ; Zhixiang LIAO ; Rong XU ; Dan LIU ; Yan JIN ; Yizheng ZHOU ; Yiqun LIAO ; Fenghong CHEN ; Beiqing GU ; Jiliang WANG ; Jinhua LIANG ; Lin ZHENG ; Aiyun LI ; Jilu SHEN ; Yinqiao DONG ; Lixia ZHANG ; Hongxia HU ; Bo QUAN ; Wencheng ZHU ; Kunpeng LIANG ; Qiang LIU ; Shifu WANG ; Xiaoping YAN ; Jiangbang KANG ; Xiusan XIA ; Lan MA ; Li SUN ; Liang LUAN ; Jianzhong WANG ; Zhuo LI ; Dengyan QIAO ; Lin ZHANG ; Lanjuan LI ; Yonghong XIAO
Chinese Journal of Clinical Infectious Diseases 2021;14(1):32-45
Objective:To investigate the distribution and antimicrobial resistance profile of clinical bacteria isolated from blood culture in China.Methods:The clinical bacterial strains isolated from blood culture from member hospitals of Blood Bacterial Resistant Investigation Collaborative System (BRICS) were collected during January 2018 to December 2019. Antibiotic susceptibility tests were conducted with agar dilution or broth dilution methods recommended by US Clinical and Laboratory Standards Institute (CLSI). WHONET 5.6 was used to analyze data.Results:During the study period, 14 778 bacterial strains were collected from 50 hospitals, of which 4 117 (27.9%) were Gram-positive bacteria and 10 661(72.1%) were Gram-negative bacteria. The top 10 bacterial species were Escherichia coli (37.2%), Klebsiella pneumoniae (17.0%), Staphylococcus aureus (9.7%), coagulase-negative Staphylococci (8.7%), Pseudomonas aeruginosa (3.7%), Enterococcus faecium (3.4%), Acinetobacter baumannii(3.4%), Enterobacter cloacae (2.9%), Streptococci(2.8%) and Enterococcus faecalis (2.3%). The the prevalence of methicillin-resistant S. aureus (MRSA) and methicillin-resistant coagulase-negative Staphylococcus were 27.4% (394/1 438) and 70.4% (905/1 285), respectively. No glycopeptide-resistant Staphylococcus was detected. More than 95% of S. aureus were sensitive to amikacin, rifampicin and SMZco. The resistance rate of E. faecium to vancomycin was 0.4% (2/504), and no vancomycin-resistant E. faecalis was detected. The ESBLs-producing rates in no carbapenem-resistance E. coli, carbapenem sensitive K. pneumoniae and Proteus were 50.4% (2 731/5 415), 24.6% (493/2001) and 35.2% (31/88), respectively. The prevalence of carbapenem-resistance in E. coli and K. pneumoniae were 1.5% (85/5 500), 20.6% (518/2 519), respectively. 8.3% (27/325) of carbapenem-resistance K. pneumoniae was resistant to ceftazidime/avibactam combination. The resistance rates of A. baumannii to polymyxin and tigecycline were 2.8% (14/501) and 3.4% (17/501) respectively, and that of P. aeruginosa to carbapenem were 18.9% (103/546). Conclusions:The surveillance results from 2018 to 2019 showed that the main pathogens of bloodstream infection in China were gram-negative bacteria, while E. coli was the most common pathogen, and ESBLs-producing strains were in majority; the MRSA incidence is getting lower in China; carbapenem-resistant E. coli keeps at a low level, while carbapenem-resistant K. pneumoniae is on the rise obviously.
6.BRICS report of 2016-2017: the distribution and antimicrobial resistance profile of clinical isolates from blood culture in China
Yunbo CHEN ; Jinru JI ; Chaoqun YING ; Peipei WANG ; Qing YANG ; Haishen KONG ; Yongyun LIU ; Ying HUANG ; Yuanyuan DAI ; Liping ZHANG ; Hui DING ; Liang GUO ; Baohua ZHANG ; Lisha ZHU ; Haifeng MAO ; Zhixiang LIAO ; Yanhong LI ; Lu WANG ; Shuyan HU ; Zhenghai YANG ; Beiqing GU ; Haixin DONG ; Fei DU ; Lin ZHENG ; Bo QUAN ; Wencheng ZHU ; Jianzhong WANG ; Lan MA ; Rong XU ; Li SUN ; Aiyun LI ; Junmin CAO ; Jinhua LIANG ; Hongyun XU ; Kunpeng LIANG ; Dengyan QIAO ; Xiaoyan QI ; Xiusan XIA ; Lanjuan LI ; Yonghong XIAO
Chinese Journal of Clinical Infectious Diseases 2020;13(1):42-54
Objective:To investigate the distribution and antimicrobial resistance profile of clinical bacteria isolated from blood culture in China.Methods:The clinical bacterial strains isolated from blood culture from member hospitals of Blood Bacterial Resistant Investigation Collaborative System (BRICS) were collected during January 2016 to December 2017. Antibiotic susceptibility tests were conducted by agar dilution or broth dilution methods recommended by US Clinical and Laboratory Standards Institute (CLSI) 2019. WHONET 5.6 was used to analyze data.Results:During the study period, 8 154 bacterial strains were collected from 33 hospitals, of which 2 325 (28.5%) were Gram-positive bacteria and 5 829 (71.5%) were Gram-negative bacteria. The top 10 bacterial species were Escherichia coli (34.7%), Klebsiella pneumoniae (15.8%), Staphylococcus aureus (11.3%), coagulase-negative Staphylococci (7.4%), Acinetobacter baumannii (4.6%), Pseudomonas aeruginosa (3.9%), Enterococcus faecium (3.8%), Streptococci (2.9%), Enterobacter cloacae (2.7%) and Enterococcus faecalis (2.5%). Methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-resistant coagulase-negative Staphylococcus (MRCNS) accounted for 34.2%(315/922) and 77.7%(470/605), respectively. No vancomycin-resistant Staphylococcus was detected. The resistance rate of Enterococcus faecium to vancomycin was 0.6%(2/312), and no vancomycin-resistant Enterococcus faecium was detected. The ESBLs-producing rates in Escherichia coli, Klebsiella pneumoniae and Proteus were 55.7%(1 576/2 831), 29.9%(386/1 289) and 38.5%(15/39), respectively. The incidences of carbapenem-resistance in Escherichia coli, Klebsiella pneumoniae were 1.2%(33/2 831), 17.5%(226/1 289), respectively. The resistance rates of Acinetobacter baumannii to polymyxin and tigecycline were 14.8%(55/372) and 5.9%(22/372) respectively, and those of Pseudomonas aeruginosa to polymyxin and carbapenem were 1.3%(4/315) and 18.7%(59/315), respectively. Conclusion:The surveillance results from 2016 to 2017 showed that the main pathogens of blood stream infection in China were gram-negative bacteria, while Escherichia coli was the most common pathogen; the MRSA incidence was lower than other surveillance data in the same period in China; carbapenem-resistant Escherichia coli was at a low level during this surveillance, while carbapenem-resistant Klebsiella pneumoniae is on the rise.
7.Whole-genome sequence-based analysis of Klebsiella pneumoniae JM45
Jianming ZHU ; Rujin JIANG ; Xingbei WENG ; Kangle WU ; Haishen KONG
Chinese Journal of Clinical Infectious Diseases 2014;7(1):27-33
Objective To investigate the distribution of β-lactamase genes in a pan-drug resistant Klebsiella pneumoniae isolate JM45.Methods Klebsiella pneumoniae JM45 was isolated from the blood sample of a patient admitted in the intensive care unit,the Second Affiliated Hospital,Zhejiang University School of Medicine on April 7,2010.The susceptibilities to 26 antibiotics were tested using E-test method.Cica-β-Test was performed to detect β-lactams,and modified Hodge test was performed to detect carbapenemase.Resistant genotypes were detected using PCR,DNA sequencing and BLAST algorithm.Whole genome sequencing (complete graph) was performed by high throughput Roche 454 sequencing approach to analyze the distribution of β-lactamase genes.Results Except polymyxin B and tigecycline,JM45 was resistant to other 24 kinds of antibiotics including cephalosporins and carbapenems.Several β-lactamases were positive in Cica-β-Test,and modified Hodge test was positive.Based on PCR typing,TEM-1,SHV-11,CTX-M-24 and VEB-3 were positive,but carbapenemase genes and metallo-β-lactamase genes were negative.A complete genome (chromosome) sequence (GenBank accession number:CP006656) and 2 plasmids sequences (GenBank accession number:CP006657,CP006658) were obtained by wholegenome sequencing.CTX-M-24 (Locus tag:N559_5233),TEM-1 (Locus tag:N559_5242) and VEB-3 (Locus tag:N559_5248) were positive in plasmid 1.CTX-M-24 located in insertion sequence (IS903-CTXM-24-ISEcp1),while TEM-1 and VEB-3 located in transposons (tnpA-TEM-1-rmtB and VEB-3-tnpA).SHV-11 (Locus tag:N559_2715) was positive in genome (chromosome),and 4 putative β-lactamase genes or β-lactamase domains were obtained:(1) metallo-β-lactamase domain protein (Locus tag:N559_0119,780 bp) ; (2) putative β-lactamase (Locus tag:N559_1633,1308 bp) ; (3) β-lactamase domain protein (Locus tag:N559_2279,813 bp); (4) β-lactamase domain protein (Locus tag:N559_3769,1101 bp).No insertion sequence or transposase gene was observed near SHV-11.Conclusion The resistance to antibiotics including cephalosporins and carbapenems is correlated with TEM-1,SHV-11,CTX-M-24,VEB-3 and 4 kinds of putative β-lactamase genes or β-lactamase domains.
8.Molecular evolution of carbapenemases KPC-12 and molecular docking analysis of β-lactams
Jianming ZHU ; Rujin JIANG ; Danyu XIAO ; Kangle WU ; Haishen KONG
Chinese Journal of Clinical Infectious Diseases 2013;(1):31-34
Objective To analyze molecular evolution of carbapenemase KPC-12 and its binding free energies with β-lactams.Methods Class A beta-lactamases were divided into 2 clusters:those with carbapenemase activities and those without.Minimum Evolution method in MEGA4.1 software was used to analyze molecular evolution of class A beta-lactamases with carbapenemase activity,including KPC-2 to KPC-13,SFC-1,SME-1,IMI-1,NMC-A,and class A beta-lactamases without carbapenemase activity,including TEM-1,SHV-1.Then,tertiary structure of KPC-12 was predicted by homology modeling as reported in SWISS-MODEL database depending on tertiary structure of KPC-2.Moreover,DOCK module in ArgusLab 4.1 software was used to perform molecular docking of KPC-12 to 10 kinds of beta-lactams substrates,and the binding free energies (△ G) were calculated.Results Molecular evolution between KPC-12 and KPC-2 was the closest.The top three decline in binding free energies of β-lactams were penicillin G sodium salt (△G =-8.45149 kcal/mol),ertapenem (△G =-8.36383 kcal/mol) and ampicillin (△G =-8.19326 kcal/mol),while the last two decline in binding free energies of β-lactams were aztreonam (△G =-6.50614 kca]/mol) and clavulanic acid (△G =-6.88533 kcal/mol).Conclusion Carbapenemase KPC-12 has high catalytic activities to penicillin G sodium salt,ertapenem and ampicillin,while has low catalytic activities to aztreonam and clavulanic acid.
9.Characterization of resistance to β-lactams in clinical isolates of Klebsiella pneumoniae
Jianming ZHU ; Rujin JIANG ; Kangle WU ; Zhaolong MA ; Haishen KONG ; Rong ZHANG ; Huoxiang Lü ; Zhimi HUANG ; Changgui SUN
Chinese Journal of Clinical Infectious Diseases 2011;04(5):278-283
ObjectiveTo investigate correlation between drug-resistance related genes and mobile genetic elements of Klebsiella pneumoniae resistant to β-lactams. Methods Forty-seven strains of multidrug-resistant Klebsiella pneumoniae were collected from 6 hospitals in Hangzhou and Huzhou of Zhejiang province from August 2008 to May 2010.Modified Hodge test was performed to detect phenotypes of carbapenemases.Forty kinds of β-lactamases (class A-D),ompK35,ompK36,and 12 kinds of mobile genetic elements were detected by PCR,and the results were analyzed by index cluster.ResultsThirty-five strains were positive in modified Hodge test,and 5 kinds of β-lactamases gene ( including KPC-2-like,GenBank:HQ258934) and 9 kinds of mobile genetic elements were detected.Mutations were observed in ompK35 and ompK36 when compared with sensitive strains.Index cluster analysis showed that correlation existed between KPC-2,KPC-2-like and ISKpn6,between TEM-1 and ISEcpl,IS26,int Ⅰ 1,trbC,IS903,and between CMY-2,OXA-30,DHA-1 and tnpU,tnp513,trbC.ConclusionsFive kinds of β-1actamases genes,and mutations in ompK35 and ompK36 may be associated with the resistance to β-1actams in multidrug-resistant Klebsiella pneumoniae.
10.Efficacy of synergistic antibiotic combinations against KPC-2 carbapenemase producing Klebsiella pneumoniae strains
Qing YANG ; Yanping ZOU ; Zhiming SHAN ; Zeqing WEI ; Ping SHEN ; Haishen KONG ; Yunsong YU
Chinese Journal of Laboratory Medicine 2011;34(11):984-987
Objective To investigate the synergistic efficacy of different antibiotic combinations against KPC-2 carbapenemase producing Klebsiella pneumoniae strains in vitro and search for effective antibiotic combination.Methods During 2008 - 2009,a total of 24 strains of K.pneumoniae producing KPC-2 carbapenemase were collected from 8 hospitals in the First Affiliated Hospital of Medical School of Zhejiang University,Ningbo LiHuiLi Hospital,Zhejiang People's Hospital,Hangzhou Third Hospital,the Second Hospital of Shaoxing,Hangzhou First Hospital,Fudan University Huashan Hospital,General Hospital of Nanjing Military Region.MLST technique was used for epidemiological analysis.The MIC of antibiotics,such as amikacin,minocycline,imipenem,amoxicillin/clavulanic-acid,ceftazidime,meropenem,gentamicin,cefoxitin,cefepime,rifampicin,polymyxinB,ciprofloxacin were determined by an agar dilution method,the MIC of tigecycline and piperacillin/tazobactain were determined by Etest.The antibacterial activities of cefepime in combination with amoxicillin/clavulanic-acid,amikacin,or ciprofloxacin,amikacin with ciprofloxacin,imipenem with amikacin,ciprofloxacin,polymyxinB,or minocycline,polymyxin B with rifampicin,ceftazidime with amoxicillin/clavulanic-acid were assessed by chequerboard synergy agar dilution tests against all the isolates.Results MLST showed 5 STs among 24 strains of KPC-2 carbapenemase producing K.pneumoniae,and the most prevalent clone was ST11 (15 strains).All isolates were susceptible to polymyxin B and tigecycline,and the resistance rate of minocycline was 4.2%.The synergetic effects were observed in cefepime-amoxicillin/clavulanic acid,imipenem-amikacin,ceftazidime-amoxicillin/clavulanic acid combinations as 19 isolates,13 isolates,and 13 isolates,respectively.Conclusions KPC-2 carbapenemase producing K.pneumoniae is sensitive to polymyxin B,tigecycline and minocycline.The synergetic effect is predominant in cefepime-amoxicillin/clavulanic acid,imipenem-amikacin ceftazidime-amoxicillin/clavulanic acid combinations in vitro,their clinical efficacy are worthy of further observation.

Result Analysis
Print
Save
E-mail