1.Stem Cell-Based Hair Cell Regeneration and Therapy in the Inner Ear.
Jieyu QI ; Wenjuan HUANG ; Yicheng LU ; Xuehan YANG ; Yinyi ZHOU ; Tian CHEN ; Xiaohan WANG ; Yafeng YU ; Jia-Qiang SUN ; Renjie CHAI
Neuroscience Bulletin 2024;40(1):113-126
Hearing loss has become increasingly prevalent and causes considerable disability, thus gravely burdening the global economy. Irreversible loss of hair cells is a main cause of sensorineural hearing loss, and currently, the only relatively effective clinical treatments are limited to digital hearing equipment like cochlear implants and hearing aids, but these are of limited benefit in patients. It is therefore urgent to understand the mechanisms of damage repair in order to develop new neuroprotective strategies. At present, how to promote the regeneration of functional hair cells is a key scientific question in the field of hearing research. Multiple signaling pathways and transcriptional factors trigger the activation of hair cell progenitors and ensure the maturation of newborn hair cells, and in this article, we first review the principal mechanisms underlying hair cell reproduction. We then further discuss therapeutic strategies involving the co-regulation of multiple signaling pathways in order to induce effective functional hair cell regeneration after degeneration, and we summarize current achievements in hair cell regeneration. Lastly, we discuss potential future approaches, such as small molecule drugs and gene therapy, which might be applied for regenerating functional hair cells in the clinic.
Infant, Newborn
;
Humans
;
Hair Cells, Auditory, Inner/physiology*
;
Ear, Inner/physiology*
;
Hair Cells, Auditory/physiology*
;
Regeneration/genetics*
;
Stem Cells
2.Fgf8P2A-3×GFP/+: A New Genetic Mouse Model for Specifically Labeling and Sorting Cochlear Inner Hair Cells.
Yi PAN ; Shuting LI ; Shunji HE ; Guangqin WANG ; Chao LI ; Zhiyong LIU ; Mingliang XIANG
Neuroscience Bulletin 2023;39(12):1762-1774
The cochlear auditory epithelium contains two types of sound receptors, inner hair cells (IHCs) and outer hair cells (OHCs). Mouse models for labelling juvenile and adult IHCs or OHCs exist; however, labelling for embryonic and perinatal IHCs or OHCs are lacking. Here, we generated a new knock-in Fgf8P2A-3×GFP/+ (Fgf8GFP/+) strain, in which the expression of a series of three GFP fragments is controlled by endogenous Fgf8 cis-regulatory elements. After confirming that GFP expression accurately reflects the expression of Fgf8, we successfully obtained both embryonic and neonatal IHCs with high purity, highlighting the power of Fgf8GFP/+. Furthermore, our fate-mapping analysis revealed, unexpectedly, that IHCs are also derived from inner ear progenitors expressing Insm1, which is currently regarded as an OHC marker. Thus, besides serving as a highly favorable tool for sorting early IHCs, Fgf8GFP/+ will facilitate the isolation of pure early OHCs by excluding IHCs from the entire hair cell pool.
Animals
;
Mice
;
Hair Cells, Auditory, Inner
;
Cochlea/metabolism*
;
Hair Cells, Auditory, Outer/metabolism*
;
Disease Models, Animal
;
Fibroblast Growth Factor 8/metabolism*
3.Effect of Sodium Salicylate on Calcium Currents and Exocytosis in Cochlear Inner Hair Cells: Implications for Tinnitus Generation.
Ting FAN ; Meng-Ya XIANG ; Ruo-Qiao ZHOU ; Wen LI ; Li-Qin WANG ; Peng-Fei GUAN ; Geng-Lin LI ; Yun-Feng WANG ; Jian LI
Neuroscience Bulletin 2022;38(1):69-80
Sodium salicylate is an anti-inflammatory medication with a side-effect of tinnitus. Here, we used mouse cochlear cultures to explore the effects of salicylate treatment on cochlear inner hair cells (IHCs). We found that IHCs showed significant damage after exposure to a high concentration of salicylate. Whole-cell patch clamp recordings showed that 1-5 mmol/L salicylate did not affect the exocytosis of IHCs, indicating that IHCs are not involved in tinnitus generation by enhancing their neuronal input. Instead, salicylate induced a larger peak amplitude, a more negative half-activation voltage, and a steeper slope factor of Ca2+ current. Using noise analysis of Ca2+ tail currents and qRT-PCR, we further found that salicylate increased the number of Ca2+ channels along with CaV1.3 expression. All these changes could act synergistically to enhance the Ca2+ influx into IHCs. Inhibition of intracellular Ca2+ overload significantly attenuated IHC death after 10 mmol/L salicylate treatment. These results implicate a cellular mechanism for tinnitus generation in the peripheral auditory system.
Animals
;
Calcium
;
Exocytosis
;
Hair Cells, Auditory, Inner
;
Mice
;
Sodium Salicylate/pharmacology*
;
Tinnitus/chemically induced*
4.Aligned Organization of Synapses and Mitochondria in Auditory Hair Cells.
Jing LIU ; Shengxiong WANG ; Yan LU ; Haoyu WANG ; Fangfang WANG ; Miaoxin QIU ; Qiwei XIE ; Hua HAN ; Yunfeng HUA
Neuroscience Bulletin 2022;38(3):235-248
Recent studies have revealed great functional and structural heterogeneity in the ribbon-type synapses at the basolateral pole of the isopotential inner hair cell (IHC). This feature is believed to be critical for audition over a wide dynamic range, but whether the spatial gradient of ribbon morphology is fine-tuned in each IHC and how the mitochondrial network is organized to meet local energy demands of synaptic transmission remain unclear. By means of three-dimensional electron microscopy and artificial intelligence-based algorithms, we demonstrated the cell-wide structural quantification of ribbons and mitochondria in mature mid-cochlear IHCs of mice. We found that adjacent IHCs in staggered pairs differ substantially in cell body shape and ribbon morphology gradient as well as mitochondrial organization. Moreover, our analysis argues for a location-specific arrangement of correlated ribbon and mitochondrial function at the basolateral IHC pole.
Animals
;
Artificial Intelligence
;
Cochlea/metabolism*
;
Hair Cells, Auditory, Inner
;
Mice
;
Mitochondria
;
Synapses/metabolism*
5.Effects of Toluene on the Development of the Inner Ear and Lateral Line Sensory System of Zebrafish.
Xu Dong LI ; Hong Wei TU ; Ke Qi HU ; Yun Gang LIU ; Li Na MAO ; Feng Yan WANG ; Hong Ying QU ; Qing CHEN
Biomedical and Environmental Sciences 2021;34(2):110-118
Objective:
The aim of this study was to explore the ototoxicity of toluene in the early development of zebrafish embryos/larvae.
Methods:
Zebrafish were utilized to explore the ototoxicity of toluene. Locomotion analysis, immunofluorescence, and qPCR were used to understand the phenotypes and molecular mechanisms of toluene ototoxicity.
Results:
The results demonstrated that at 2 mmol/L, toluene induced zebrafish larvae death at 120 hours post fertilization (hpf) at a rate of 25.79% and inhibited the rate of hatching at 72 hpf. Furthermore, toluene exposure inhibited the distance travelled and average swimming velocity of zebrafish larvae while increasing the frequency of movements. As shown by fluorescence staining of hair cells, toluene inhibited the formation of lateral line neuromasts and middle line 1 (Ml
Conclusion
This study indicated that toluene may affect the development of both the inner ear and lateral line systems in zebrafish, while the lateral line system may be more sensitive to toluene than the inner ear.
Animals
;
Ear, Inner/growth & development*
;
Embryo, Nonmammalian/drug effects*
;
Gene Expression Regulation, Developmental/drug effects*
;
Hair Cells, Auditory/metabolism*
;
Lateral Line System/growth & development*
;
Locomotion/drug effects*
;
Ototoxicity/physiopathology*
;
Toluene/toxicity*
;
Zebrafish
6.ROS Scavenger, Ebselen, Has No Preventive Effect in New Hearing Loss Model Using a Cholesterol-Chelating Agent
Min Young LEE ; Lisa L KABARA ; Donald L SWIDERSKI ; Yehoash RAPHAEL ; R Keith DUNCAN ; Young Ho KIM
Journal of Audiology & Otology 2019;23(2):69-75
BACKGROUND AND OBJECTIVES: The antioxidant ebselen will be able to limit or prevent the ototoxicity arising from 2-hydroxypropyl-β-cyclodextrin (HPβCD). Niemann-Pick Type C (NPC) disease is a disorder of lysosomal storage manifested in sphingolipidosis. Recently, it was noted that experimental use of HPβCD could partially resolve the symptoms in both animals and human patients. Despite its desirable effect, HPβCD can induce hearing loss, which is the only major side effect noted to date. Understanding of the pathophysiology of hearing impairment after administration of HPβCD and further development of preventive methods are essential to reduce the ototoxic side effect. The mechanisms of HPβCD-induced ototoxicity remain unknown, but the resulting pathology bears some resemblance to other ototoxic agents, which involves oxidative stress pathways. To indirectly determine the involvement of oxidative stress in HPβCD-induced ototoxicity, we tested the efficacy of an antioxidant reagent, ebselen, on the extent of inner ear side effects caused by HPβCD. MATERIALS AND METHODS: Ebselen was applied prior to administration of HPβCD in mice. Auditory brainstem response thresholds and otopathology were assessed one week later. Bilateral effects of the drug treatments also were examined. RESULTS: HPβCD-alone resulted in bilateral, severe, and selective loss of outer hair cells from base to apex with an abrupt transition between lesions and intact areas. Ebselen co-treatment did not ameliorate HPβCD-induced hearing loss or alter the resulting histopathology. CONCLUSIONS: The results indirectly suggest that cochlear damage by HPβCD is unrelated to reactive oxygen species formation. However, further research into the mechanism(s) of HPβCD otopathology is necessary.
Animals
;
Ear, Inner
;
Evoked Potentials, Auditory, Brain Stem
;
Hair Cells, Auditory, Outer
;
Hearing Loss
;
Hearing
;
Humans
;
Mice
;
Oxidative Stress
;
Pathology
;
Reactive Oxygen Species
;
Sphingolipidoses
;
Tight Junctions
7.Locacorten Vioform Ototoxicity Upon Guinea Pig Middle Ear Application
Journal of Audiology & Otology 2018;22(2):75-79
BACKGROUND AND OBJECTIVES: Locacorten Vioform (Novartis UK) is frequently prescribed for otomycosis. Its component, Clioquinol, also has anti-bacterial properties. Up to this point, its ototoxic potential has not been evaluated. Our objective aims to evaluate Locacorten Vioform’s potential ototoxicity when applied directly to the middle ear cavity. MATERIALS AND METHODS: We performed an experimental prospective animal study in our animal research center with 20 Hartley guinea pigs divided into 2 groups. The first group (experimental) was treated with Locacorten Vioform in one ear and with a physiologic saline solution in the other. The second group (positive control) was treated with concentrated gentamycin in one ear and physiologic saline in the other. Auditory brainstem response measurements were obtained before and after three sets of injections. Statistics were analyzed using a variance analysis with repeated measures. The histological state of cochlear outer hair cells was compared between the two groups using scanning electron microscopy. RESULTS: Average hearing loss in ears treated with Locacorten Vioform was 32.1 dB, compared with a 2.5 dB average loss in the saline-treated ears. Ears treated with gentamycin lost an average of 33.0 dB. There were clinically and statistically significant differences between the two ears of the guinea pigs in both groups (p < 0.001). Scanning electron microscopy revealed severe pericochlear and cochlear inflammation and ossification in the Locacorten Vioform-treated ears. Gentamycin caused significant destruction of outer hair cell architecture. CONCLUSIONS: Locacorten Vioform induces a hearing loss similar to that caused by gentamycin when applied directly to the middle ear of a guinea pig model. Electron microscopy indicates a pericochlear and cochlear inflammatory reaction with ossification.
Animal Experimentation
;
Animals
;
Clioquinol
;
Ear
;
Ear, Middle
;
Evoked Potentials, Auditory, Brain Stem
;
Gentamicins
;
Guinea Pigs
;
Guinea
;
Hair
;
Hair Cells, Auditory, Inner
;
Hair Cells, Auditory, Outer
;
Hearing Loss
;
Inflammation
;
Microscopy, Electron
;
Microscopy, Electron, Scanning
;
Otomycosis
;
Prospective Studies
;
Sodium Chloride
8.Differential Expression of Ca²⁺-buffering Protein Calretinin in Cochlear Afferent Fibers: A Possible Link to Vulnerability to Traumatic Noise.
Kushal SHARMA ; Young Woo SEO ; Eunyoung YI
Experimental Neurobiology 2018;27(5):397-407
The synaptic contacts of cochlear afferent fibers (CAFs) with inner hair cells (IHCs) are spatially segregated according to their firing properties. CAFs also exhibit spatially segregated vulnerabilities to noise. The CAF fibers contacting the modiolar side of IHCs tend to be more vulnerable. Noise vulnerability is thought to be due to the absence of neuroprotective mechanisms in the modiolar side contacting CAFs. In this study, we investigated whether the expression of neuroprotective Ca²⁺-buffering proteins is spatially segregated in CAFs. The expression patterns of calretinin, parvalbumin, and calbindin were examined in rat CAFs using immunolabeling. Calretinin-rich fibers, which made up ~50% of the neurofilament (NF)-positive fibers, took the pillar side course and contacted all IHC sides. NF-positive and calretinin-poor fibers took the modiolar side pathway and contacted the modiolar side of IHCs. Both fiber categories juxtaposed the C-terminal binding protein 2 (CtBP2) puncta and were contacted by synaptophysin puncta. These results indicated that the calretinin-poor fibers, like the calretinin-rich ones, were afferent fibers and probably formed functional efferent synapses. However, the other Ca²⁺-buffering proteins did not exhibit CAF subgroup specificity. Most CAFs near IHCs were parvalbumin-positive. Only the pillar-side half of parvalbumin-positive fibers coexpressed calretinin. Calbindin was not detected in any nerve fibers near IHCs. Taken together, of the Ca²⁺-buffering proteins examined, only calretinin exhibited spatial segregation at IHC-CAF synapses. The absence of calretinin in modiolar-side CAFs might be related to the noise vulnerability of the fibers.
Animals
;
Calbindin 2*
;
Calbindins
;
Carrier Proteins
;
Fires
;
Hair Cells, Auditory, Inner
;
Intermediate Filaments
;
Nerve Fibers
;
Noise*
;
Rats
;
Sensitivity and Specificity
;
Synapses
;
Synaptophysin
9.The Objective Test of Cochlear Dead Region Using Acoustic Change Complex: A Preliminary Report.
Soojin KANG ; Juhyun HAN ; Jihwan WOO ; Hee Sung PARK ; Il Joon MOON ; Kyusung CHOI ; Sung Hwa HONG
Korean Journal of Otolaryngology - Head and Neck Surgery 2018;61(11):573-579
BACKGROUND AND OBJECTIVES: Cochlear dead region (CDR) is a region in the cochlear where hearing loss has occurred due to damage to the inner hair cells and/or neurons. Recently, a subjective test involving a pure-tone test in the presence of threshold-equalizing noise (TEN) was introduced to identify CDR. However, for uncooperative patients, such a subjective method would be unsuitable and objective methods would be needed instead to detect CDR. The acoustic change complex (ACC) is an evoked potential elicited by changes in the ongoing sound. In this study, we developed an objective method of identifying CDR by combining ACC response with a TEN test, namely the TEN-ACC test, and investigated its feasibility in normal-hearing listeners. SUBJECTS AND METHOD: Ten normal-hearing subjects participated in this study. All subjects underwent both behavioral TEN test and electrophysiological TEN-ACC test. The stimuli for the TEN-ACC test consisted of TEN and embedded pure tones with different frequencies/signals to noise ratios (SNRs). To identify the thresholds, the range SNR of stimulation was varied from 0 to 20 dB, in stages of 4 dB. RESULTS: The ACC responses of all subjects who participated in this study were well elicited by stimuli developed for the TEN-ACC test. We confirm that the pure-tones embedded in TEN elicited the objective ACC response. CONCLUSION: The results of this study suggest that the novel TEN-ACC test can be applied to evoke ACC in normal-hearing listeners. Future research should incorporate hearing-impaired listeners to determine the feasibility of the TEN-ACC test as an objective method to identify CDR.
Acoustics*
;
Evoked Potentials
;
Hair Cells, Auditory, Inner
;
Hearing Loss
;
Humans
;
Methods
;
Neurons
;
Noise
10.Over-expression of myosin7A in cochlear hair cells of circling mice.
Yoo Yeon KIM ; Hajin NAM ; Harry JUNG ; Boyoung KIM ; Jun Gyo SUH
Laboratory Animal Research 2017;33(1):1-7
Circling mouse (C57BL/6J-cir/cir) deleted the transmembrane inner ear (Tmie) gene is an animal model for human non-syndromic recessive deafness, DFNB6. In circling mouse, hair cells in the cochlea have degenerated and hair bundles have become irregularity as time goes on. Tmie protein carries out a function of the mechanoelectrical transduction channel in cochlear hair cells. Myosin7a (MYO7A) protein has key roles in development of the cochlear hair bundles as well as in the function of cochlear hair cells. To find whether Tmie protein interacts with MYO7A proteins in the cochlea postnatal developmental stage, we investigated expression of the MYO7A proteins in the cochlear hair cells of circling mice by western blot analysis and whole mount immunofluorescence at postnatal day 5 (P5). The expression of MYO7A showed statistically significant increase in the cochlea of C57BL/6J-+/cir and C57BL/6J-cir/cir mice than that of C57BL/6J-+/+ mice. The MYO7A intensity of the cochlear hair cells also increased in C57BL/6J-+/cir and C57BL/6J-cir/cir mice compared with those of C57BL/6J-+/+ mice. Taken together, the results indicate that Tmie protein may have an important role with MYO7A protein in the development and maintenance of the stereociliary bundles during postnatal developmental stage of the cochlea.
Animals
;
Blotting, Western
;
Cochlea
;
Deafness
;
Ear, Inner
;
Fluorescent Antibody Technique
;
Hair
;
Hair Cells, Auditory*
;
Humans
;
Mice*
;
Models, Animal

Result Analysis
Print
Save
E-mail