1.Diagnostic Techniques and Risk Prediction for Cardiovascular-kidney-metabolic (CKM) Syndrome
Song HOU ; Lin-Shan ZHANG ; Xiu-Qin HONG ; Chi ZHANG ; Ying LIU ; Cai-Li ZHANG ; Yan ZHU ; Hai-Jun LIN ; Fu ZHANG ; Yu-Xiang YANG
Progress in Biochemistry and Biophysics 2025;52(10):2585-2601
Cardiovascular disease (CVD), chronic kidney disease (CKD), and metabolic disorders are the 3 major chronic diseases threatening human health, which are closely related and often coexist, significantly increasing the difficulty of disease management. In response, the American Heart Association (AHA) proposed a novel disease concept of “cardiovascular-kidney-metabolic (CKM) syndrome” in October 2023, which has triggered widespread concern about the co-treatment of heart and kidney diseases and the prevention and treatment of metabolic disorders around the world. This review posits that effectively managing CKM syndrome requires a new and multidimensional paradigm for diagnosis and risk prediction that integrates biological insights, advanced technology and social determinants of health (SDoH). We argue that the core pathological driver is a “metabolic toxic environment”, fueled by adipose tissue dysfunction and characterized by a vicious cycle of systemic inflammation and oxidative stress, which forms a common pathway to multi-organ injury. The at-risk population is defined not only by biological characteristics but also significantly impacted by adverse SDoH, which can elevate the risk of advanced CKM by a factor of 1.18 to 3.50, underscoring the critical need for equity in screening and care strategies. This review systematically charts the progression of diagnostic technologies. In diagnostics, we highlight a crucial shift from single-marker assessments to comprehensive multi-marker panels. The synergistic application of traditional biomarkers like NT-proBNP (reflecting cardiac stress) and UACR (indicating kidney damage) with emerging indicators such as systemic immune-inflammation index (SII) and Klotho protein facilitates a holistic evaluation of multi-organ health. Furthermore, this paper explores the pivotal role of non-invasive monitoring technologies in detecting subclinical disease. Techniques like multi-wavelength photoplethysmography (PPG) and impedance cardiography (ICG) provide a real-time window into microcirculatory and hemodynamic status, enabling the identification of early, often asymptomatic, functional abnormalities that precede overt organ failure. In imaging, progress is marked by a move towards precise, quantitative evaluation, exemplified by artificial intelligence-powered quantitative computed tomography (AI-QCT). By integrating AI-QCT with clinical risk factors, the predictive accuracy for cardiovascular events within 6 months significantly improves, with the area under the curve (AUC) increasing from 0.637 to 0.688, demonstrating its potential for reclassifying risk in CKM stage 3. In the domain of risk prediction, we trace the evolution from traditional statistical tools to next-generation models. The new PREVENT equation represents a major advancement by incorporating key kidney function markers (eGFR, UACR), which can enhance the detection rate of CKD in primary care by 20%-30%. However, we contend that the future lies in dynamic, machine learning-based models. Algorithms such as XGBoost have achieved an AUC of 0.82 for predicting 365-day cardiovascular events, while deep learning models like KFDeep have demonstrated exceptional performance in predicting kidney failure risk with an AUC of 0.946. Unlike static calculators, these AI-driven tools can process complex, multimodal data and continuously update risk profiles, paving the way for truly personalized and proactive medicine. In conclusion, this review advocates for a paradigm shift toward a holistic and technologically advanced framework for CKM management. Future efforts must focus on the deep integration of multimodal data, the development of novel AI-driven biomarkers, the implementation of refined SDoH-informed interventions, and the promotion of interdisciplinary collaboration to construct an efficient, equitable, and effective system for CKM screening and intervention.
2.The regulation and mechanism of apolipoprotein A5 on myocardial lipid deposition.
Xiao-Jie YANG ; Jiang LI ; Jing-Yuan CHEN ; Teng-Teng ZHU ; Yu-Si CHEN ; Hai-Hua QIU ; Wen-Jie CHEN ; Xiao-Qin LUO ; Jun LUO
Acta Physiologica Sinica 2025;77(1):35-46
The current study aimed to clarify the roles of apolipoprotein A5 (ApoA5) and milk fat globule-epidermal growth factor 8 (Mfge8) in regulating myocardial lipid deposition and the regulatory relationship between them. The serum levels of ApoA5 and Mfge8 in obese and healthy people were compared, and the obesity mouse model induced by the high-fat diet (HFD) was established. In addition, primary cardiomyocytes were purified and identified from the hearts of suckling mice. The 0.8 mmol/L sodium palmitate treatment was used to establish the lipid deposition cardiomyocyte model in vitro. ApoA5-overexpressing adenovirus was used to observe its effects on cardiac function and lipids. The expressions of the fatty acid uptake-related molecules and Mfge8 on transcription or translation levels were detected. Co-immunoprecipitation was used to verify the interaction between ApoA5 and Mfge8 proteins. Immunofluorescence was used to observe the co-localization of Mfge8 protein with ApoA5 or lysosome-associated membrane protein 2 (LAMP2). Recombinant rMfge8 was added to cardiomyocytes to investigate the regulatory mechanism of ApoA5 on Mfge8. The results showed that participants in the simple obesity group had a significant decrease in serum ApoA5 levels (P < 0.05) and a significant increase in Mfge8 levels (P < 0.05) in comparison with the healthy control group. The adenovirus treatment successfully overexpressed ApoA5 in HFD-fed obese mice and palmitic acid-induced lipid deposition cardiomyocytes, respectively. ApoA5 reduced the weight of HFD-fed obese mice (P < 0.05), shortened left ventricular isovolumic relaxation time (IVRT), increased left ventricular ejection fraction (LVEF), and significantly reduced plasma levels of triglycerides (TG) and cholesterol (CHOL) (P < 0.05). In myocardial tissue and cardiomyocytes, the overexpression of ApoA5 significantly reduced the deposition of TG (P < 0.05), transcription of fatty acid translocase (FAT/CD36) (P < 0.05), fatty acid-binding protein (FABP) (P < 0.05), and fatty acid transport protein (FATP) (P < 0.05), and protein expression of Mfge8 (P < 0.05), while the transcription levels of Mfge8 were not significantly altered (P > 0.05). In vitro, the Mfge8 protein was captured using ApoA5 as bait protein, indicating a direct interaction between them. Overexpression of ApoA5 led to an increase in co-localization of Mfge8 with ApoA5 or LAMP2 in cardiomyocytes under lipid deposition status. On this basis, exogenous added recombinant rMfge8 counteracted the improvement of lipid deposition in cardiomyocytes by ApoA5. The above results indicate that the overexpression of ApoA5 can reduce fatty acid uptake in myocardial cells under lipid deposition status by regulating the content and cellular localization of Mfge8 protein, thereby significantly reducing myocardial lipid deposition and improving cardiac diastolic and systolic function.
Animals
;
Humans
;
Mice
;
Myocytes, Cardiac/metabolism*
;
Obesity/physiopathology*
;
Male
;
Apolipoprotein A-V/blood*
;
Lipid Metabolism/physiology*
;
Milk Proteins/blood*
;
Myocardium/metabolism*
;
Diet, High-Fat
;
Antigens, Surface/physiology*
;
Mice, Inbred C57BL
;
Cells, Cultured
;
Female
3.Preparation and intestinal absorption mechanism of herpetrione and Herpetospermum caudigerum polysaccharides based self-assembled nanoparticles.
Xiang DENG ; Yu-Wen ZHU ; Ji-Xing ZHENG ; Rui SONG ; Jian-Tao NING ; Ling-Yu HANG ; Zhi-Hui YANG ; Hai-Long YUAN
China Journal of Chinese Materia Medica 2025;50(2):404-412
In this experiment, self-assembled nanoparticles(SANs) were prepared by the pH-driven method, and Her-HCP SAN was constructed by using herpetrione(Her) and Herpetospermum caudigerum polysaccharides(HCPs). The average particle size and polydispersity index(PDI) were used as evaluation indexes for process optimization, and the quality of the final formulation was evaluated in terms of particle size, PDI, Zeta potential, and microstructure. The proposed Her-HCP SAN showed a spheroid structure and uniform morphology, with an average particle size of(244.58±16.84) nm, a PDI of 0.147 1±0.014 8, and a Zeta potential of(-38.52±2.11) mV. Her-HCP SAN significantly increased the saturation solubility of Her by 2.69 times, with a cumulative release of 90.18% within eight hours. The results of in vivo unidirectional intestinal perfusion reveal that Her active pharmaceutical ingredient(API) is most effectively absorbed in the jejunum, where both K_a and P_(app) are significantly higher compared to the ileum(P<0.001). However, the addition of HCP leads to a significant reduction in the P_(app) of Her in the jejunum(P<0.05). Furthermore, the formation of the Her-HCP SAN results in a notably lower P_(app) in the jejunum compared to Her API alone(P<0.001), while both K_a and P_(app) in the ileum are significantly increased(P<0.001, P<0.05). The absorption of Her-HCP SAN at different concentrations in the ileum shows no significant differences, and the pH has no significant effect on the absorption of Her-HCP SAN in the ileum. The addition of the transporter protein inhibitors(indomethacin and rifampicin) significantly increases the absorption parameters K_a and P_(app) of Her-HCP SAN in the ileum(P<0.05,P<0.01), whereas the addition of verapamil has no significant effect on the intestinal absorption parameters of Her-HCP SAN, suggesting that Her may be a substrate for multidrug resistance-associated protein 2 and breast cancer resistance proteins but not a substrate of P-glycoprotein.
Nanoparticles/metabolism*
;
Polysaccharides/pharmacokinetics*
;
Intestinal Absorption/drug effects*
;
Animals
;
Rats
;
Particle Size
;
Drugs, Chinese Herbal/pharmacokinetics*
;
Male
;
Rats, Sprague-Dawley
;
Drug Carriers/chemistry*
;
Drug Compounding
;
Cucurbitaceae/chemistry*
4.A new research direction of traditional Chinese medicine preparations: development and application of improved self-assembled nanoparticles.
China Journal of Chinese Materia Medica 2025;50(13):3569-3573
During the decocting process of traditional Chinese medicine(TCM), molecules spontaneously form self-assembled nanoparticles(SAN) through intermolecular non-covalent interactions. This process effectively addresses the low bioavailability of poorly soluble components, becoming a research hotspot. However, SAN formed in traditional decoctions often exhibit low Zeta potential, poor stability, and easy aggregation, which limit their clinical applications. According to the extensive studies of SAN in TCM decoctions, this paper proposes innovative strategies of utilizing techniques such as micro-precipitation and pH-driven methods to improve SAN. These strategies significantly enhance the uniformity and stability of SAN and effectively increase the transfer rate of poorly soluble components, overcoming the technical bottlenecks of low stability and drug delivery efficiency in TCM decoctions. This article reviews the origins, advantages, and limitations of traditional SAN, discusses the strategies for improving SAN construction and characterization, and delves into the scientific issues that need to be addressed in future research. The aim is to provide new directions for the development of modern TCM preparations.
Nanoparticles/chemistry*
;
Drugs, Chinese Herbal/chemistry*
;
Humans
;
Medicine, Chinese Traditional
;
Drug Delivery Systems
;
Animals
;
Drug Compounding/methods*
5.Biomechanical finite element analysis of American Chiropractic intervention on the third lumbar transverse process syndrome based on imaging.
Ling-Feng ZHU ; Hai-Jie YU ; Hai-Fen YING ; Ben-Bao CHEN ; Xiao-Chun XIONG ; Li-Jiang LYU
China Journal of Orthopaedics and Traumatology 2025;38(4):403-410
OBJECTIVE:
To explore the displacement and pressure distribution of American Chiropractic in a model of third lumbar syndrome based on finite element analysis.
METHODS:
On March 2021, CT and MRI images of a 23-year-old male patient with right third lumbar syndrome were selected. A 3D stl model was established using Mimics and CATIA, and the data was imported into Hypermesh, Abaqus & ANSYS. The elastic modulus and Poisson's ratio of the affected side material were adjusted to establish its finite element model. Based on the comparison of the operating positions and routines of the American Chiropractic and the lumbar spine oblique pull method, but with differences in the focus and direction of force, the experimental group simulated the American Chiropractic with the healthy side (left side) lying position of the model. The upper endplate of L3 and the lower part below L3 twisted accordingly with the body position, we applied a vertical forward thrust of 246 N to the plane formed by the L4, L5 spinous processes and L4 upper articular processes;The control group simulates the oblique pull method of the lumbar spine, requiring the model to lie on the healthy side (left side), fix the upper endplate of L4, and perform a horizontal rotation along the longitudinal axis of L3 vertebral body. At this time, the contact force in the upward direction is also set to 246 N. Compare the displacement and stress differences between the L1-L5 intervertebral bodies, intervertebral discs, articular processes, and transverse process muscles in two intervention models.
RESULTS:
① Under safe load conditions, a test force of 246 N was applied to the model, and the maximum vertebral displacement occurred on the right side of the L3 vertebral body (1.197 mm) after manual intervention in the control group. The vertebral displacement between L1-L5 induced by manual intervention in the experimental group was smaller than that of the control group's manual intervention (P<0.05). ② The maximum vertebral body stress occurred on the right side of the L3 vertebral body after manual intervention in the control group (98.425 MPa). The stress on each vertebral body formed by the experimental group's manual intervention was lower than that of the control group's manual intervention (P<0.05). ③The maximum intervertebral disc stress occurred on the right side of the L2,3 intervertebral disc (6.282 MPa) after manual intervention in the control group. ④ The maximum joint process stress occurred on the right side of the L4 upper joint process after manual intervention in the experimental group (1.587 MPa). The joint process stress on the left side below L1 and the left side above and below L2 induced by manual intervention in the experimental group was lower than that of the control group (P<0.05). ⑤The maximum stress on the intertransverse process muscle was observed at the right lateral L3 process end (31.960 MPa) of L3,4 in the control group after manual intervention. The stress on the L2,3 and L4,5 segments of the intertransverse process muscle induced by manual intervention in the experimental group was lower than that of the control group's manual intervention (P<0.05).
CONCLUSION
The mechanical feedback of the L1-L5 vertebral body, the lower left side of the articular process L1, the upper and lower left side of the articular process L2, and the L2,3 and L4,5 segments of the transverse process muscle in the model indicates that performing American Chiropractic for the treatment of third lumbar transverse process syndrome can accurately hit the target pain point and allow the patient's tissue to form a low stress and low tension state after manual operation, thereby reducing the possibility of tissue damage caused by hypertonia after intervertebral joint movement, making it relatively safe. The application of American Chiropractic will be a new supplement to the traditional treatment plan for third lumbar transverse process syndrome.
Humans
;
Finite Element Analysis
;
Male
;
Lumbar Vertebrae/physiopathology*
;
Biomechanical Phenomena
;
Young Adult
;
Manipulation, Chiropractic
;
Adult
;
Tomography, X-Ray Computed
;
Magnetic Resonance Imaging
6.Factors influencing very preterm birth at less than 32 weeks of gestation: a multicenter retrospective study.
Hong-Juan WANG ; Rena MAIMAITI ; Yan-Ping ZHU ; Yu-Jun ZHANG ; Hai-Li LI ; Areziguli ABUDULA ; Ying LI
Chinese Journal of Contemporary Pediatrics 2025;27(9):1050-1056
OBJECTIVES:
To explore the influencing factors for very preterm birth at a gestational age of <32 weeks in the Xinjiang Uygur Autonomous Region.
METHODS:
Clinical data of women with preterm deliveries and their newborns admitted to five hospitals in Xinjiang from January 2023 to December 2024 were retrospectively collected. The subjects were divided by gestational age into very preterm (<32 weeks of gestation) and moderate/late preterm (32-36+6 weeks of gestation) groups. Risk factors associated with very preterm birth were analyzed.
RESULTS:
A total of 4 105 pregnant women with preterm deliveries were included, with 793 cases (19.32%) in the very preterm group and 3 312 cases (80.68%) in the moderate/late preterm group. The factors significantly associated with very preterm birth were as following: hypertensive disorders of pregnancy (OR=1.785, 95%CI: 1.492-2.135, P<0.05), excessive gestational weight gain (GWG, OR=2.002, 95%CI: 1.672-2.397, P<0.05), insufficient GWG (OR=1.746, 95%CI: 1.326-2.300, P<0.05), chorioamnionitis (OR=2.163, 95%CI: 1.694-2.763, P<0.05), premature rupture of membranes ≥18 hours (OR=2.158, 95%CI: 1.599-2.912, P<0.05), placental abruption (OR=2.228, 95%CI: 1.646-3.014, P<0.05), and ≤7 prenatal visits (OR=3.419, 95%CI: 2.882-4.055, P<0.05).
CONCLUSIONS
In the Xinjiang Uygur Autonomous Region, hypertensive disorders of pregnancy, excessive or insufficient GWG, chorioamnionitis, premature rupture of membranes ≥18 hours, placental abruption, and ≤7 prenatal visits are risk factors for very preterm birth. Strengthening high-risk pregnancy management is necessary for reducing the incidence of very preterm birth.
Humans
;
Female
;
Retrospective Studies
;
Pregnancy
;
Premature Birth/etiology*
;
Gestational Age
;
Adult
;
Risk Factors
;
Infant, Newborn
;
Gestational Weight Gain
7.Analysis of Gene Mutations Distribution and Enzyme Activity of G6PD Deficiency in Newborns in Guilin Region.
Dong-Mei YANG ; Guang-Li WANG ; Dong-Lang YU ; Dan ZENG ; Hai-Qing ZHENG ; Wen-Jun TANG ; Qiao FENG ; Kai LI ; Chun-Jiang ZHU
Journal of Experimental Hematology 2025;33(5):1405-1411
OBJECTIVE:
To analyze the distribution characteristics of glucose-6-phosphate-dehydrogenase (G6PD) mutations and their enzyme activity in newborns patients with G6PD deficiency in Guilin region.
METHODS:
From July 2022 to July 2024, umbilical cord blood samples from 4 554 newborns in Guilin were analyzed for G6PD mutations using fluorescence PCR melting curve analysis. Enzyme activity was detected in 4 467 cases using the rate assay.
RESULTS:
Among 4 467 newborns who underwent G6PD activity testing, 162 newborns (3.63%) were identified as G6PD-deficient, including 142 males (6.04%) and 20 females (0.94%), the prevalence of G6PD deficiency was significantly higher in males than in females (P < 0.001). Genetic analysis of 4 554 newborns detected G6PD mutations in 410 cases (9%), including 171 males (7.13%) and 239 females (11.09%), with a significantly higher mutation detection rate in females than in males (P < 0.001). A total of nine single mutations and four compound heterozygous mutations were identified. The most common mutations were c.1388G>A (33.66%), c.1376G>T (23.66%) and c.95A>G (16.34%). Among newborns who underwent both enzyme activity and genetic mutation testing, males with G6PD mutations had significantly lower enzyme activity than that of females with G6PD mutations(P < 0.001). Specifically, among newborns carrying the mutations c.1388G>A, c.1376G>T, c.95A>G, c.1024C>T or c.871G>A, males consistently exhibited lower enzymatic activity than females with the same mutations (P < 0.001). Furthermore, in male G6PD-deficient newborns, the enzyme activity levels in those carrying c.1388G>A, c.1376G>T, c.95A>G, c.1024C>T, or c.871G>A were lower than those in both the control group and the c.519C>T group (P < 0.05).
CONCLUSION
This study provides a comprehensive profile of G6PD deficiency incidence and mutation spectrum in the Guilin region. By analyzing enzyme activity and genetic mutation results, this study provides insights into potential intervention strategies and personalized management approaches for the prevention and treatment of neonatal G6PD deficiency in the region.
Humans
;
Infant, Newborn
;
Glucosephosphate Dehydrogenase Deficiency/epidemiology*
;
Glucosephosphate Dehydrogenase/genetics*
;
Female
;
Male
;
Mutation
;
China/epidemiology*
8.Seminal plasma miR-26a-5p influences sperm DNA integrity by targeting and regulating the PTEN gene.
Chun-Hui LIU ; Wen-Sheng SHAN ; Zhi-Qiang WANG ; Shao-Jun LI ; Chen ZHU ; Hai WANG ; Yu-Na ZHOU ; Rui-Peng WU
National Journal of Andrology 2025;31(9):780-790
OBJECTIVE:
By analyzing the differential miRNA in seminal plasma between individuals with normal and abnormal sperm DNA fragmentation index(DFI), we aim to identify miRNA that may impact sperm DNA integrity and target genes, and attempt to analyze their potential mechanisms of action.
METHODS:
A total of 161 study subjects were collected and divided into normal control group, DFI-medium group and DFI-abnormal group based on the DFI detection values. Differential miRNA were identified through miRNA chip analysis. Through bioinformatics analysis and target gene prediction, miRNA related to DFI and specific target genes were identified. The relative expression levels of differential miRNA and target genes in each group were compared to explore the impact of their differential expression on DFI.
RESULTS:
Through miRNA chip analysis, a total of 11 differential miRNA were detected. Bioinformatics analysis suggested that miR-26a-5p may be associated with reduced sperm DNA integrity. And gene prediction indicated that PTEN was a specific target gene of miR-26a-5p. Compared to the normal control group, the relative expression levels of miR-26a-5p in both the DFI-medium group and the DFI-abnormal group showed a decrease, while the relative expression levels of PTEN showed an increase. The relative expression levels of miR-26a-5p in all groups were negatively correlated with DFI values, while the relative expression levels of PTEN showed a positive correlation with DFI values in the DFI-medium group and the DFI-abnormal group. The AUC of miR-26a-5p in the DFI-medium group was 0.740 (P<0.05), with a sensitivity of 73.6% and a specificity of 71.5%; the AUC of PTEN was 0.797 (P<0.05), with a sensitivity of 76.5% and a specificity of 78.4%. In the DFI-abnormal group, the AUC of miR-26a-5p was 0.848 (P<0.05), with a sensitivity of 81.3% and a specificity of 78.1%. While the AUC of PTEN was 0.763 (P<0.05), with a sensitivity of 77.2% and a specificity of 80.2%.
CONCLUSION
miR-26a-5p affects the integrity of sperm DNA by regulating the expression of PTEN negatively. The relative expression levels of seminal plasma miR-26a-5p and PTEN have good diagnostic value for sperm DNA integrity damage, which can help in the etiological diagnosis and prognosis analysis of abnormal DFI. This provides a diagnostic and treatment approach for the study and diagnosis of DFI abnormalities without clear etiology.
Male
;
Humans
;
MicroRNAs/genetics*
;
PTEN Phosphohydrolase/genetics*
;
Spermatozoa
;
Semen/metabolism*
;
DNA Fragmentation
9.Glucocorticoid Discontinuation in Patients with Rheumatoid Arthritis under Background of Chinese Medicine: Challenges and Potentials Coexist.
Chuan-Hui YAO ; Chi ZHANG ; Meng-Ge SONG ; Cong-Min XIA ; Tian CHANG ; Xie-Li MA ; Wei-Xiang LIU ; Zi-Xia LIU ; Jia-Meng LIU ; Xiao-Po TANG ; Ying LIU ; Jian LIU ; Jiang-Yun PENG ; Dong-Yi HE ; Qing-Chun HUANG ; Ming-Li GAO ; Jian-Ping YU ; Wei LIU ; Jian-Yong ZHANG ; Yue-Lan ZHU ; Xiu-Juan HOU ; Hai-Dong WANG ; Yong-Fei FANG ; Yue WANG ; Yin SU ; Xin-Ping TIAN ; Ai-Ping LYU ; Xun GONG ; Quan JIANG
Chinese journal of integrative medicine 2025;31(7):581-589
OBJECTIVE:
To evaluate the dynamic changes of glucocorticoid (GC) dose and the feasibility of GC discontinuation in rheumatoid arthritis (RA) patients under the background of Chinese medicine (CM).
METHODS:
This multicenter retrospective cohort study included 1,196 RA patients enrolled in the China Rheumatoid Arthritis Registry of Patients with Chinese Medicine (CERTAIN) from September 1, 2019 to December 4, 2023, who initiated GC therapy. Participants were divided into the Western medicine (WM) and integrative medicine (IM, combination of CM and WM) groups based on medication regimen. Follow-up was performed at least every 3 months to assess dynamic changes in GC dose. Changes in GC dose were analyzed by generalized estimator equation, the probability of GC discontinuation was assessed using Kaplan-Meier curve, and predictors of GC discontinuation were analyzed by Cox regression. Patients with <12 months of follow-up were excluded for the sensitivity analysis.
RESULTS:
Among 1,196 patients (85.4% female; median age 56.4 years), 880 (73.6%) received IM. Over a median 12-month follow-up, 34.3% (410 cases) discontinued GC, with significantly higher rates in the IM group (40.8% vs. 16.1% in WM; P<0.05). GC dose declined progressively, with IM patients demonstrating faster reductions (median 3.75 mg vs. 5.00 mg in WM at 12 months; P<0.05). Multivariate Cox analysis identified age <60 years [P<0.001, hazard ratios (HR)=2.142, 95% confidence interval (CI): 1.523-3.012], IM therapy (P=0.001, HR=2.175, 95% CI: 1.369-3.456), baseline GC dose ⩽7.5 mg (P=0.003, HR=1.637, 95% CI: 1.177-2.275), and absence of non-steroidal anti-inflammatory drugs use (P=0.001, HR=2.546, 95% CI: 1.432-4.527) as significant predictors of GC discontinuation. Sensitivity analysis (545 cases) confirmed these findings.
CONCLUSIONS
RA patients receiving CM face difficulties in following guideline-recommended GC discontinuation protocols. IM can promote GC discontinuation and is a promising strategy to reduce GC dependency in RA management. (Trial registration: ClinicalTrials.gov, No. NCT05219214).
Adult
;
Aged
;
Female
;
Humans
;
Male
;
Middle Aged
;
Arthritis, Rheumatoid/drug therapy*
;
Glucocorticoids/therapeutic use*
;
Medicine, Chinese Traditional
;
Retrospective Studies
10.Generalized Functional Linear Models: Efficient Modeling for High-dimensional Correlated Mixture Exposures.
Bing Song ZHANG ; Hai Bin YU ; Xin PENG ; Hai Yi YAN ; Si Ran LI ; Shutong LUO ; Hui Zi WEIREN ; Zhu Jiang ZHOU ; Ya Lin KUANG ; Yi Huan ZHENG ; Chu Lan OU ; Lin Hua LIU ; Yuehua HU ; Jin Dong NI
Biomedical and Environmental Sciences 2025;38(8):961-976
OBJECTIVE:
Humans are exposed to complex mixtures of environmental chemicals and other factors that can affect their health. Analysis of these mixture exposures presents several key challenges for environmental epidemiology and risk assessment, including high dimensionality, correlated exposure, and subtle individual effects.
METHODS:
We proposed a novel statistical approach, the generalized functional linear model (GFLM), to analyze the health effects of exposure mixtures. GFLM treats the effect of mixture exposures as a smooth function by reordering exposures based on specific mechanisms and capturing internal correlations to provide a meaningful estimation and interpretation. The robustness and efficiency was evaluated under various scenarios through extensive simulation studies.
RESULTS:
We applied the GFLM to two datasets from the National Health and Nutrition Examination Survey (NHANES). In the first application, we examined the effects of 37 nutrients on BMI (2011-2016 cycles). The GFLM identified a significant mixture effect, with fiber and fat emerging as the nutrients with the greatest negative and positive effects on BMI, respectively. For the second application, we investigated the association between four pre- and perfluoroalkyl substances (PFAS) and gout risk (2007-2018 cycles). Unlike traditional methods, the GFLM indicated no significant association, demonstrating its robustness to multicollinearity.
CONCLUSION
GFLM framework is a powerful tool for mixture exposure analysis, offering improved handling of correlated exposures and interpretable results. It demonstrates robust performance across various scenarios and real-world applications, advancing our understanding of complex environmental exposures and their health impacts on environmental epidemiology and toxicology.
Humans
;
Environmental Exposure/analysis*
;
Linear Models
;
Nutrition Surveys
;
Environmental Pollutants
;
Body Mass Index

Result Analysis
Print
Save
E-mail