1.Preparation and physicochemical properties of nano-silver acupuncture needles.
Wenfeng HAI ; Jiaxin LIU ; Yang LIU ; Tingfang BAI ; Xiaomei HAN ; Ying YING ; Suocai TONG ; Tegexi BAIYIN ; Yingsong CHEN
Chinese Acupuncture & Moxibustion 2025;45(5):568-576
OBJECTIVE:
To explore the preparation of nano-silver acupuncture needles and evaluate the appearance, structure and properties.
METHODS:
Stainless steel acupuncture needles were pretreated by polishing with sandpaper and cleaning with ultrapure water and absolute ethanol. As the working electrodes, the needles were placed in an electrolyte solution contained silver nitrate (AgNO3), potassium nitrate (KNO3), and polyvinylpyrrolidone (PVP); and the silver nanoparticles were deposited at a constant voltage of -0.2 V for 1 200 s. The heat-treatment was conducted at 600 ℃ for 15 min in an argon atmosphere to strengthen the adhesion between the nanoparticles and the substrate. The surface appearance and structure of nano-silver acupuncture needles were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The electrical conductivity, thermal conductivity and biocompatibility of the needles were evaluated. The cytotoxicity and biocompatibility of the sample were assessed using the CCK-8 assay. According to the national standard, Acupuncture Needles (GB 2024-2016), the other physicochemical performances of nano-silver acupuncture needles were tested.
RESULTS:
①By controlling the AgNO3 concentration and the molar ratio of AgNO3 to PVP, it was found that at an AgNO3 concentration of 2 mmol/L and a molar ratio of 5∶1, silver nanoparticles with the diameter of 50-100 nm, regular appearance, and uniform distribution were obtained. At a lower concentration, the size of silver nanoparticles was smaller and unevenly distributed particles, whereas a higher concentration tended to produce a dendritic structure. ②By sandpaper polishing, acid etching pretreatment, and heat-treatment at 600 ℃ under argon for 15 min, the adhesion of silver nanoparticles on the surface of the needle body was strengthened, and the simulated pig skin puncture test showed the intact coating without shedding. ③SEM found that the silver nanoparticles were uniformly deposited, forming a nanofilm approximately 1.5 μm thick; XRD analysis showed the diffraction peaks corresponding to cubic crystal silver (111), (200), (220) and (311); and XPS detected characteristic peaks of Ag 3d3/2 and Ag 3d5/2, confirming the successful deposition and good crystallinity of the silver nanoparticles. ④Resistivity measurements indicated that the nano-silver acupuncture needles exhibited a resistivity of approximately 0.15 Ω·cm, about three times lower than that of unmodified stainless steel needles. The infrared thermography demonstrated that their thermal conductivity was superior to that of traditional acupuncture needles. In vitro CCK-8 cytotoxicity assay showed that the nano-silver acupuncture needles had no adverse effects on human skin fibroblasts and possessed good biocompatibility. ⑤ The key parameters such as needle tip performance, hardness, and the adhesion between the needle body and handle were in compliance with the requirements in Acupuncture Needles (GB 2024-2016), ensuring a quality guarantee provided for clinical applications.
CONCLUSION
The preparation of nano-silver acupuncture needles effectively overcomes the insufficient toughness of traditional silver needles and improves the electrical and thermal conductivity of stainless acupuncture needles.
Silver/chemistry*
;
Needles
;
Acupuncture Therapy/instrumentation*
;
Metal Nanoparticles/chemistry*
;
Humans
;
Electric Conductivity
;
Animals
2.Integrating genomics and metabolomics to reveal the genetic basis and potential therapeutic targets of diabetic foot.
Yi ZHANG ; Cheng CHEN ; Zhen-Dong LI ; Hai-Chao ZHOU ; Bing LI ; Yun-Feng YANG
China Journal of Orthopaedics and Traumatology 2025;38(9):891-901
OBJECTIVE:
To screen out the key metabolites related to diabetic foot (DF) by integrating genome-wide association studies (GWAS) and metabolome genome-wide association studies (mGWAS).
METHODS:
The literature databases such as PubMed and China national knowledge infrastructure(CNKI), as well as genomics databases such as PAN UKBB, FinnGen, and IEU Open GWAS were systematically retrieved from database estobilishment to November 2024 on DF-related single nucleotide polymorphisms and genome-wide association studies. DF-single nucleotide polymorphism-metabolite network was constructed by mGWAS package and mGWAS-Explorer platform. The causal relationship between key factors was evaluated by two-sample Mendelian randomization. The genetic correlation between DF and 575 metabolites (source:IEU Open GWAS) was evaluated by linkage disequilibrium score regression. In vitro experiments were conducted to induce injury of human umbilical vein endothelial cells with 30 mM glucose and intervene with 20 μM γ-tocopherol. Changes in cell migration, scratch healing and tube formation function were detected.
RESULTS:
Twenty-senen literatures on single nucleotide polymorphism literatures and 3 studies on GWAS were included. Genetic analysis results showed DF-related single nucleotide polymorphisms were enriched in vascular endothelial dysfunction-related pathways (such as fluid shear stress and atherosclerosis). The results of metabolic network analysis screened out 19 associated metabolites, among which 12 such as γ -tocopherol and pyruvate had significant genetic correlations with DF. Mendelian randomization suggested matrix metalloproteinase-9(MMP-9) might be a potential driver of DF (β=0.658, P=0.063 8), and the occurrence of DF could reduce the level of high-density lipoprotein (β=-0.002, P=0.015 2). The results of in vitro experiments confirmed that γ -tocopherol could improve endothelial dysfunction induced by high glucose, specifically manifested as an increase in the number of cell migrations, improvement in the scratch healing rate, and recovery of tubule formation ability (P<0.05).
CONCLUSION
DF has a genetic basis centered on vascular endothelial dysfunction, and its occurrence can lead to further metabolic disorders. The key single nucleotide polymorphism loci integrated provided molecular markers for the risk stratification of foot ulcers in diabetic patients. In addition, γ -tocopherol has demonstrated clinical application potential as a therapeutic drug for DF by significantly improving the function of vascular endothelial cells in a high-glucose environment.
Humans
;
Diabetic Foot/drug therapy*
;
Polymorphism, Single Nucleotide
;
Genome-Wide Association Study
;
Genomics
;
Metabolomics
;
Metabolome
3.Tongmai Hypoglycemic Capsule Attenuates Myocardial Oxidative Stress and Fibrosis in the Development of Diabetic Cardiomyopathy in Rats.
Jie-Qiong ZENG ; Hui-Fen ZHOU ; Hai-Xia DU ; Yu-Jia WU ; Qian-Ping MAO ; Jun-Jun YIN ; Hai-Tong WAN ; Jie-Hong YANG
Chinese journal of integrative medicine 2025;31(3):251-260
OBJECTIVE:
To investigate the effect of Tongmai Hypoglycemic Capsule (THC) on myocardium injury in diabetic cardiomyopathy (DCM) rats.
METHODS:
A total of 24 Sprague Dawley rats were fed for 4 weeks with high-fat and high-sugar food and then injected with streptozotocin intraperitoneally for the establishment of the DCM model. In addition, 6 rats with normal diets were used as the control group. After modeling, 24 DCM rats were randomly divided into the model, L-THC, M-THC, and H-THC groups by computer generated random numbers, and 0, 0.16, 0.32, 0.64 g/kg of THC were adopted respectively by gavage, with 6 rats in each group. After 12 weeks of THC administration, echocardiography, histopathological staining, biochemical analysis, and Western blot were used to detect the changes in myocardial structure, oxidative stress (OS), biochemical indexes, protein expressions of myocardial fibrosis, and nuclear factor erythroid 2-related faactor 2 (Nrf2) element, respectively.
RESULTS:
Treatment with THC significantly decreased cardiac markers such as creatine kinase, lactate dehydrogenase, and creatine kinase-MB, etc., (P<0.01); enhanced cardiac function indicators including heart rate, ejection fraction, cardiac output, interventricular septal thickness at diastole, and others (P<0.05 or P<0.01); decreased levels of biochemical indicators such as fasting blood glucose, total cholesterol, triglycerides, low-density lipoprotein cholesterol, aspartate transaminase, (P<0.05 or P<0.01); and decreased the levels of myocardial fibrosis markers α-smooth muscle actin (α-SMA), and collagen I (Col-1) protein (P<0.01), improved myocardial morphology and the status of myocardial interstitial fibrosis. THC significantly reduced malondialdehyde levels in model rats (P<0.01), increased levels of catalase, superoxide dismutase, and glutathione (P<0.01), and significantly increased the expression of Nrf2, NAD(P)H:quinone oxidoreductase 1, heme oxygenase-1, and superoxide dismutase 2 proteins in the left ventricle of rats (P<0.01).
CONCLUSION
THC activates the Nrf2 signaling pathway and plays a protective role in reducing OS injury and cardiac fibrosis in DCM rats.
Animals
;
Diabetic Cardiomyopathies/physiopathology*
;
Oxidative Stress/drug effects*
;
Drugs, Chinese Herbal/therapeutic use*
;
Rats, Sprague-Dawley
;
Myocardium/metabolism*
;
Fibrosis
;
Male
;
Capsules
;
Hypoglycemic Agents/therapeutic use*
;
NF-E2-Related Factor 2/metabolism*
;
Rats
;
Diabetes Mellitus, Experimental/drug therapy*
4.Design, synthesis, and antitumor activity of novel thioheterocyclic nucleoside derivatives by suppressing the c-MYC pathway.
Xian-Jia LI ; Ke-Xin HUANG ; Ke-Xin WANG ; Ru LIU ; Dong-Chao WANG ; Yu-Ru LIANG ; Er-Jun HAO ; Yang WANG ; Hai-Ming GUO
Acta Pharmaceutica Sinica B 2025;15(7):3685-3707
Eightly-four novel thioheterocyclic nucleoside derivatives were designed, synthesized, and evaluated for antitumor activity in vitro and in vivo. Most of the compounds inhibited the growth of HCT116 and HeLa cancer cells in vitro, among them 33a and 36b exhibited potent activity against HCT116 cells (IC50 = 0.27 and 0.49 μmol/L, respectively). Both compounds 33a and 36b inhibited cell metastasis, arrested the cell cycle in the G2/M phase, and induced apoptosis in vitro. Mechanistic studies revealed that 33a and 36b increased ROS levels, led to DNA damage, ER stress, and mitochondrial dysfunction, and inhibited autophagy in HCT116 cells. Biological information analysis, RNA-sequencing, Gene Set Enrichment Analysis (GSEA), drug affinity responsive target stability (DARTS) assay, cellular thermal shift assay (CETSA), and SPR experiments identified that compounds 33a and 36b showed antitumor activity by suppressing the c-MYC pathway. c-MYC silencing assays indicated that c-MYC proteins participated in 33a-mediated anticancer activities in HCT116 cells. More importantly, compound 33a presented favorable pharmacokinetic properties in mice (T 1/2 = 6.8 h) and showed significant antitumor efficacy in vivo without obvious toxicity, showing promising potential for further clinical development.
5.A computational medicine framework integrating multi-omics, systems biology, and artificial neural networks for Alzheimer's disease therapeutic discovery.
Yisheng YANG ; Yizhu DIAO ; Lulu JIANG ; Fanlu LI ; Liye CHEN ; Ming NI ; Zheng WANG ; Hai FANG
Acta Pharmaceutica Sinica B 2025;15(9):4411-4426
The translation of genetic findings from genome-wide association studies into actionable therapeutics persists as a critical challenge in Alzheimer's disease (AD) research. Here, we present PI4AD, a computational medicine framework that integrates multi-omics data, systems biology, and artificial neural networks for therapeutic discovery. This framework leverages multi-omic and network evidence to deliver three core functionalities: clinical target prioritisation; self-organising prioritisation map construction, distinguishing AD-specific targets from those linked to neuropsychiatric disorders; and pathway crosstalk-informed therapeutic discovery. PI4AD successfully recovers clinically validated targets like APP and ESR1, confirming its prioritisation efficacy. Its artificial neural network component identifies disease-specific molecular signatures, while pathway crosstalk analysis reveals critical nodal genes (e.g., HRAS and MAPK1), drug repurposing candidates, and clinically relevant network modules. By validating targets, elucidating disease-specific therapeutic potentials, and exploring crosstalk mechanisms, PI4AD bridges genetic insights with pathway-level biology, establishing a systems genetics foundation for rational therapeutic development. Importantly, its emphasis on Ras-centred pathways-implicated in synaptic dysfunction and neuroinflammation-provides a strategy to disrupt AD progression, complementing conventional amyloid/tau-focused paradigms, with the future potential to redefine treatment strategies in conjunction with mRNA therapeutics and thereby advance translational medicine in neurodegeneration.
6.International clinical practice guideline on the use of traditional Chinese medicine for functional dyspepsia (2025).
Sheng-Sheng ZHANG ; Lu-Qing ZHAO ; Xiao-Hua HOU ; Zhao-Xiang BIAN ; Jian-Hua ZHENG ; Hai-He TIAN ; Guan-Hu YANG ; Won-Sook HONG ; Yu-Ying HE ; Li LIU ; Hong SHEN ; Yan-Ping LI ; Sheng XIE ; Jin SHU ; Bin-Fang ZENG ; Jun-Xiang LI ; Zhen LIU ; Zheng-Hua XIAO ; Jing-Dong XIAO ; Pei-Yong ZHENG ; Shao-Gang HUANG ; Sheng-Liang CHEN ; Gui-Jun FEI
Journal of Integrative Medicine 2025;23(5):502-518
Functional dyspepsia (FD), characterized by persistent or recurrent dyspeptic symptoms without identifiable organic, systemic or metabolic causes, is an increasingly recognized global health issue. The objective of this guideline is to equip clinicians and nursing professionals with evidence-based strategies for the management and treatment of adult patients with FD using traditional Chinese medicine (TCM). The Guideline Development Group consulted existing TCM consensus documents on FD and convened a panel of 35 clinicians to generate initial clinical queries. To address these queries, a systematic literature search was conducted across PubMed, EMBASE, the Cochrane Library, China National Knowledge Infrastructure (CNKI), VIP Database, China Biology Medicine (SinoMed) Database, Wanfang Database, Traditional Medicine Research Data Expanded (TMRDE), and the Traditional Chinese Medical Literature Analysis and Retrieval System (TCMLARS). The evidence from the literature was critically appraised using the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) approach. The strength of the recommendations was ascertained through a consensus-building process involving TCM and allopathic medicine experts, methodologists, pharmacologists, nursing specialists, and health economists, leveraging their collective expertise and empirical knowledge. The guideline comprises a total of 43 evidence-informed recommendations that span a range of clinical aspects, including the pathogenesis according to TCM, diagnostic approaches, therapeutic interventions, efficacy assessments, and prognostic considerations. Please cite this article as: Zhang SS, Zhao LQ, Hou XH, Bian ZX, Zheng JH, Tian HH, Yang GH, Hong WS, He YY, Liu L, Shen H, Li YP, Xie S, Shu J, Zeng BF, Li JX, Liu Z, Xiao ZH, Xiao JD, Zheng PY, Huang SG, Chen SL, Fei GJ. International clinical practice guideline on the use of traditional Chinese medicine for functional dyspepsia (2025). J Integr Med. 2025; 23(5):502-518.
Dyspepsia/drug therapy*
;
Humans
;
Medicine, Chinese Traditional/methods*
;
Practice Guidelines as Topic
;
Drugs, Chinese Herbal/therapeutic use*
7.Construction and characterization of lpxC deletion strain based on CRISPR/Cas9 in Acinetobacter baumannii
Zong-ti SUN ; You-wen ZHANG ; Hai-bin LI ; Xiu-kun WANG ; Jie YU ; Jin-ru XIE ; Peng-bo PANG ; Xin-xin HU ; Tong-ying NIE ; Xi LU ; Jing PANG ; Lei HOU ; Xin-yi YANG ; Cong-ran LI ; Lang SUN ; Xue-fu YOU
Acta Pharmaceutica Sinica 2024;59(5):1286-1294
Lipopolysaccharides (LPS) are major outer membrane components of Gram-negative bacteria. Unlike most Gram-negative bacteria,
8.TSHR Variant Screening and Phenotype Analysis in 367 Chinese Patients With Congenital Hypothyroidism
Hai-Yang ZHANG ; Feng-Yao WU ; Xue-Song LI ; Ping-Hui TU ; Cao-Xu ZHANG ; Rui-Meng YANG ; Ren-Jie CUI ; Chen-Yang WU ; Ya FANG ; Liu YANG ; Huai-Dong SONG ; Shuang-Xia ZHAO
Annals of Laboratory Medicine 2024;44(4):343-353
Background:
Genetic defects in the human thyroid-stimulating hormone (TSH) receptor (TSHR) gene can cause congenital hypothyroidism (CH). However, the biological functions and comprehensive genotype–phenotype relationships for most TSHR variants associated with CH remain unexplored. We aimed to identify TSHR variants in Chinese patients with CH, analyze the functions of the variants, and explore the relationships between TSHR genotypes and clinical phenotypes.
Methods:
In total, 367 patients with CH were recruited for TSHR variant screening using whole-exome sequencing. The effects of the variants were evaluated by in-silico programs such as SIFT and polyphen2. Furthermore, these variants were transfected into 293T cells to detect their Gs/cyclic AMP and Gq/11 signaling activity.
Results:
Among the 367 patients with CH, 17 TSHR variants, including three novel variants, were identified in 45 patients, and 18 patients carried biallelic TSHR variants. In vitro experiments showed that 10 variants were associated with Gs/cyclic AMP and Gq/11 signaling pathway impairment to varying degrees. Patients with TSHR biallelic variants had lower serum TSH levels and higher free triiodothyronine and thyroxine levels at diagnosis than those with DUOX2 biallelic variants.
Conclusions
We found a high frequency of TSHR variants in Chinese patients with CH (12.3%), and 4.9% of cases were caused by TSHR biallelic variants. Ten variants were identified as loss-of-function variants. The data suggest that the clinical phenotype of CH patients caused by TSHR biallelic variants is relatively mild. Our study expands the TSHR variant spectrum and provides further evidence for the elucidation of the genetic etiology of CH.
9.Detection of Copper Ion in Water Based on a Method Combining Potentiometric and Amperometric Sensors for Accurate Measurement
Ao-Bo CONG ; Yang LI ; Hai-Fei ZHAO ; Jian-Hua TONG ; Chao BIAN
Chinese Journal of Analytical Chemistry 2024;52(8):1163-1171
In this study,a method for detecting heavy metal ions using potentiometric sensor and voltammetric sensor was proposed.By exploiting the complementary advantages of potentiometric and voltammetric electrochemical sensor,the traditional electrochemical electrode without special material preparation and modification could be used for the wide range and accurate detection of heavy metal ions in actual water samples.During detection,the concentration of target ion was measured by a potentiometric electrochemical sensor to determine the concentration range.The amperometric electrochemical sensor was then used for calibration and accurate measurement in the appropriate concentration range.Taking copper ion(Cu2+)as an example,the prepared Cu2+water sample and the actual water sample were tested.First,the copper ion selective electrode was used to determine the concentration range of Cu2+in the sample.Then,based on the gold electrode in different concentration range(0.86-100 μg/L and 100-300 μg/L)using two different optimization parameter settings to calibrate the electrochemical sensor and measure,the test results had a good correlation with those by professional water quality testing institutions.The recoveries ranged from 86.7%to 103.0%.The experimental results showed that the combination of potential sensor and current sensor could improve the accuracy of detection of heavy metal ions in water samples by electrochemical sensor.
10.Bibliometric Analysis of Forensic Human Remains Identification Literature from 1991 to 2022
Ji-Wei MA ; Ping HUANG ; Ji ZHANG ; Hai-Xing YU ; Yong-Jie CAO ; Xiao-Tong YANG ; Jian XIONG ; Huai-Han ZHANG ; Yong CANG ; Ge-Fei SHI ; Li-Qin CHEN
Journal of Forensic Medicine 2024;40(3):245-253
Objective To describe the current state of research and future research hotspots through a metrological analysis of the literature in the field of forensic anthropological remains identification re-search.Methods The data retrieved and extracted from the Web of Science Core Collection (WoSCC),the core database of the Web of Science information service platform (hereinafter referred to as "WoS"),was used to analyze the trends and topic changes in research on forensic identification of human re-mains from 1991 to 2022.Network visualisation of publication trends,countries (regions),institutions,authors and topics related to the identification of remains in forensic anthropology was analysed using python 3.9.2 and Gephi 0.10.Results A total of 873 papers written in English in the field of forensic anthropological remains identification research were obtained.The journal with the largest number of publications was Forensic Science International (164 articles).The country (region) with the largest number of published papers was China (90 articles).Katholieke Univ Leuven (Netherlands,21 articles) was the institution with the largest number of publications.Topic analysis revealed that the focus of forensic anthropological remains identification research was sex estimation and age estimation,and the most commonly studied remains were teeth.Conclusion The volume of publications in the field of forensic anthropological remains identification research has a distinct phasing.However,the scope of both international and domestic collaborations remains limited.Traditionally,human remains identifica-tion has primarily relied on key areas such as the pelvis,skull,and teeth.Looking ahead,future re-search will likely focus on the more accurate and efficient identification of multiple skeletal remains through the use of machine learning and deep learning techniques.

Result Analysis
Print
Save
E-mail