1.Multivariate quantitative combined with chemometrics for evaluating the quality of Sophora flavescens from different producing areas
Jiahui CHEN ; Qiong LUO ; Junli ZHAO ; Yan HAI ; Chengdong LIU ; Tuya BAI ; Jun LI ; Yuewu WANG
China Pharmacy 2025;36(19):2404-2408
OBJECTIVE To establish a content determination method for multiple components in Sophora flavescens from different origins and to evaluate its quality by combining with chemometrics. METHODS Thirteen batches (No. K1-K13) of S. flavescens from different origins were selected as test samples. A high-performance liquid chromatography-tandem triple quadrupole mass spectrometry (HPLC-MS/MS) method was established to determine the contents of 12 components, including matrine, oxymatrine, betaine, cytisine, N-methylcytisine, sophoridine, genistein, sophoricoside, sophorone, formononetin, sophorolone Ⅰ and norkurarinone in S. flavescens. Chromatographic separation was performed on a Shim-pack GIST-HP C18 column with a mobile phase consisting of methanol (A) and water containing 0.1% formic acid (B), using gradient elution at a flow rate of 0.25 mL/min, column temperature of 35 ℃, and an injection volume of 3 μL. Mass spectrometry was conducted using an electrospray ionization source with positive and negative ion scanning. Data were collected in segments using the multiple reaction monitoring mode. Technique for order preference by similarity to ideal solution (TOPSIS) and grey relational analysis (GRA)methods were employed to compare and comprehensively evaluate the 13 batches of S. flavescens from different origins. RESULTS The methodological validation for the content determination met the relevant regulatory requirements. The contents of the 12 components were 490.66-1 231.00, 11 088.10- 18 021.50, 7.91-25.38, 903.97-1 713.64, 336.08-1 485.54,1 065.33-2 075.50, 27.52-71.80, 109.36-517.83, 6 034.55-10 632.73, 21.26-145.35, 814.84-1 911.32, 1 040.87-3 446.37 μg/g), respectively. TOPSIS results showed that the top 7 samples in Euclidean distance ranking were K6, K12, K11, K3, K5, K10, K13. The GRA results showed that the top 7 samples in the relative correlation ranking were K12, K11, K10, K6, K13, K5, K3. CONCLUSIONS The established HPLC-MS/MS method is rapid, accurate, highly sensitive, stable and reliable. Combined with chemometrics methods, it can be used for the quality control and evaluation of S. flavescens. The comprehensive quality of samples K3, K5, K6( from Hebei), K10( from Sichuan), K11-K13( from Shanxi), etc. is relatively superior.
2.Erratum: Author correction to "PRMT6 promotes tumorigenicity and cisplatin response of lung cancer through triggering 6PGD/ENO1 mediated cell metabolism" Acta Pharm Sin B 13 (2023) 157-173.
Mingming SUN ; Leilei LI ; Yujia NIU ; Yingzhi WANG ; Qi YAN ; Fei XIE ; Yaya QIAO ; Jiaqi SONG ; Huanran SUN ; Zhen LI ; Sizhen LAI ; Hongkai CHANG ; Han ZHANG ; Jiyan WANG ; Chenxin YANG ; Huifang ZHAO ; Junzhen TAN ; Yanping LI ; Shuangping LIU ; Bin LU ; Min LIU ; Guangyao KONG ; Yujun ZHAO ; Chunze ZHANG ; Shu-Hai LIN ; Cheng LUO ; Shuai ZHANG ; Changliang SHAN
Acta Pharmaceutica Sinica B 2025;15(4):2297-2299
[This corrects the article DOI: 10.1016/j.apsb.2022.05.019.].
3.Hippocampal Extracellular Matrix Protein Laminin β1 Regulates Neuropathic Pain and Pain-Related Cognitive Impairment.
Ying-Chun LI ; Pei-Yang LIU ; Hai-Tao LI ; Shuai WANG ; Yun-Xin SHI ; Zhen-Zhen LI ; Wen-Guang CHU ; Xia LI ; Wan-Neng LIU ; Xing-Xing ZHENG ; Fei WANG ; Wen-Juan HAN ; Jie ZHANG ; Sheng-Xi WU ; Rou-Gang XIE ; Ceng LUO
Neuroscience Bulletin 2025;41(12):2127-2147
Patients suffering from nerve injury often experience exacerbated pain responses and complain of memory deficits. The dorsal hippocampus (dHPC), a well-defined region responsible for learning and memory, displays maladaptive plasticity upon injury, which is assumed to underlie pain hypersensitivity and cognitive deficits. However, much attention has thus far been paid to intracellular mechanisms of plasticity rather than extracellular alterations that might trigger and facilitate intracellular changes. Emerging evidence has shown that nerve injury alters the microarchitecture of the extracellular matrix (ECM) and decreases ECM rigidity in the dHPC. Despite this, it remains elusive which element of the ECM in the dHPC is affected and how it contributes to neuropathic pain and comorbid cognitive deficits. Laminin, a key element of the ECM, consists of α-, β-, and γ-chains and has been implicated in several pathophysiological processes. Here, we showed that peripheral nerve injury downregulates laminin β1 (LAMB1) in the dHPC. Silencing of hippocampal LAMB1 exacerbates pain sensitivity and induces cognitive dysfunction. Further mechanistic analysis revealed that loss of hippocampal LAMB1 causes dysregulated Src/NR2A signaling cascades via interaction with integrin β1, leading to decreased Ca2+ levels in pyramidal neurons, which in turn orchestrates structural and functional plasticity and eventually results in exaggerated pain responses and cognitive deficits. In this study, we shed new light on the functional capability of hippocampal ECM LAMB1 in the modulation of neuropathic pain and comorbid cognitive deficits, and reveal a mechanism that conveys extracellular alterations to intracellular plasticity. Moreover, we identified hippocampal LAMB1/integrin β1 signaling as a potential therapeutic target for the treatment of neuropathic pain and related memory loss.
Animals
;
Laminin/genetics*
;
Hippocampus/metabolism*
;
Neuralgia/metabolism*
;
Cognitive Dysfunction/etiology*
;
Male
;
Peripheral Nerve Injuries/metabolism*
;
Extracellular Matrix/metabolism*
;
Integrin beta1/metabolism*
;
Pyramidal Cells/metabolism*
;
Signal Transduction
4.3D-EDiffMG: 3D equivariant diffusion-driven molecular generation to accelerate drug discovery.
Chao XU ; Runduo LIU ; Yufen YAO ; Wanyi HUANG ; Zhe LI ; Hai-Bin LUO
Journal of Pharmaceutical Analysis 2025;15(6):101257-101257
Structural optimization of lead compounds is a crucial step in drug discovery. One optimization strategy is to modify the molecular structure of a scaffold to improve both its biological activities and absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties. One of the deep molecular generative model approaches preserves the scaffold while generating drug-like molecules, thereby accelerating the molecular optimization process. Deep molecular diffusion generative models simulate a gradual process that creates novel, chemically feasible molecules from noise. However, the existing models lack direct interatomic constraint features and struggle with capturing long-range dependencies in macromolecules, leading to challenges in modifying the scaffold-based molecular structures, and creates limitations in the stability and diversity of the generated molecules. To address these challenges, we propose a deep molecular diffusion generative model, the three-dimensional (3D) equivariant diffusion-driven molecular generation (3D-EDiffMG) model. The dual strong and weak atomic interaction force-based long-range dependency capturing equivariant encoder (dual-SWLEE) is introduced to encode both the bonding and non-bonding information based on strong and weak atomic interactions. Additionally, a gate multilayer perceptron (gMLP) block with tiny attention is incorporated to explicitly model complex long-sequence feature interactions and long-range dependencies. The experimental results show that 3D-EDiffMG effectively generates unique, novel, stable, and diverse drug-like molecules, highlighting its potential for lead optimization and accelerating drug discovery.
5.Generalized Functional Linear Models: Efficient Modeling for High-dimensional Correlated Mixture Exposures.
Bing Song ZHANG ; Hai Bin YU ; Xin PENG ; Hai Yi YAN ; Si Ran LI ; Shutong LUO ; Hui Zi WEIREN ; Zhu Jiang ZHOU ; Ya Lin KUANG ; Yi Huan ZHENG ; Chu Lan OU ; Lin Hua LIU ; Yuehua HU ; Jin Dong NI
Biomedical and Environmental Sciences 2025;38(8):961-976
OBJECTIVE:
Humans are exposed to complex mixtures of environmental chemicals and other factors that can affect their health. Analysis of these mixture exposures presents several key challenges for environmental epidemiology and risk assessment, including high dimensionality, correlated exposure, and subtle individual effects.
METHODS:
We proposed a novel statistical approach, the generalized functional linear model (GFLM), to analyze the health effects of exposure mixtures. GFLM treats the effect of mixture exposures as a smooth function by reordering exposures based on specific mechanisms and capturing internal correlations to provide a meaningful estimation and interpretation. The robustness and efficiency was evaluated under various scenarios through extensive simulation studies.
RESULTS:
We applied the GFLM to two datasets from the National Health and Nutrition Examination Survey (NHANES). In the first application, we examined the effects of 37 nutrients on BMI (2011-2016 cycles). The GFLM identified a significant mixture effect, with fiber and fat emerging as the nutrients with the greatest negative and positive effects on BMI, respectively. For the second application, we investigated the association between four pre- and perfluoroalkyl substances (PFAS) and gout risk (2007-2018 cycles). Unlike traditional methods, the GFLM indicated no significant association, demonstrating its robustness to multicollinearity.
CONCLUSION
GFLM framework is a powerful tool for mixture exposure analysis, offering improved handling of correlated exposures and interpretable results. It demonstrates robust performance across various scenarios and real-world applications, advancing our understanding of complex environmental exposures and their health impacts on environmental epidemiology and toxicology.
Humans
;
Environmental Exposure/analysis*
;
Linear Models
;
Nutrition Surveys
;
Environmental Pollutants
;
Body Mass Index
6.Exploring potential serum metabolite markers of intrahepatic cholestasis based on liquid chromatography-mass spectrometry metabolomics technology
Xia LUO ; Shuxia LI ; Long HAI ; Shuaiwei LIU ; Xiangchun DING ; Xiaoyan LIU ; Lina MA
Chinese Journal of Hepatology 2024;32(8):753-760
Objective:To analyze the blood differential metabolites of patients with intrahepatic cholestasis (IHC) by liquid chromatography-mass spectrometry metabolomics technology so as to find potential metabolic target.Method:Serum samples were collected from thirty patients with intrahepatic cholestasis and thirty healthy individuals after metabolomics analysis. The differential metabolites were initially screened based on the multiple differences and significance. KEGG enrichment analysis was performed on the differential metabolites to determine the candidate targets. The potential clinical application value of these characteristic metabolites was analyzed using the receiver operating characteristic curve.Result:A total of thirty patients with intrahepatic cholestasis and thirty healthy adults were included. The age difference between the two groups was not statistically significant ( P>0.05). The clinical condition was consistent with the statistically significant differences in liver biochemical indicators, blood routine, coagulation, and inflammatory indicators between the two groups ( P<0.05). Furthermore, a blood metabolomics screening analysis revealed 99 differentially expressed metabolites associated with intrahepatic cholestasis. Of these, 15 showed statistically significant differences. Glucose, lipid, and energy metabolisms were the various primary types of differential metabolites involved. The receiver operating characteristic curve>0.9 included the following twelve kinds of metabolites: 1H-indole-3-carboxaldehyde, 6-hydroxy-1H-indole-3-acetamide, phenylalanyl tryptophan, 1-methylguanosine, 2-ethoxy-5-methylpyrazine, p-hydroxybenzaldehyde, 5-(2-chlorophenyl)-3,4-dihydro-2H-pyrrole, methylthioadenosine, alanylisoleucine, anabsinthin, N-acetyl-DL-histidine monohydrate, N-methylnicotinamide, and others. The fifteen metabolites that were previously identified and calculated according to the differential quantitative value of the metabolite corresponding ratio exhibited fold-changes in the upregulated and downregulated potential biomarkers (phenylalanine tryptophan, phenylalanine, 5'-methylthioadenosine, anabsinthin, and N-methylnicotinamide) in combination with the area under the receiver operating characteristic curve>0.9. Conclusion:Phenylalanyl tryptophan, phenylalanylalanine, 5'-methylthioadenosine, anabsinthin, and N-methylnicotinamide may serve as potential metabolic markers to distinguish patients with cholestasis from healthy controls. N-methylnicotinamide, among them, is of great importance as a potential marker.
7.Comparing the impact of left bundle branch area pacing and traditional left ventricular pacing on right heart function following dual-chamber pacemaker implantation
Fei LIU ; Xiang LI ; Zhili JIANG ; Wei LUO ; Hai GAO
Chinese Journal of Cardiology 2024;52(2):180-184
Objective:To compare the effects of left bundle branch area pacing (LBBaP) versus traditional right ventricular pacing (RVP) on left ventricular function in patients after dual-chamber pacemaker implantation.Methods:A retrospective cohort study was conducted on patients who underwent dual-chamber pacemaker implantation from March 2017 to April 2021 in Beijing Anzhen Hospital. The patients were divided into the LBBaP group and RVP group based on the placement of the ventricular lead. Follow-up was conducted until March 2022, comparing baseline and follow-up echocardiographic parameters, pacing parameters, and the incidence and timing of complications between the two groups. The complications included ventricular electrode perforation, dislocation, pericardial effusion, tricuspid valve perforation, etc.Results:A total of 163 patients aged (68.3±13.5) years were included, including 82 (50.3%) men, with 80 patients in the LBBaP group and 83 in the RVP group. Baseline left ventricular end-diastolic diameter ((50.49±4.95) mm vs. (47.43±8.15) mm, P=0.01) and left atrium (LA) ((33.14±5.94) mm vs. (30.18±3.92) mm, P=0.001) in the LBBaP group were significantly higher than those in the RVP group. Follow-up LA diameter ((37.10±6.70) mm vs. (40.10±8.90) mm, P=0.016) showed a statistically significant difference in the LBBaP group compared to the RVP group. There was no statistically significant difference between the two groups in baseline QRS duration( P=0.490). Postoperative QRS duration in the LBBaP group was significantly lower ((110.69±24.01) ms vs. (139.65±29.85) ms, P<0.010). Intraoperative threshold in the LBBaP group was significantly higher ((0.83±0.32) V/0.48 ms vs. (0.71±0.23) V/0.48 ms, P=0.004), while impedance was lower ((754.53±205.59) Ω vs. (905.41±302.75) Ω, P<0.01). Comparing with the RVP group, postoperative ventricular pacing ratio (VP) ((87.39±20.92) % vs. (79.49±25.76) %, P=0.034), threshold ((0.90±0.38) V/0.48 ms vs. (0.69±0.27) V/0.48 ms, P<0.01) in the LBBaP group were higher, and impedance ((507.45±77.37) Ω vs. (620.52±197.29) Ω, P<0.01) in the LBBaP group was lower. Postoperative follow-up period was 5 to 51 months, with a median follow-up time of 17 months. No statistically significant difference in overall complications between the LBBaP and RVP groups was found (13.8% (11/80) vs. 7.2% (6/83), P>0.05). The median time to occurrence of complications after surgery was significantly earlier in the LBBaP group (29.74 (95% CI 27.21-32.26) months vs. 46.17 (95% CI 42.48-49.86) months, P=0.030). Conclusion:LBBaP demonstrates more stable pacing parameters, substantial improvement in clinical left ventricular function, with a relatively higher threshold compared to traditional RVP, and complications occurs relatively early.
8.Effect of Simo decoction on the regulation of NLRP3/Caspase-1/GSDMD signal pathway on duodenal microinflammation in rats with functional dyspepsia
Qin LIU ; Xiao-Yuan LIN ; Ling-Feng YANG ; Qian LUO ; Yun-Zong HAN ; Si-Qing CHEN ; Hai-Yue ZHANG ; Shu ZHOU ; Sai-Nan ZHOU
The Chinese Journal of Clinical Pharmacology 2024;40(1):67-71
Objective To investigate the effects of Simo decoction on duodenal microinflammation and NOD-like receptor thermal protein domain associated protein 3(NLRP3)/cysteinyl aspartate-specific proteinase-1(Caspase-1)/gasdermin D(GSDMD)signaling pathway in rats with functional dyspepsia(FD).Methods The FD model was established by multifactorial method.SD rats were randomly divided into normal group,model group(FD model),positive control group(gavage administration of 0.305 mg·kg-1 mosapride injection)and experimental-H,-M,-L groups(gavage administration of 5.62,2.81,1.40 g·kg-1 Simo decoction).Small intestinal advancement rate and gastric emptying rate was determined;the levels of interleukin(IL)-1 β and IL-18 in serum were determined by enzyme linked immunosorbent assay(ELISA);the protein expression of NLRP3 and GSDMD in duodenal tissue was detected by Western blotting.Results The gastric emptying rates of normal,model,positive control and experimental-H,-M,-Lgroupswere(58.34±5.72)%,(29.16±8.37)%,(48.77±6.10)%,(48.35±6.04)%,(48.20±3.49)%and(39.24±4.20)%;the small intestinal propulsion rates were(82.01±7.55)%,(41.95±9.53)%,(64.61±10.18)%,(75.04±9.76)%,(60.58±7.13)%and(45.89±7.40)%;serum IL-1 β expression were(12.86±0.88),(43.73±4.60),(18.84±0.86),(24.61±1.57),(19.14±0.77)and(29.04±0.72)pg·mL-1;IL-18 expressions were(95.00±3.74),(170.60±8.78),(108.50±3.05),(118.90±3.45),(99.90±8.70)and(141.00±3.71)pg·mL-1;the relative expression levels of NLRP3 proteins were 0.32±0.02,0.84±0.05,0.42±0.03,0.48±0.02,0.61±0.04 and 0.62±0.05;the relative expression levels of GSDMD proteins were 0.34±0.05,0.93±0.06,0.35±0.03,0.52±0.02,0.53±0.06 and 0.55±0.05,respectively.Compared with the normal group,the above indexes in the model group have statistical significance;compared with the model group,the above indexes in the experimental-H group and the positive control group also have statistical significance(P<0.01 or P<0.05).Conclusion Simo decoction can effectively improve the general condition and duodenal microinflammation in FD rats,and the mechanism may be related to the inhibition of duodenal NLRP3/Caspase-1/GSDMD signaling pathway.
9.Role of Ferroptosis in Bone Homeostasis and Traditional Chinese Medicine Intervention: A Review
Bo WEI ; Juan LI ; Yiwei JIANG ; Yuying ZHOU ; Chunhui LUO ; Zhongchao YU ; Pei LIU ; Yunxiang HAI
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(3):249-257
Osteoporosis (OP) is a systemic metabolic bone disease characterized by bone microstructure degeneration and bone mass loss, which has a high prevalence and disability rate. Effective prevention and treatment of OP is a major difficulty in the medical community. The nature of OP is that multiple pathological factors lead to the imbalance of human bone homeostasis maintained by osteoblasts and osteoclasts. Ferroptosis is a non-apoptotic cell death pathway, and its fundamental cause is cell damage caused by iron accumulation and lipid peroxidation. Studies have shown that ferroptosis is involved in and affects the occurrence and development of OP, which leads to OP by mediating the imbalance of bone homeostasis. Ferroptosis is an adjustable form of programmed cell death. The intervention of ferroptosis can regulate the damage degree and death process of osteoblasts and osteoclasts, which is beneficial to maintain bone homeostasis, slow down the development process of OP, improve the clinical symptoms of patients, reduce the risk of disability, and improve their quality of life. However, there are few studies on ferroptosis in OP. Traditional Chinese medicine (TCM) is a medical treasure with unique characteristics and great application value in China. It has been widely used in China and has a long history. It has the multi-target and multi-pathway advantages in the treatment of OP, with high safety, few toxic and side effects, and low treatment cost, and has a significant effect in clinical application. The intervention of TCM in ferroptosis to regulate bone homeostasis may be a new direction for the prevention and treatment of OP in the future. This article summarized the regulatory mechanisms related to ferroptosis, discussed the role of ferroptosis in bone homeostasis, and reviewed the current status and progress of active ingredients in TCM compounds and monomers in the regulation of OP through ferroptosis, so as to provide a theoretical basis for the participation of TCM in the prevention and treatment of OP in the future.
10.Effect of different expression levels of GRIM-19 on the resistance of prostate cancer cells to docetaxel chemotherapy
Hai-Li LIN ; Yong-Xin HE ; Tian-Qi LIN ; Zai-Xiong SHEN ; Liu-Tao LUO ; Si-Xing HUANG ; Yi HUANG ; Yu ZHOU ; Min-Yi RUAN
National Journal of Andrology 2024;30(10):884-888
Objective:To investigate the effect of GRIM-19 on the resistance of carcinoma cells to the chemotherapeutic agent docetaxel in the treatment of PCa.Methods:Using siRNA technology to interfere with the gene expression in PCa cells,we estab-lished a model of GRIM-19 overexpression/knockdown in PCa cells.We investigated the effect of different expression levels of GRIM-19 on docetaxel-induced death of the PCa cells by qPCR,Western blot and flow cytometry,and assessed the value of GRIM-19 in re-ducing the chemotherapy-resistance of PCa cells.Results:GRIM-19 was down-regulated in PCa tissues and cells.Knockout of GRIM-19 significantly decreased the expression of siGRIM19 in the PC-3 and LNCaP cells,and reduced their death rate when treated with docetaxel compared with the control group.The expressions of GRIM-19 mRNA and protein were remarkably upregulated after transfection with GRIM-19,and the overexpressed GRIM-19 promoted the death of the PC-3 and LNCaP cells treated with docetaxel in a dose-dependent manner.Flow cytometry analysis showed a lower apoptosis rate of PC-3-R cells than that of PC-3 cells at different time points of docetaxel-induction at different doses.Conclusion:GRIM-19 is a PCa suppressor gene with a significant facilitating effect on the apoptosis of PCa cells,and the overexpression of GRIM-19 promotes docetaxel-induced PCa cell death and improves the sensitivity of chemotherapy.

Result Analysis
Print
Save
E-mail