1.Molecular mechanism of verbascoside in promoting acetylcholine release of neurotransmitter.
Zhi-Hua ZHOU ; Hai-Yan XING ; Yan LIANG ; Jie GAO ; Yang LIU ; Ting ZHANG ; Li ZHU ; Jia-Long QIAN ; Chuan ZHOU ; Gang LI
China Journal of Chinese Materia Medica 2025;50(2):335-348
The molecular mechanism of verbascoside(OC1) in promoting acetylcholine(ACh) release in the pathogenesis of Alzheimer's disease(AD) was studied. Adrenal pheochromocytoma cells(PC12) of rats induced by β-amyloid protein(1-42)(Aβ_(1-42)) were used as AD models in vitro and were divided into control group, model group(Aβ_(1-42) 10 μmol·L~(-1)), OC1 treatment group(2 and 10 μg·mL~(-1)). The effect of OC1 on phosphorylated proteins in AD models was analyzed by whole protein phosphorylation quantitative omics, and the selectivity of OC1 for calcium channel subtypes was virtually screened in combination with computer-aided drug design. The fluorescence probe Fluo-3/AM was used to detect Ca~(2+) concentration in cells. Western blot analysis was performed to detect the effects of OC1 on the expression of phosphorylated calmodulin-dependent protein kinase Ⅱ(p-CaMKⅡ, Thr286) and synaptic vesicle-related proteins, and UPLC/Q Exactive MS was used to detect the effects of OC1 on ACh release in AD models. The effects of OC1 on acetylcholine esterase(AChE) activity in AD models were detected. The results showed that the differentially modified proteins in the model group and the OC1 treatment group were related to calcium channel activation at three levels: GO classification, KEGG pathway, and protein domain. The results of molecular docking revealed the dominant role of L-type calcium channels. Fluo-3/AM fluorescence intensity decreased under the presence of Ca~(2+) chelating agent ethylene glycol tetraacetic acid(EGTA), L-type calcium channel blocker verapamil, and N-type calcium channel blocker conotoxin, and the effect of verapamil was stronger than that of conotoxin. This confirmed that OC1 promoted extracellular Ca~(2+) influx mainly through its interaction with L-type calcium channel protein. In addition, proteomic analysis and Western blot results showed that the expression of p-CaMKⅡ and downstream vesicle-related proteins was up-regulated after OC1 treatment, indicating that OC1 acted on vesicle-related proteins by activating CaMKⅡ and participated in synaptic remodeling and transmitter release, thus affecting learning and memory. OC1 also decreased the activity of AChE and prolonged the action time of ACh in synaptic gaps.
Animals
;
Rats
;
Glucosides/administration & dosage*
;
Acetylcholine/metabolism*
;
Alzheimer Disease/genetics*
;
PC12 Cells
;
Phenols/chemistry*
;
Neurotransmitter Agents/metabolism*
;
Drugs, Chinese Herbal
;
Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics*
;
Humans
;
Phosphorylation/drug effects*
;
Calcium/metabolism*
;
Polyphenols
2.Mechanism of tannins from Galla chinensis cream in promoting skin wound healing in rats based on FAK/PI3K/Akt/mTOR signaling pathway.
Wen YI ; Zi-Yi YAN ; Meng-Qiong SHI ; Ying ZHANG ; Jie LIU ; Qian YI ; Hai-Ming TANG ; Yi-Wen LIU
China Journal of Chinese Materia Medica 2025;50(2):480-497
This study investigated the effects and action mechanism of tannins from Galla chinensis cream(TGCC) on the skin wound of rat tail. Male Sprague Dawley(SD) rats were randomly divided into a control group, model group, model+low-dose TGCC(50 mg per rat) group, model+high-dose TGCC group(100 mg per rat), and model+TGC+FAK inhibitor(Y15) cream(100 mg+10 mg per rat) group, with 10 rats in each group. After the rat tail skin injury model was successfully constructed, in the treatment group, corresponding drugs were applied to the wound surface, while in the control and model groups, the same amount of cream base as the TGCC group was applied by the same method. Then, sterile gauze was wrapped around the wound edge, and these operations were performed three times a day for 28 consecutive days. The wound healing status at the third, seventh, eleventh, fourteenth, twenty-first, and twenty-eighth days was recorded, and the wound healing rate and healing time were calculated. On the day after the last dose of medication, rat serum and tail skin wound tissue were collected for analyzing the activities of serum alanine aminotransferase(ALT), aspartate aminotransferase(AST), creatinine(CREA), urea, reactive oxygen species(ROS), interferon gamma(IFN-γ), interleukin(IL)-1β, IL-6, IL-4, IL-10, tumor necrosis factor(TNF)-α, as well as catalase(CAT), glutathione(GSH), lactate dehydrogenase(LDH), malondialdehyde(MDA), myeloperoxidase(MPO), superoxide dismutase(SOD), total antioxidant capacity(T-AOC), platelet endothelial cell adhesion molecule-1(CD31), and leukocyte differentiation antigen 34(CD34) in the wound tissue of rat tail skin. Hematoxylin-eosin, Masson, and sirius red staining were used to observe the morphological changes in the wound tissue of rat tail skin. The thickness of the epidermis, the number of fibroblasts and blood vessels, and the contents of collagen fibers, typeⅠ collagen(COLⅠ), and COLⅢ were calculated. The mRNA expressions of keratin 10(KRT10), KRT14, vascular endothelial growth factor(VEGF), fibroblast growth factor(FGF), epidermal growth factor(EGF), CD31, CD34, matrix metallopeptidase-2(MMP-2), MMP-9, COLⅠ, COLⅢ, desmin, fibroblast specific protein 1(FSP1), IFN-γ, IL-1β, TNF-α, IL-4, IL-6, and IL-10 in skin wound tissue were determined by quantitative real-time polymerase chain reaction(PCR). Western blot was utilized to detect the protein expressions of KRT10, KRT14, VEGF, FGF, EGF, MMP-2, MMP-9, COLⅠ, COLⅢ, desmin, FSP1, focal adhesion kinase(FAK), phosphorylated focal adhesion kinase(p-FAK), phosphatidylin-ositol-3-kinase(PI3K), phosphorylated phosphatidylin-ositol-3-kinase(p-PI3K), protein kinase B(Akt), phosphorylated protein kinase B(p-Akt), mammalian target of rapamycin(mTOR), and phosphorylated mammalian target of rapamycin(p-mTOR). The results manifest that TGCC can dramatically elevate the healing rate of rat tail wounds and shorten wound healing time. Besides, it can reduce serum ROS levels, the contents of MDA, MPO, and LDH in the rat skin wound tissue, as well as the serum IFN-γ, IL-1β, IL-6, and TNF-α levels and the mRNA expression levels of IFN-γ, IL-1β, IL-6, and TNF-α in the skin wound tissue. It can elevate the activities of CAT, GSH, SOD, and T-AOC in wound tissue, the IL-4 and IL-10 contents in serum, and the mRNA expressions of IL-4 and IL-10 in the wound tissue. In addition, TGGC can inhibit inflammatory cell infiltration and increase the epidermal thickness, counts of fibroblasts and blood vessels, and contents of collagen fibers, COLⅠ, and COLⅢ. Besides, TGCC can elevate the mRNA and protein expressions of epidermal differentiation markers(KRT10 and KRT14), endothelial cell markers(CD31 and CD34), angiogenesis and fibroblast proliferation, differentiation markers(VEGF, FGF, EGF, COLⅠ, COLⅢ, desmin, and FSP1), reduce the mRNA and protein expressions of gelatinases(MMP-2 and MMP-9), and increase protein expressions of p-FAK, p-PI3K, p-Akt, p-mTOR, as well as ratios of p-FAK/FAK, p-PI3K/PI3K, p-Akt/Akt, and p-mTOR/mTOR. These results suggest that TGCC can significantly facilitate skin wound healing, and its mechanism may be related to the activation of the FAK/PI3K/Akt/mTOR signaling pathway, inhibition of inflammatory cell infiltration in skin wound tissue, elevation of epidermal thickness, counts of fibroblasts and vessels, and contents of collagen fiber, COLⅠ, and COLⅢ, and reduction of MMP-2 and MMP-9 expressions, thus accelerating wound healing.
Animals
;
Male
;
Wound Healing/drug effects*
;
Rats
;
Rats, Sprague-Dawley
;
Signal Transduction/drug effects*
;
TOR Serine-Threonine Kinases/genetics*
;
Phosphatidylinositol 3-Kinases/genetics*
;
Skin/metabolism*
;
Proto-Oncogene Proteins c-akt/genetics*
;
Tannins/pharmacology*
;
Humans
;
Drugs, Chinese Herbal/administration & dosage*
;
Focal Adhesion Kinase 1/genetics*
3.Mechanism of vanillic acid against cardiac fibrosis induced by isoproterenol in mice based on Drp1/HK1/NLRP3 and mitochondrial apoptosis signaling pathways.
Hai-Bo HE ; Mian WU ; Jie XU ; Qian-Qian XU ; Fang-Zhu WAN ; Hua-Qiao ZHONG ; Ji-Hong ZHANG ; Gang ZHOU ; Hui-Lin QIN ; Hao-Ran LI ; Hai-Ming TANG
China Journal of Chinese Materia Medica 2025;50(8):2193-2208
This study investigated the effects and underlying mechanisms of vanillic acid(VA) against cardiac fibrosis(CF) induced by isoproterenol(ISO) in mice. Male C57BL/6J mice were randomly divided into control group, VA group(100 mg·kg~(-1), ig), ISO group(10 mg·kg~(-1), sc), ISO + VA group(10 mg·kg~(-1), sc + 100 mg·kg~(-1), ig), ISO + dynamin-related protein 1(Drp1) inhibitor(Mdivi-1) group(10 mg·kg~(-1), sc + 50 mg·kg~(-1), ip), and ISO + VA + Mdivi-1 group(10 mg·kg~(-1), sc + 100 mg·kg~(-1), ig + 50 mg·kg~(-1), ip). The treatment groups received the corresponding medications once daily for 14 consecutive days. On the day after the last administration, cardiac functions were evaluated, and serum and cardiac tissue samples were collected. These samples were analyzed for serum aspartate aminotransferase(AST), lactate dehydrogenase(LDH), creatine kinase-MB(CK-MB), cardiac troponin I(cTnI), reactive oxygen species(ROS), interleukin(IL)-1β, IL-4, IL-6, IL-10, IL-18, and tumor necrosis factor-α(TNF-α) levels, as well as cardiac tissue catalase(CAT), glutathione(GSH), malondialdehyde(MDA), myeloperoxidase(MPO), superoxide dismutase(SOD), total antioxidant capacity(T-AOC) activities, and cytochrome C levels in mitochondria and cytoplasm. Hematoxylin-eosin, Masson, uranium acetate and lead citrate staining were used to observe morphological and mitochondrial ultrastructural changes in the cardiac tissues, and myocardial injury area and collagen volume fraction were calculated. Flow cytometry was applied to detect the relative content and M1/M2 polarization of cardiac macrophages. The mRNA expression levels of macrophage polarization markers [CD86, CD206, arginase 1(Arg-1), inducible nitric oxide synthase(iNOS)], CF markers [type Ⅰ collagen(Coll Ⅰ), Coll Ⅲ, α-smooth muscle actin(α-SMA)], and cytokines(IL-1β, IL-4, IL-6, IL-10, IL-18, TNF-α) in cardiac tissues were determined by quantitative real-time PCR. Western blot was used to detect the protein expression levels of Coll Ⅰ, Coll Ⅲ, α-SMA, Drp1, p-Drp1, voltage-dependent anion channel(VDAC), hexokinase 1(HK1), NOD-like receptor protein 3(NLRP3), apoptosis-associated speck-like protein(ASC), caspase-1, cleaved-caspase-1, gasdermin D(GSDMD), cleaved N-terminal gasdermin D(GSDMD-N), IL-1β, IL-18, B-cell lymphoma-2(Bcl-2), B-cell lymphoma-xl(Bcl-xl), Bcl-2-associated death promoter(Bad), Bcl-2-associated X protein(Bax), apoptotic protease activating factor-1(Apaf-1), pro-caspase-3, cleaved-caspase-3, pro-caspase-9, cleaved-caspase-9, poly(ADP-ribose) polymerase-1(PARP-1), and cleaved-PARP-1 in cardiac tissues. The results showed that VA significantly improved cardiac function in mice with CF, reduced myocardial injury area and cardiac index, and decreased serum levels of AST, CK-MB, cTnI, LDH, ROS, IL-1β, IL-6, IL-18, and TNF-α. VA also lowered MDA and MPO levels, mRNA expressions of IL-1β, IL-6, IL-18, and TNF-α, and mRNA and protein expressions of Coll Ⅰ, Coll Ⅲ, and α-SMA in cardiac tissues, and increased serum levels of IL-4 and IL-10, cardiac tissue levels of CAT, GSH, SOD, and T-AOC, and mRNA expressions of IL-4 and IL-10. Additionally, VA ameliorated cardiac pathological damage, inhibited myocardial cell apoptosis, inflammatory infiltration, and collagen fiber deposition, reduced collagen volume fraction, and alleviated mitochondrial damage. VA decreased the ratio of F4/80~+CD86~+ M1 cells and the mRNA expressions of CD86 and iNOS in cardiac tissue, and increased the ratio of F4/80~+CD206~+ M2 cells and the mRNA expressions of CD206 and Arg-1. VA also reduced protein expressions of p-Drp1, VDAC, NLRP3, ASC, caspase-1, cleaved-caspase-1, GSDMD, GSDMD-N, IL-1β, IL-18, Bad, Bax, Apaf-1, cleaved-caspase-3, cleaved-caspase-9, cleaved-PARP-1, and cytoplasmic cytochrome C, and increased the expressions of HK1, Bcl-2, Bcl-xl, pro-caspase-3, pro-caspase-9 proteins, as well as the Bcl-2/Bax and Bcl-xl/Bad ratios and mitochondrial cytochrome C content. These results indicate that VA has a significant ameliorative effect on ISO-induced CF in mice, alleviates ISO-induced oxidative damage and inflammatory response, and its mechanism may be closely related to the inhibition of Drp1/HK1/NLRP3 and mitochondrial apoptosis signaling pathways, suppression of myocardial cell inflammatory infiltration and collagen fiber deposition, reduction of collagen volume fraction and CollⅠ, Coll Ⅲ, and α-SMA expressions, thus mitigating CF.
Animals
;
Isoproterenol/adverse effects*
;
Male
;
Mice
;
Signal Transduction/drug effects*
;
Vanillic Acid/administration & dosage*
;
Dynamins/genetics*
;
Mice, Inbred C57BL
;
Fibrosis/genetics*
;
Apoptosis/drug effects*
;
Mitochondria/metabolism*
;
NLR Family, Pyrin Domain-Containing 3 Protein/genetics*
;
Myocardium/metabolism*
;
Humans
4.A preliminary study on the vertical traction weight of cervical kyphosis treated by bidirectional cervical traction.
Hai-Lian CHEN ; Yu-Ming ZHANG ; Wen-Jie ZHANG ; Yan-Ying HUANG ; Yong ZHANG
China Journal of Orthopaedics and Traumatology 2025;38(8):822-827
OBJECTIVE:
To explore the optimal vertical traction weight, clinical efficacy, and safety of bidirectional cervical traction in the treatment of cervical kyphosis.
METHODS:
A total of 130 patients with neck pain and cervical kyphosis confirmed by cervical DR who visited the hospital from April 2023 to April 2024 were enrolled. They were divided into 4 groups according to the vertical traction weight accounting for 5%, 10%, 15%, and 20% of their body weight, respectively. The 5% body weight traction group included 33 cases (13 males and 20 females) with an average age of (34.00±10.58) years old;the 10% body weight traction group included 35 cases (17 males and 18 females) with an average age of (32.23±8.39) years old;the 15% body weight traction group included 32 cases (14 males and 18 females) with an average age of (33.88±10.09) years old;the 20% body weight traction group included 30 cases (11 males and 19 females) with an average age of (36.20±9.13) years old. Each group received treatment for 2 weeks. The visual analogue scale (VAS) score, neck disability index (NDI), and C2-C7 Cobb angle on cervical lateral X-ray films before and after treatment were recorded to evaluate the clinical efficacy of the 4 groups.
RESULTS:
When the traction weight was 10% and 15% of body weight, the pain VAS and NDI were significantly improved, and the C2-C7 Cobb angle increased, with statistically significant differences (P<0.05), and no adverse reactions occurred. However, in the 5% body weight group, the above indicators showed no significant changes, with no statistically significant differences (P>0.05). In the 20% body weight group, some patients could not tolerate the treatment, and adverse reactions such as dizziness, nausea, and aggravated neck pain occurred.
CONCLUSION
The optimal vertical traction weight of bidirectional cervical traction for cervical kyphosis is 10%-15% of body weight, which can effectively improve neck pain and cervical function, increase the C2-C7 Cobb angle of the cervical spine, with high safety, and is worthy of promotion and application.
Humans
;
Male
;
Female
;
Traction/methods*
;
Kyphosis/physiopathology*
;
Adult
;
Cervical Vertebrae/physiopathology*
;
Middle Aged
;
Neck Pain
;
Young Adult
5.The Efficacy of Combination of Avatrombopag and rhIL-11 in Adult Patients of Acute Myeloid Leukemia with Cancer Treatment-Induced Thrombocytopenia.
Min-Na LUO ; Hai-Tao ZHANG ; Si-Jie ZHAO ; Jing LI ; Wen-Juan WANG ; Peng-Cheng HE
Journal of Experimental Hematology 2025;33(3):848-852
OBJECTIVE:
To investigate the safety and efficacy of avatrombopag(AVA) combined with rhIL-11 in treating thrombocytopenia induced by chemotherapy in acute myeloid leukemia.
METHODS:
The clinical information of 8 patients in the real world who received avatrombopag combined with rhIL-11 in cancer treatment-induced thrombocytopenia(CTIT) after AML chemotherapy were retrospectively analyzed, and at the same time, 8 patients who received rhIL-11 only in CTIT after AML chemotherapy served as the control group, A preliminary observation was to summarize and compare the therapeutic efficacy and adverse effects between the two groups.
RESULTS:
D3 and D7 platelet counts were not significantly different between the observation group and the control group after treatment. The platelet counts in the observation group was significantly higher than those of the control group on the 10th day after treatment (P < 0.01). The adverse reactions, such as weakness, abdominal pain, fatigue, nausea and edema after treatment were mild in the observation group and the control group. Except for one patient in the observation group who had a history of cerebral infarction before the onset of the disease and was routinely taking antiplatelet drugs, no thrombosis events occurred in the patients in the observation and control groups during the period of administration of the drug, and the total incidence rate of adverse reactions was not significantly different between the two groups.
CONCLUSION
The combination of AVA and rhIL-11 can enhance platelet recovery in CTIT of AML patients after chemotherapy. Compared with the rhIL-11 alone group, the platelet recovery time in AVA+rhIL-11 group was significantly shorter, the platelet count on the 10th day after drug administration was significantly higher. No statistically significant difference in the total incidence rate of adverse reactions was observed between rhIL-11 alone group and AVA+rhIL-11 group.
Humans
;
Leukemia, Myeloid, Acute/drug therapy*
;
Thrombocytopenia/chemically induced*
;
Interleukin-11/therapeutic use*
;
Retrospective Studies
;
Adult
;
Thiophenes/therapeutic use*
;
Platelet Count
;
Female
;
Male
;
Middle Aged
;
Thiazoles
6.Analysis of Hormone Levels in Patients with Hematological Diseases Before and After Hematopoietic Stem Cell Tansplantation.
Fen LI ; Yu-Jin LI ; Jie ZHAO ; Zhi-Xiang LU ; Xiao-Li GAO ; Hai-Tao HE ; Xue-Zhong GU ; Feng-Yu CHEN ; Hui-Yuan LI ; Qi SA ; Lin ZHANG ; Peng HU
Journal of Experimental Hematology 2025;33(5):1443-1452
OBJECTIVE:
By analyzing the hormone secretion of the adenohypophysis, thyroid glands, gonads, and adrenal cortex in patients with hematological diseases before and after hematopoietic stem cell transplantation (HSCT), this study aims to preliminarily explore the effect of HSCT on patients' hormone secretion and glandular damage.
METHODS:
The baseline data of 209 hematological disease patients who underwent HSCT in our hospital from January 2019 to December 2023, as well as the data on the levels of hormones secreted by the adenohypophysis, thyroid glands, gonads and adrenal cortex before and after HSCT were collected, and the changes in hormone levels before and after transplantation were analyzed.
RESULTS:
After allogeneic HSCT, the levels of thyroid-stimulating hormone (TSH), triiodothyronine (T3), free triiodothyronine (FT3) and estradiol (E2) decreased, while the levels of luteinizing hormone (LH) and follicle- stimulating hormone (FSH) increased. The T3 level of patients with decreased TSH after transplantation was lower than that of those with increased TSH after transplantation. In female patients, the levels of prolactin (PRL), progesterone (Prog), and testosterone (Testo) decreased after HSCT. Testo and PRL decreased when there was a donor-recipient sex mismatch, and the levels of adrenocorticotropic hormone (ACTH) and cortisol (COR) decreased when the HLA matching was haploidentical. The levels of T3, FT3, and PRL decreased after autologous HSCT. In allogeneic HSCT patients, the levels of TSH, T4, T3, FT3, and ACTH in the group with graft-versus-host disease (GVHD) were significantly lower than those in the group without GVHD. Logistic regression analysis showed the changes in hormone levels after transplantation were not correlated with factors such as the patient's sex, age, or whether the blood types of the donor and the recipient are the same.
CONCLUSION
HSCT can affect the endocrine function of patients with hematological diseases, mainly affecting target glandular organs such as the thyroid, gonads, and adrenal glands, while the secretory function of the adenohypophysis is less affected.
Humans
;
Hematopoietic Stem Cell Transplantation
;
Female
;
Male
;
Hematologic Diseases/blood*
;
Follicle Stimulating Hormone/blood*
;
Triiodothyronine/blood*
;
Luteinizing Hormone/blood*
;
Thyroid Gland/metabolism*
;
Estradiol/blood*
;
Thyrotropin/blood*
;
Gonads/metabolism*
;
Adult
;
Middle Aged
;
Adrenocorticotropic Hormone/blood*
;
Hormones/metabolism*
;
Adrenal Cortex/metabolism*
;
Prolactin
7.Hippocampal Extracellular Matrix Protein Laminin β1 Regulates Neuropathic Pain and Pain-Related Cognitive Impairment.
Ying-Chun LI ; Pei-Yang LIU ; Hai-Tao LI ; Shuai WANG ; Yun-Xin SHI ; Zhen-Zhen LI ; Wen-Guang CHU ; Xia LI ; Wan-Neng LIU ; Xing-Xing ZHENG ; Fei WANG ; Wen-Juan HAN ; Jie ZHANG ; Sheng-Xi WU ; Rou-Gang XIE ; Ceng LUO
Neuroscience Bulletin 2025;41(12):2127-2147
Patients suffering from nerve injury often experience exacerbated pain responses and complain of memory deficits. The dorsal hippocampus (dHPC), a well-defined region responsible for learning and memory, displays maladaptive plasticity upon injury, which is assumed to underlie pain hypersensitivity and cognitive deficits. However, much attention has thus far been paid to intracellular mechanisms of plasticity rather than extracellular alterations that might trigger and facilitate intracellular changes. Emerging evidence has shown that nerve injury alters the microarchitecture of the extracellular matrix (ECM) and decreases ECM rigidity in the dHPC. Despite this, it remains elusive which element of the ECM in the dHPC is affected and how it contributes to neuropathic pain and comorbid cognitive deficits. Laminin, a key element of the ECM, consists of α-, β-, and γ-chains and has been implicated in several pathophysiological processes. Here, we showed that peripheral nerve injury downregulates laminin β1 (LAMB1) in the dHPC. Silencing of hippocampal LAMB1 exacerbates pain sensitivity and induces cognitive dysfunction. Further mechanistic analysis revealed that loss of hippocampal LAMB1 causes dysregulated Src/NR2A signaling cascades via interaction with integrin β1, leading to decreased Ca2+ levels in pyramidal neurons, which in turn orchestrates structural and functional plasticity and eventually results in exaggerated pain responses and cognitive deficits. In this study, we shed new light on the functional capability of hippocampal ECM LAMB1 in the modulation of neuropathic pain and comorbid cognitive deficits, and reveal a mechanism that conveys extracellular alterations to intracellular plasticity. Moreover, we identified hippocampal LAMB1/integrin β1 signaling as a potential therapeutic target for the treatment of neuropathic pain and related memory loss.
Animals
;
Laminin/genetics*
;
Hippocampus/metabolism*
;
Neuralgia/metabolism*
;
Cognitive Dysfunction/etiology*
;
Male
;
Peripheral Nerve Injuries/metabolism*
;
Extracellular Matrix/metabolism*
;
Integrin beta1/metabolism*
;
Pyramidal Cells/metabolism*
;
Signal Transduction
8.Metagenomic Next-Generation Sequencing-Assisted Diagnosis of Japanese Spotted Fever: Report of One Case.
Yong-Chun RUAN ; Yi-Qing ZHOU ; Hai-Wang ZHANG ; Jie ZHOU ; Jin-Nan DUAN ; Xiao-Jing ZHANG ; L I MING-HUI
Acta Academiae Medicinae Sinicae 2025;47(1):146-149
Japanese spotted fever(JSF)is an infectious disease caused by Rickettsia japonica,with nonspecific clinical symptoms and a high risk of misdiagnosis.We reported a case of JSF,in which Rickettsia japonica was detected in blood cells by metagenomic next-generation sequencing.The patient recovered after treatment with doxycycline.This report provides a reference for the clinical diagnosis and treatment of JSF.
Humans
;
High-Throughput Nucleotide Sequencing
;
Metagenomics
;
Rickettsia/isolation & purification*
;
Spotted Fever Group Rickettsiosis/microbiology*
9.Analysis of Influencing Factors of Death in the Elderly With Coronavirus Disease 2019 Based on Propensity Score Matching.
Ying CHEN ; Hai-Ping HUANG ; Xin LI ; Si-Jie CHAI ; Jia-Li YE ; Ding-Zi ZHOU ; Tao ZHANG
Acta Academiae Medicinae Sinicae 2025;47(3):375-381
Objective To analyze the influencing factors of death in the elderly with coronavirus disease 2019(COVID-19).Methods The case data of death caused by COVID-19 in West China Fourth Hospital from January 1 to July 8,2023 were collected,and surviving cases from the West China Elderly Health Cohort infected with COVID-19 during the same period were selected as the control.LASSO-Logistic regression was adopted to analyze the data after propensity score matching and the validity of the model was verified by drawing the receiver operating characteristic curve.Results A total of 3 239 COVID-19 survivors and 142 deaths with COVID-19 were included.The results of LASSO-Logistic regression showed that smoking(OR=3.33,95%CI=1.46-7.59,P=0.004),stroke(OR=3.55,95%CI=1.15-10.30,P=0.022),malignant tumors(OR=19.93, 95%CI=8.52-49.23, P<0.001),coronary heart disease(OR=7.68, 95%CI=3.52-17.07, P<0.001),fever(OR=0.51, 95%CI=0.26-0.96, P=0.042),difficulty breathing or asthma symptoms(OR=21.48, 95%CI=9.44-51.95, P<0.001),and vomiting(OR=8.19,95%CI=2.87-23.58, P<0.001)increased the risk of death with COVID-19.The prediction model constructed based on the influencing factors achieved an area under the curve of 0.889 in the test set.Conclusions Smoking,stroke,malignant tumors,coronary heart disease,fever,breathing difficulty or asthma symptoms,and vomiting were identified as key factors influencing the death risk in COVID-19.
Humans
;
COVID-19/mortality*
;
Aged
;
Propensity Score
;
China/epidemiology*
;
Risk Factors
;
Logistic Models
;
Smoking
;
SARS-CoV-2
;
Male
;
Female
;
Stroke
;
Neoplasms
10.The Application of Lipid Nanoparticle-delivered mRNA in Disease Prevention and Treatment
Wei-Lun SUN ; Ti-Qiang ZHOU ; Hai-Yin YANG ; Lu-Wei LI ; Yu-Hua WENG ; Jin-Chao ZHANG ; Yuan-Yu HUANG ; Xing-Jie LIANG
Progress in Biochemistry and Biophysics 2024;51(10):2677-2693
In recent years, nucleic acid therapy, as a revolutionary therapeutic tool, has shown great potential in the treatment of genetic diseases, infectious diseases and cancer. Lipid nanoparticles (LNPs) are currently the most advanced mRNA delivery carriers, and their emergence is an important reason for the rapid approval and use of COVID-19 mRNA vaccines and the development of mRNA therapy. Currently, mRNA therapeutics using LNP as a carrier have been widely used in protein replacement therapy, vaccines and gene editing. Conventional LNP is composed of four components: ionizable lipids, phospholipids, cholesterol, and polyethylene glycol (PEG) lipids, which can effectively load mRNA to improve the stability of mRNA and promote the delivery of mRNA to the cytoplasm. However, in the face of the complexity and diversity of clinical diseases, the structure, properties and functions of existing LNPs are too homogeneous, and the lack of targeted delivery capability may result in the risk of off-targeting. LNPs are flexibly designed and structurally stable vectors, and the adjustment of the types or proportions of their components can give them additional functions without affecting the ability of LNPs to deliver mRNAs. For example, by replacing and optimizing the basic components of LNP, introducing a fifth component, and modifying its surface, LNP can be made to have more precise targeting ability to reduce the side effects caused by treatment, or be given additional functions to synergistically enhance the efficacy of mRNA therapy to respond to the clinical demand for nucleic acid therapy. It is also possible to further improve the efficiency of LNP delivery of mRNA through machine learning-assisted LNP iteration. This review can provide a reference method for the rational design of engineered lipid nanoparticles delivering mRNA to treat diseases.

Result Analysis
Print
Save
E-mail