1.Analysis and application thinking of standards for 500 kinds of traditional Chinese medicine formula granules on base of industrial practice.
Yong LIU ; Jun ZHANG ; Xin-Hai DONG ; Lin ZHOU ; Dong-Mei SUN ; Fu-Lin MAO ; Zhen-Yu LI ; Lei HUANG ; Jin-Lai LIU
China Journal of Chinese Materia Medica 2025;50(5):1427-1436
Following the release of the Technical Requirements on Quality Control and Standard Establishment of Traditional Chinese Medicine Formula Granules by the National Medical Products Administration in 2021, Chinese Pharmacopoeia Commission has promulgated 296 national drug standards so far, and most provinces have started the work of establishing provincial standards as supplements. The promulgation of standards fostered high-quality development of the industry. Since the implementation of national and provincial standards for more than three years, enterprises have gained deep understanding and hands-on experiences on the characteristics, technical requirements, production process, and quality control of traditional Chinese medicine(TCM) formula granules. Meanwhile, challenges have emerged restricting the high-quality development of this industry, including how to formulate quality control strategies for medicinal materials and decoction pieces, how to reduce manufacturing costs, and how to improve the pass rate and product stability under high standards. Based on the work experiences from standard management and process research, this article analyzed the distribution of sources, processing methods, dry extract rate ranges, process requirements for volatile oil-containing decoction pieces, control measures of safety indices, characteristics and trends of setting characteristic chromatograms or fingerprints, characteristics and trends of setting content ranges, and main differences between national standards and provincial standards. On the one hand, this article aims to present main characteristics for deeply understanding different indicators in standards and provide basic ideas for establishing quality and process control systems. On the other hand, from the perspective of industrial practice, suggestions are put forward on the important aspects that need to be focused on in the quality and process control of TCM formula granules.
Drugs, Chinese Herbal/chemistry*
;
Quality Control
;
Medicine, Chinese Traditional/standards*
;
China
;
Drug Industry/standards*
2.Mechanism of vanillic acid against cardiac fibrosis induced by isoproterenol in mice based on Drp1/HK1/NLRP3 and mitochondrial apoptosis signaling pathways.
Hai-Bo HE ; Mian WU ; Jie XU ; Qian-Qian XU ; Fang-Zhu WAN ; Hua-Qiao ZHONG ; Ji-Hong ZHANG ; Gang ZHOU ; Hui-Lin QIN ; Hao-Ran LI ; Hai-Ming TANG
China Journal of Chinese Materia Medica 2025;50(8):2193-2208
This study investigated the effects and underlying mechanisms of vanillic acid(VA) against cardiac fibrosis(CF) induced by isoproterenol(ISO) in mice. Male C57BL/6J mice were randomly divided into control group, VA group(100 mg·kg~(-1), ig), ISO group(10 mg·kg~(-1), sc), ISO + VA group(10 mg·kg~(-1), sc + 100 mg·kg~(-1), ig), ISO + dynamin-related protein 1(Drp1) inhibitor(Mdivi-1) group(10 mg·kg~(-1), sc + 50 mg·kg~(-1), ip), and ISO + VA + Mdivi-1 group(10 mg·kg~(-1), sc + 100 mg·kg~(-1), ig + 50 mg·kg~(-1), ip). The treatment groups received the corresponding medications once daily for 14 consecutive days. On the day after the last administration, cardiac functions were evaluated, and serum and cardiac tissue samples were collected. These samples were analyzed for serum aspartate aminotransferase(AST), lactate dehydrogenase(LDH), creatine kinase-MB(CK-MB), cardiac troponin I(cTnI), reactive oxygen species(ROS), interleukin(IL)-1β, IL-4, IL-6, IL-10, IL-18, and tumor necrosis factor-α(TNF-α) levels, as well as cardiac tissue catalase(CAT), glutathione(GSH), malondialdehyde(MDA), myeloperoxidase(MPO), superoxide dismutase(SOD), total antioxidant capacity(T-AOC) activities, and cytochrome C levels in mitochondria and cytoplasm. Hematoxylin-eosin, Masson, uranium acetate and lead citrate staining were used to observe morphological and mitochondrial ultrastructural changes in the cardiac tissues, and myocardial injury area and collagen volume fraction were calculated. Flow cytometry was applied to detect the relative content and M1/M2 polarization of cardiac macrophages. The mRNA expression levels of macrophage polarization markers [CD86, CD206, arginase 1(Arg-1), inducible nitric oxide synthase(iNOS)], CF markers [type Ⅰ collagen(Coll Ⅰ), Coll Ⅲ, α-smooth muscle actin(α-SMA)], and cytokines(IL-1β, IL-4, IL-6, IL-10, IL-18, TNF-α) in cardiac tissues were determined by quantitative real-time PCR. Western blot was used to detect the protein expression levels of Coll Ⅰ, Coll Ⅲ, α-SMA, Drp1, p-Drp1, voltage-dependent anion channel(VDAC), hexokinase 1(HK1), NOD-like receptor protein 3(NLRP3), apoptosis-associated speck-like protein(ASC), caspase-1, cleaved-caspase-1, gasdermin D(GSDMD), cleaved N-terminal gasdermin D(GSDMD-N), IL-1β, IL-18, B-cell lymphoma-2(Bcl-2), B-cell lymphoma-xl(Bcl-xl), Bcl-2-associated death promoter(Bad), Bcl-2-associated X protein(Bax), apoptotic protease activating factor-1(Apaf-1), pro-caspase-3, cleaved-caspase-3, pro-caspase-9, cleaved-caspase-9, poly(ADP-ribose) polymerase-1(PARP-1), and cleaved-PARP-1 in cardiac tissues. The results showed that VA significantly improved cardiac function in mice with CF, reduced myocardial injury area and cardiac index, and decreased serum levels of AST, CK-MB, cTnI, LDH, ROS, IL-1β, IL-6, IL-18, and TNF-α. VA also lowered MDA and MPO levels, mRNA expressions of IL-1β, IL-6, IL-18, and TNF-α, and mRNA and protein expressions of Coll Ⅰ, Coll Ⅲ, and α-SMA in cardiac tissues, and increased serum levels of IL-4 and IL-10, cardiac tissue levels of CAT, GSH, SOD, and T-AOC, and mRNA expressions of IL-4 and IL-10. Additionally, VA ameliorated cardiac pathological damage, inhibited myocardial cell apoptosis, inflammatory infiltration, and collagen fiber deposition, reduced collagen volume fraction, and alleviated mitochondrial damage. VA decreased the ratio of F4/80~+CD86~+ M1 cells and the mRNA expressions of CD86 and iNOS in cardiac tissue, and increased the ratio of F4/80~+CD206~+ M2 cells and the mRNA expressions of CD206 and Arg-1. VA also reduced protein expressions of p-Drp1, VDAC, NLRP3, ASC, caspase-1, cleaved-caspase-1, GSDMD, GSDMD-N, IL-1β, IL-18, Bad, Bax, Apaf-1, cleaved-caspase-3, cleaved-caspase-9, cleaved-PARP-1, and cytoplasmic cytochrome C, and increased the expressions of HK1, Bcl-2, Bcl-xl, pro-caspase-3, pro-caspase-9 proteins, as well as the Bcl-2/Bax and Bcl-xl/Bad ratios and mitochondrial cytochrome C content. These results indicate that VA has a significant ameliorative effect on ISO-induced CF in mice, alleviates ISO-induced oxidative damage and inflammatory response, and its mechanism may be closely related to the inhibition of Drp1/HK1/NLRP3 and mitochondrial apoptosis signaling pathways, suppression of myocardial cell inflammatory infiltration and collagen fiber deposition, reduction of collagen volume fraction and CollⅠ, Coll Ⅲ, and α-SMA expressions, thus mitigating CF.
Animals
;
Isoproterenol/adverse effects*
;
Male
;
Mice
;
Signal Transduction/drug effects*
;
Vanillic Acid/administration & dosage*
;
Dynamins/genetics*
;
Mice, Inbred C57BL
;
Fibrosis/genetics*
;
Apoptosis/drug effects*
;
Mitochondria/metabolism*
;
NLR Family, Pyrin Domain-Containing 3 Protein/genetics*
;
Myocardium/metabolism*
;
Humans
3.Cross-organ effects of drug intervention: indirect pharmacology.
Jia-Bo WANG ; Hai-Yu XU ; Hong-Jun YANG ; Xiao-He XIAO ; Jin-Zhou TIAN
China Journal of Chinese Materia Medica 2025;50(13):3549-3555
With the continuous advancement of medical research, it is increasingly recognized that the human body functions as a highly coordinated complex system, and the development of diseases often involves intricate interactions among multiple subsystems, including organs, tissues, and cells. Conventional pharmacological research, which primarily focuses on isolated subsystems, tends to emphasize direct interactions between drugs and the molecular targets in diseased organs. However, this approach often falls short in addressing the multifaceted challenges posed by complex diseases such as metabolic disorders, autoimmune diseases, cancers, and aging. In recent years, inter-organ cross-talk and its role in diseases progression, as well as cross-organ effects of drug intervention, have gained significant attention. This has highlighted the potential for treating complex diseases through holistic regulation of multiple organs. Traditional Chinese medicine(TCM) has long embraced a holistic and systemic approach for treatment, with concepts such as the interdependence and mutual restraint of the five Zang organs, the interconnection of Zang organs and Fu organs, treating the Zang organ diseases by regulating the Fu organs, treating the child organ diseases to cure the parent organs, and treating upper organ diseases by regulating lower organs. These concepts provide valuable insights into exploring the pathways and molecular mechanisms underlying inter-organ cross-talk. Building on our previous work on indirect actions of TCM, this paper introduces the concept of indirect pharmacology mediated by intermediate substances, as a new extension of classical pharmacology. This approach aims to offer new perspectives and innovative ideas for understanding inter-organ cross-talk and discovering cross-organ therapeutic strategies.
Humans
;
Medicine, Chinese Traditional
;
Drugs, Chinese Herbal/pharmacology*
;
Animals
4.Quality evaluation of Hibisci Mutabilis Folium based on fingerprint and quantitative analysis of multi-components by single-marker method.
Ming CHEN ; Zhen-Hai YUAN ; Xuan TANG ; Dong WANG ; Zhi-Yong ZHENG ; Jing FENG ; Dai-Zhou ZHANG ; Fang WANG
China Journal of Chinese Materia Medica 2025;50(16):4619-4629
To improve the quality evaluation system of Hibisci Mutabilis Folium, this study established high performance liquid chromatography(HPLC) fingerprints of Hibisci Mutabilis Folium and evaluated the quality differences of medicinal materials from different places of production by chemometrics. Furthermore, a content measurement method of differential components was established based on quantitative analysis of multi-components by single-marker(QAMS). The fingerprints of 17 batches of Hibisci Mutabilis Folium from different places of production were constructed, with a total of 19 common peaks marked and seven components confirmed. The similarity between the sample fingerprints and the reference fingerprints ranged from 0.890 to 0.974. By utilizing principal component analysis(PCA), hierarchical cluster analysis(HCA), and orthogonal partial least squares-discriminant analysis(OPLS-DA), the chemical patterns of fingerprints were identified. Five components that could be used to evaluate the quality differences of Hibisci Mutabilis Folium were screened, namely peak 6(quercetin 3-O-β-robinobioside), peak 7(rutin), peak 9(kaempferol-3-O-β-robinobioside), peak 10(kaempferol-3-O-rutinoside), and peak 14(tiliroside). The relative correction factors of isoquercitrin, kaempferol-3-O-β-robinobioside, kaempferol-3-O-rutinoside, kaempferol-3-O-β-D-glucoside, and tiliroside were measured with rutin as the internal reference. The QAMS method was established for the content measurement of six flavonoids, and the results showed there was no significant difference compared to the results obtained by an external standard method. In summary, the HPLC fingerprints and QAMS method established in the study, demonstrating stability and accuracy, can provide a reference for the overall quality evaluation of Hibisci Mutabilis Folium.
Chromatography, High Pressure Liquid/methods*
;
Drugs, Chinese Herbal/chemistry*
;
Quality Control
;
Principal Component Analysis
8.Novel CD19 Fast-CAR-T cells vs. CD19 conventional CAR-T cells for the treatment of relapsed/refractory CD19-positive B-cell acute lymphoblastic leukemia.
Xu TAN ; Jishi WANG ; Shangjun CHEN ; Li LIU ; Yuhua LI ; Sanfang TU ; Hai YI ; Jian ZHOU ; Sanbin WANG ; Ligen LIU ; Jian GE ; Yongxian HU ; Xiaoqi WANG ; Lu WANG ; Guo CHEN ; Han YAO ; Cheng ZHANG ; Xi ZHANG
Chinese Medical Journal 2025;138(19):2491-2497
BACKGROUND:
Treatment with chimeric antigen receptor-T (CAR-T) cells has shown promising effectiveness in patients with relapsed/refractory B-cell acute lymphoblastic leukemia (R/R B-ALL), although the process of preparing for this therapy usually takes a long time. We have recently created CD19 Fast-CAR-T (F-CAR-T) cells, which can be produced within a single day. The objective of this study was to evaluate and contrast the effectiveness and safety of CD19 F-CAR-T cells with those of CD19 conventional CAR-T cells in the management of R/R B-ALL.
METHODS:
A multicenter, retrospective analysis of the clinical data of 44 patients with R/R B-ALL was conducted. Overall, 23 patients were administered with innovative CD19 F-CAR-T cells (F-CAR-T group), whereas 21 patients were given CD19 conventional CAR-T cells (C-CAR-T group). We compared the rates of complete remission (CR), minimal residual disease (MRD)-negative CR, leukemia-free survival (LFS), overall survival (OS), and the incidence of cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS) between the two groups.
RESULTS:
Compared with the C-CAR-T group, the F-CAR-T group had significantly higher CR and MRD-negative rates (95.7% and 91.3%, respectively; 71.4% and 66.7%, respectively; P = 0.036 and P = 0.044). No significant differences were observed in the 1-year or 2-year LFS or OS rates between the two groups: the 1-year and 2-year LFS for the F-CAR-T group vs.C-CAR-T group were 47.8% and 43.5% vs. 38.1% and 23.8% (P = 0.384 and P = 0.216), while the 1-year and 2-year OS rates were 65.2% and 56.5% vs. 52.4% and 47.6% (P = 0.395 and P = 0.540). Additionally, among CR patients who underwent allogeneic hematopoietic stem cell transplantation (allo-HSCT) following CAR-T-cell therapy, there were no significant differences in the 1-year or 2-year LFS or OS rates: 57.1% and 50.0% vs. 47.8% and 34.8% (P = 0.506 and P = 0.356), 64.3% and 57.1% vs. 65.2% and 56.5% (P = 0.985 and P = 0.883), respectively. The incidence of CRS was greater in the F-CAR-T group (91.3%) than in the C-CAR-T group (66.7%) (P = 0.044). The incidence of ICANS was also greater in the F-CAR-T group (30.4%) than in the C-CAR-T group (9.5%) (P = 0.085), but no treatment-related deaths occurred in the two groups.
CONCLUSION
Compared with C-CAR-T-cell therapy, F-CAR-T-cell therapy has a superior remission rate but also leads to a tolerably increased incidence of CRS/ICANS. Further research is needed to explore the function of allo-HSCT as an intermediary therapy after CAR-T-cell therapy.
9.Transcriptomic analysis of key genes involved in sex differences in intellectual development.
Jia-Wei ZHANG ; Xiao-Li ZHENG ; Hai-Qian ZHOU ; Zhen ZHU ; Wei HAN ; Dong-Min YIN
Acta Physiologica Sinica 2025;77(2):211-221
Intelligence encompasses various abilities, including logical reasoning, comprehension, self-awareness, learning, planning, creativity, and problem-solving. Extensive research and practical experience suggest that there are sex differences in intellectual development, with females typically maturing earlier than males. However, the key genes and molecular network mechanisms underlying these sex differences in intellectual development remain unclear. To date, Genome-Wide Association Studies (GWAS) have identified 507 genes that are significantly associated with intelligence. This study first analyzed RNA sequencing data from different stages of brain development (from BrainSpan), revealing that during the late embryonic stage, the average expression levels of intelligence-related genes are higher in males than in females, while the opposite is observed during puberty. This study further constructed interaction networks of intelligence-related genes with sex-differential expression in the brain, including the prenatal male network (HELP-M: intelligence genes with higher expression levels in prenatal males) and the pubertal female network (HELP-F: intelligence genes with higher expression levels in pubertal females). The findings indicate that the key genes in both networks are Ep300 and Ctnnb1. Specifically, Ep300 regulates the transcription of 53 genes in both HELP-M and HELP-F, while Ctnnb1 regulates the transcription of 45 genes. Ctnnb1 plays a more prominent role in HELP-M, while Ep300 is more crucial in HELP-F. Finally, this study conducted sequencing validation on rats at different developmental stages, and the results indicated that in the prefrontal cortex of female rats during adolescence, the expression levels of the intelligence genes in HELP-F, as well as key genes Ep300 and Ctnnb1, were higher than those in male rats. These genes were also involved in neurodevelopment-related biological processes. The findings reveal a sex-differentiated intelligence gene network and its key genes, which exhibit varying expression levels during the neurodevelopmental process.
Female
;
Intelligence/physiology*
;
Male
;
Sex Characteristics
;
Animals
;
Brain/growth & development*
;
E1A-Associated p300 Protein/physiology*
;
beta Catenin/physiology*
;
Transcriptome
;
Rats
;
Gene Expression Profiling
;
Genome-Wide Association Study
10.Research progress on the effect of miRNA-mediated PPARγ-related signaling pathways on lipid metabolism in steroid-induced osteonecrosis of femoral head.
Hai-Yuan GAO ; Xiao-Ping WANG ; Ming-Wang ZHOU ; Xing YANG ; Bang-Jing HE
Acta Physiologica Sinica 2025;77(3):493-503
Steroid-induced osteonecrosis of femoral head (SONFH) is a disease characterized by femoral head collapse and local pain caused by excessive use of glucocorticoids. Peroxisome proliferator-activated receptor-γ (PPARγ) is mainly expressed in adipose tissue. Wnt/β-catenin, AMPK and other related signaling pathways play an important role in regulating adipocyte differentiation, fatty acid uptake and storage. Bone marrow mesenchymal cells (BMSCs) have the ability to differentiate into adipocytes or osteoblasts, and the use of hormones upregulates PPARγ expression, resulting in BMSCs biased towards adipogenic differentiation. The increase of adipocytes affects the blood supply and metabolism of the femoral head, and the decrease of osteoblasts leads to the loss of trabecular bone, which eventually leads to partial or total ischemic necrosis and collapse of the femoral head. MicroRNAs (miRNAs) are a class of short non-coding RNAs that regulate gene expression by inhibiting the transcription or translation of target genes, thereby affecting cell function and disease progression. Studies have shown that miRNAs affect the progression of SONFH by regulating PPARγ lipid metabolism-related signaling pathways. Therefore, it may be an accurate and feasible SONFH treatment strategy to regulate adipogenic-osteoblast differentiation in BMSCs by targeted intervention of miRNA differential expression to improve lipid metabolism. In this paper, the miRNA-mediated PPARγ-related signaling pathways were classified and summarized to clarify their effects on lipid metabolism in SONFH, providing a theoretical reference for miRNA targeted therapy of SONFH, and then providing scientific evidence for SONFH precision medicine.
MicroRNAs/physiology*
;
PPAR gamma/metabolism*
;
Femur Head Necrosis/metabolism*
;
Humans
;
Signal Transduction/physiology*
;
Lipid Metabolism/physiology*
;
Animals
;
Cell Differentiation
;
Mesenchymal Stem Cells/cytology*
;
Glucocorticoids/adverse effects*

Result Analysis
Print
Save
E-mail