1.Therapeutic effect of anti-PD-L1&CXCR4 bispecific nanobody combined with gemcitabine in synergy with PBMC on pancreatic cancer treatment
Hai HU ; Shu-yi XU ; Yue-jiang ZHENG ; Jian-wei ZHU ; Ming-yuan WU
Acta Pharmaceutica Sinica 2025;60(2):388-396
Pancreatic cancer is a kind of highly malignant tumor with a low survival rate and poor prognosis. The effectiveness of gemcitabine as a first-line chemotherapy drug is limited; however, it can activate dendritic cells and improve antigen presentation which increase the sensitivity of tumor cell to immunotherapy. Although immunotherapy has made some advancements in cancer treatment, the therapeutic benefit of programmed cell death receptor 1/programmed death receptor-ligand 1 (PD-1/PD-L1) blockade therapy remains relatively low. The chemokine C-X-C chemokine ligand 12 (CXCL12) contributes to an immunosuppressive tumor microenvironment by recruiting immunosuppressive cells. The receptor C-X-C motif chemokine receptor 4 (CXCR4), highly expressed in various tumors including pancreatic cancer, plays a crucial role in tumor development and progression. In this study, the anti-tumor immune response of human peripheral blood mononuclear cell (hPBMC) was enhanced using the combination of BsNb PX4 (anti-PD-L1&CXCR4 bispecific nanobody) and gemcitabine. In a co-culture system of gemcitabine-pretreated hPBMCs with tumor cells, the BsNb PX4 synergized gemcitabine to improve the cytotoxic activity of hPBMCs against tumor cells. Flow cytometry analysis confirmed increased ratio of CD8+ to CD4+ T cells in combination treatment. In NOD/SCID mice bearing pancreatic cancer, the combination treatment exhibited more infiltration of CD8+ T cells into tumor tissues, contributing to an effective anti-tumor response. This study presents potential new therapies for the treatment of pancreatic cancer. Ethical approval was obtained for collection of hPBMC samples from the Local Ethics Committee of Shanghai Jiao Tong University. All animal experiments were approved by the Animal Ethic Committee of Shanghai Jiao Tong University (authorizing number: A2024246).
2.Mechanisms of Gut Microbiota Influencing Reproductive Function via The Gut-Gonadal Axis
Ya-Qi ZHAO ; Li-Li QI ; Jin-Bo WANG ; Xu-Qi HU ; Meng-Ting WANG ; Hai-Guang MAO ; Qiu-Zhen SUN
Progress in Biochemistry and Biophysics 2025;52(5):1152-1164
Reproductive system diseases are among the primary contributors to the decline in social fertility rates and the intensification of aging, posing significant threats to both physical and mental health, as well as quality of life. Recent research has revealed the substantial potential of the gut microbiota in improving reproductive system diseases. Under healthy conditions, the gut microbiota maintains a dynamic balance, whereas dysfunction can trigger immune-inflammatory responses, metabolic disorders, and other issues, subsequently leading to reproductive system diseases through the gut-gonadal axis. Reproductive diseases, in turn, can exacerbate gut microbiota imbalance. This article reviews the impact of the gut microbiota and its metabolites on both male and female reproductive systems, analyzing changes in typical gut microorganisms and their metabolites related to reproductive function. The composition, diversity, and metabolites of gut bacteria, such as Bacteroides, Prevotella, and Firmicutes, including short-chain fatty acids, 5-hydroxytryptamine, γ-aminobutyric acid, and bile acids, are closely linked to reproductive function. As reproductive diseases develop, intestinal immune function typically undergoes changes, and the expression levels of immune-related factors, such as Toll-like receptors and inflammatory cytokines (including IL-6, TNF-α, and TGF-β), also vary. The gut microbiota and its metabolites influence reproductive hormones such as estrogen, luteinizing hormone, and testosterone, thereby affecting folliculogenesis and spermatogenesis. Additionally, the metabolism and absorption of vitamins can also impact spermatogenesis through the gut-testis axis. As the relationship between the gut microbiota and reproductive diseases becomes clearer, targeted regulation of the gut microbiota can be employed to address reproductive system issues in both humans and animals. This article discusses the regulation of the gut microbiota and intestinal immune function through microecological preparations, fecal microbiota transplantation, and drug therapy to treat reproductive diseases. Microbial preparations and drug therapy can help maintain the intestinal barrier and reduce chronic inflammation. Fecal microbiota transplantation involves transferring feces from healthy individuals into the recipient’s intestine, enhancing mucosal integrity and increasing microbial diversity. This article also delves into the underlying mechanisms by which the gut microbiota influences reproductive capacity through the gut-gonadal axis and explores the latest research in diagnosing and treating reproductive diseases using gut microbiota. The goal is to restore reproductive capacity by targeting the regulation of the gut microbiota. While the gut microbiota holds promise as a therapeutic target for reproductive diseases, several challenges remain. First, research on the association between gut microbiota and reproductive diseases is insufficient to establish a clear causal relationship, which is essential for proposing effective therapeutic methods targeting the gut microbiota. Second, although gut microbiota metabolites can influence lipid, glucose, and hormone synthesis and metabolism via various signaling pathways—thereby indirectly affecting ovarian and testicular function—more in-depth research is required to understand the direct effects of these metabolites on germ cells or granulosa cells. Lastly, the specific efficacy of gut microbiota in treating reproductive diseases is influenced by multiple factors, necessitating further mechanistic research and clinical studies to validate and optimize treatment regimens.
3.Novel CD19 Fast-CAR-T cells vs. CD19 conventional CAR-T cells for the treatment of relapsed/refractory CD19-positive B-cell acute lymphoblastic leukemia.
Xu TAN ; Jishi WANG ; Shangjun CHEN ; Li LIU ; Yuhua LI ; Sanfang TU ; Hai YI ; Jian ZHOU ; Sanbin WANG ; Ligen LIU ; Jian GE ; Yongxian HU ; Xiaoqi WANG ; Lu WANG ; Guo CHEN ; Han YAO ; Cheng ZHANG ; Xi ZHANG
Chinese Medical Journal 2025;138(19):2491-2497
BACKGROUND:
Treatment with chimeric antigen receptor-T (CAR-T) cells has shown promising effectiveness in patients with relapsed/refractory B-cell acute lymphoblastic leukemia (R/R B-ALL), although the process of preparing for this therapy usually takes a long time. We have recently created CD19 Fast-CAR-T (F-CAR-T) cells, which can be produced within a single day. The objective of this study was to evaluate and contrast the effectiveness and safety of CD19 F-CAR-T cells with those of CD19 conventional CAR-T cells in the management of R/R B-ALL.
METHODS:
A multicenter, retrospective analysis of the clinical data of 44 patients with R/R B-ALL was conducted. Overall, 23 patients were administered with innovative CD19 F-CAR-T cells (F-CAR-T group), whereas 21 patients were given CD19 conventional CAR-T cells (C-CAR-T group). We compared the rates of complete remission (CR), minimal residual disease (MRD)-negative CR, leukemia-free survival (LFS), overall survival (OS), and the incidence of cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS) between the two groups.
RESULTS:
Compared with the C-CAR-T group, the F-CAR-T group had significantly higher CR and MRD-negative rates (95.7% and 91.3%, respectively; 71.4% and 66.7%, respectively; P = 0.036 and P = 0.044). No significant differences were observed in the 1-year or 2-year LFS or OS rates between the two groups: the 1-year and 2-year LFS for the F-CAR-T group vs.C-CAR-T group were 47.8% and 43.5% vs. 38.1% and 23.8% (P = 0.384 and P = 0.216), while the 1-year and 2-year OS rates were 65.2% and 56.5% vs. 52.4% and 47.6% (P = 0.395 and P = 0.540). Additionally, among CR patients who underwent allogeneic hematopoietic stem cell transplantation (allo-HSCT) following CAR-T-cell therapy, there were no significant differences in the 1-year or 2-year LFS or OS rates: 57.1% and 50.0% vs. 47.8% and 34.8% (P = 0.506 and P = 0.356), 64.3% and 57.1% vs. 65.2% and 56.5% (P = 0.985 and P = 0.883), respectively. The incidence of CRS was greater in the F-CAR-T group (91.3%) than in the C-CAR-T group (66.7%) (P = 0.044). The incidence of ICANS was also greater in the F-CAR-T group (30.4%) than in the C-CAR-T group (9.5%) (P = 0.085), but no treatment-related deaths occurred in the two groups.
CONCLUSION
Compared with C-CAR-T-cell therapy, F-CAR-T-cell therapy has a superior remission rate but also leads to a tolerably increased incidence of CRS/ICANS. Further research is needed to explore the function of allo-HSCT as an intermediary therapy after CAR-T-cell therapy.
4.Regulation of JAK2/STAT3 signaling pathway by polydatin in the treatment of hormone-induced femoral head necrosis in rats.
Xiang-Jun YANG ; Cong-Yue WANG ; Xi-Lin XU ; Hai HU ; Yi-Wei SHEN ; Xiao-Feng ZHANG
China Journal of Orthopaedics and Traumatology 2025;38(2):195-203
OBJECTIVE:
To explore the therapeutic effect of polygonum cuspidatum glycoside on steroid-induced osteonecrosis of the femoral head(SONFH) in rats and its potential mechanism of protecting bone tissue by regulating the Janus kinase 2/signal transducer and activator of transcription 3 signaling pathway(JAK2/STAT3).
METHODS:
Fifty male SD rats were randomly divided into control group, model group, low-dose polygonum cuspidatum glycoside group (polygonum cuspidatum glycoside-L), high-dose polygonum cuspidatum glycoside group (polygonum cuspidatum glycoside-H), and polygonum cuspidatum glycoside-H+Colivelin (JAK2/STAT3 pathway activator) group. SONFH model was induced by lipopolysaccharide and dexamethasone. The treatment groups were given polygonum cuspidatum glycoside orally(polygonum cuspidatum glycoside-L 10 mg·kg-1, polygonum cuspidatum glycoside-H 20 mg·kg-1, and the polygonum cuspidatum glycoside-H+Colivelin group was injected with Colivelin (1 mg·kg-1) intraperitoneally once a day, while the control and model groups were given an equal volume of saline for 6 weeks. The observed indicators included serum calcium(Ca), serum phosphorus (P), alkaline phosphatase, and transforming growth factor β1(TGF-β1) levels, micro-CT scanning, hematoxylin-eosin staining, and Western blot detection of JAK2/STAT3 signaling pathway and osteogenic differentiation marker genes, including Runt-related transcription factor 2 (Runx2), bone morphogenetic protein 2 (BMP2), and osteopontin (OPN) protein expression.
RESULTS:
Compared with the model group, the trabecular bone area percentage in the polygonum cuspidatum glycoside-L and polygonum cuspidatum glycoside-H groups was significantly increased, and the empty lacunar rate was significantly decreased (P<0.05). Micro-CT analysis showed that the bone volume fraction, trabecular number, and thickness increased, and the trabecular separation decreased in the polygonum cuspidatum glycoside-treated groups(P<0.05). Serum biochemical tests found that the serum Ca and P concentrations in the polygonum cuspidatum glycoside-L and polygonum cuspidatum glycoside-H groups were restored, the alkaline phosphatase levels decreased, and the transforming growth factor β1 levels increased (P<0.05). Western blot analysis showed that polygonum cuspidatum glycoside significantly inhibited the activation of the JAK2/STAT3 signaling pathway in the model group and promoted the expression of osteogenic differentiation marker genes such as Runx2, BMP2, and OPN (P<0.05). Compared with the polygonum cuspidatum glycoside-H group, the improvements in the polygonum cuspidatum glycoside-H+Colivelin group were somewhat weakened, indicating the importance of the JAK2/STAT3 signaling pathway in the action of polygonum cuspidatum glycoside.
CONCLUSION
polygonum cuspidatum glycoside promotes osteogenic differentiation, improves bone microstructure, and has significant therapeutic effects on rat SONFH by regulating the JAK2/STAT3 signaling pathway.
Animals
;
Male
;
Janus Kinase 2/physiology*
;
Rats, Sprague-Dawley
;
Rats
;
Signal Transduction/drug effects*
;
Glucosides/pharmacology*
;
STAT3 Transcription Factor/genetics*
;
Femur Head Necrosis/chemically induced*
;
Stilbenes/pharmacology*
5.Comparison of the clinical efficacy in staged open reduction internal fixation and external fixation combined with limited internal fixation for the treatment of high-energy tibial Pilon fracture.
Wei-Qing CHEN ; Ye-Hai CHEN ; Jun-Rong SHU ; Bao-Ping XU ; Bao-Lin CHEN ; Jun-Tao YANG ; Xiu-Po HU
China Journal of Orthopaedics and Traumatology 2025;38(7):716-721
OBJECTIVE:
To compare the clinical efficacy and complication rates of staged open reduction internal fixation (ORIF) and external fixation combined with limited internal fixation (EFLIF) in the treatment of high-energy Pilon fractures.
METHODS:
A retrospective selection was conducted on 78 patients diagnosed with high-energy tibial Pilon fractures who received treatment between January 2021 and October 2023. These patients were categorized into the staged ORIF group and the EFLIF group according to their respective treatment protocols. The staged ORIF group comprised 48 patients, including 29 males and 19 females, aged from 33 to 53 years old with a mean age of (43.25±4.67) years old. The time from injury to treatment averaged (6.54±2.21) hours. All patients received staged ORIF treatment. The EFLIF Group consisted of 30 patients, including 18 males and 12 females, aged from 36 to 54 years old with a mean age of (43.37±3.24) years old. The time from injury to treatment averaged (6.87±1.96) hours. All patients received EFLIF treatment. The recovery of ankle joint function, fracture reduction quality, fracture healing time, and surgical-related indicators between two groups were observed and compared six months after surgery. Additionally, the postoperative complications of the two groups were recorded.
RESULTS:
Both groups of patients were followed up and the duration ranged from 6 to 12 months, with an average of (8.97±1.26) months. At 6-month postoperative follow-up, the American Orthopaedic Foot and Ankle Society (AOFAS) score in the ORIF group was (83.15±20.93), which did not show a statistically significant difference compared to the EFLIF group (81.88±20.67), P>0.05. The excellent and good rate of fracture reduction in the staged ORIF group was 33.33% (16/48), which did not show a statistically significant difference compared to the EFLIF group (30.00%, 9/30), P>0.05. The hospitalization duration and fracture healing time in the staged ORIF group were (16.57±1.25) days and (12.14±1.15) weeks, respectively. When compared to the EFLIF group, which demonstrated a hospitalization duration of (15.97±2.16 ) days and a fracture healing time of (12.36±1.17) weeks, no statistically significant differences were observed (P>0.05). The intraoperative blood loss in the staged ORIF group was (76.54±11.65) ml, which was significantly higher than that in the EFLIF group (70.15±10.29) ml, and the difference was statistically significant (P<0.05). The incidence of superficial tissue infection was 2.08%(1/48), which was significantly lower than that observed in the EFLIF group at 16.67% (5/30), and this difference was statistically significant (P<0.05).
CONCLUSION
Both staged ORIF and EFLIF were effective treatment options for high-energy closed Pilon fractures of the tibia. However, regarding the prevention of superficial tissue infection, staged ORIF demonstrates superior risk control compared to EFLIF.
Humans
;
Male
;
Female
;
Middle Aged
;
Adult
;
Tibial Fractures/physiopathology*
;
Fracture Fixation, Internal/methods*
;
Retrospective Studies
;
External Fixators
;
Open Fracture Reduction/methods*
;
Treatment Outcome
6.Identifying High-Risk Areas for Type 2 Diabetes Mellitus Mortality in Guangdong, China: Spatiotemporal Clustering and Socioenvironmental Determinants.
Hai Ming LUO ; Wen Biao HU ; Yan Jun XU ; Xue Yan ZHENG ; Qun HE ; Lu LYU ; Rui Lin MENG ; Xiao Jun XU ; Fei ZOU
Biomedical and Environmental Sciences 2025;38(5):585-597
OBJECTIVE:
This study aimed to identify high-risk areas for type 2 diabetes mellitus (T2DM) mortality to provide relevant evidence for interventions in emerging economies.
METHODS:
Empirical Bayesian Kriging and a discrete Poisson space-time scan statistic were applied to identify the spatiotemporal clusters of T2DM mortality. The relationships between economic factors, air pollutants, and the mortality risk of T2DM were assessed using regression analysis and the Poisson Log-linear Model.
RESULTS:
A coastal district in East Guangdong, China, had the highest risk (Relative Risk [RR] = 4.58, P < 0.01), followed by the 10 coastal districts/counties in West Guangdong, China (RR = 2.88, P < 0.01). The coastal county in the Pearl River Delta, China (RR = 2.24, P < 0.01), had the third-highest risk. The remaining risk areas were two coastal counties in East Guangdong, 16 districts/counties in the Pearl River Delta, and two counties in North Guangdong, China. Mortality due to T2DM was associated with gross domestic product per capita (GDP per capita). In pilot assessments, T2DM mortality was significantly associated with carbon monoxide.
CONCLUSION
High mortality from T2DM occurred in the coastal areas of East and West Guangdong, especially where the economy was progressing towards the upper middle-income level.
Diabetes Mellitus, Type 2/epidemiology*
;
China/epidemiology*
;
Humans
;
Risk Factors
;
Spatio-Temporal Analysis
;
Air Pollutants/analysis*
;
Socioeconomic Factors
;
Bayes Theorem
;
Female
;
Male
;
Middle Aged
7.Effects of MYD88 overexpression on proliferation and apoptosis of diffuse large B cell lymphoma cells and its mechanism
Piaopiao HU ; Chengrui XUAN ; Hua DU ; Shirong LI ; Lixin WENG ; Ling HAI ; Yunga WU ; Xiaoyan XU
Chinese Journal of Clinical and Experimental Pathology 2024;40(1):44-50
Purpose To investigate the effect of MYD88 gene overexpression on the proliferation and apoptosis of human diffuse large B cell lymphoma(DLBCL)cells,and to prelimi-narily explore the mechanism of MYD88 gene action.Methods PEGFP-C2-MYD88 overexpressing MYD88 L265P gene was transfected into DLBCL cells by plasmid transfection.The exper-iment was divided into blank control group,negative control group and MYD88 L265P overexpression group.The fluores-cence expression of MYD88 L265P after overexpression was ob-served under inverted fluorescence microscope.RT-PCR and Western blot were used to detect the mRNA and protein expres-sion of MYD88 L265P,IRAK4,NF-κB and BCL2 in DLBCL cells before and after overexpression of MYD88 L265.CCK8 method was used to detect DLBCL cells proliferation and Ho-echst staining was used to detect DLBCL cells apoptosis.Re-sults After overexpression of MYD88 L265P,compared with the blank control group(0.670 4±0.017 5)and the negative control group(0.715 3±0.019 6),the MYD88L265P overex-pression group(1.157 2±0.010 2)increased significantly,with statistical significance(all P<0.05).After overexpression of MYD88 L265P,compared with the blank control group(0.69 ±0.04)and the negative control group(0.81±0.07),the MYD88L265P overexpression group(0.48±0.05)was signifi-cantly decreased,with statistical significance(all P<0.05).After overexpression of MYD88 L265P,compared with the blank control group(mRNA:1.0158±0.0115,0.987 3±0.010 2,1.007 6±0.015 3,protein:0.183 4±0.058 9,0.096 8± 0.015 7,0.147 5±0.0418)and negative control group(mR-NA:0.9132±0.0098,1.0032±0.0156,0.9327± 0.011 2,protein:0.187 9±0.042 3,0.088 9±0.0513,0.134 8±0.050 1),the mRNA(3.243 2±0.013 6,2.976 6 ±0.0213,1.585 9±0.019 8)and protein expressions(0.452 7±0.052 4,0.218 9±0.047 5,0.301 4±0.059 8)of IRAK4,NF-κB and anti-apoptosis protein BCL2 in MYD88L265P overexpression group were significantly increased,which was statistically significant(all P<0.05).Conclusion After overexpression of MYD88 L265P,the apoptosis rate of DLBCL cells decreased and the cell proliferation rate increased.The mechanism may be related to the mutation of MYD88 L265P gene,activation and amplification of NF-κB pathway,and pro-motion of the overexpression of antiapoptotic protein BCL2.
8.Screening and verification of genes related to immune infiltration between myelodysplastic syndrome and acute myeloid leukemia
Fahua DENG ; Huali HU ; Siqi WANG ; Jianxia XU ; Tingting LU ; Hai HUANG ; Sixi WEI
Chinese Journal of Tissue Engineering Research 2024;28(13):2082-2089
BACKGROUND:Myelodysplastic syndrome has worse hazards of acute myeloid leukemia transformation,and some studies have revealed that immune infiltration plays a vital part in the two.Nevertheless,more studies are required to confirm the relationship between immune infiltration and related differentially expressed gene regulation. OBJECTIVE:To screen the differentially expressed genes with prognostic significance between myelodysplastic syndrome and acute myeloid leukemia by bioinformatics analysis and explore the possible roles and mechanisms among these differentially expressed genes and immune infiltration mechanisms in the occurrence and progression of diseases. METHODS:The differentially expressed genes were screened for bioinformatics analysis using the GEO datasets,and analyzed by DO,GO,KEGG and GSEA.The TCGA prognostic database was used to plot the K-M curves of differentially expressed genes and receiver operating characteristic curve analysis was applied to evaluate the clinical diagnostic performance.Finally,CIBERSORT analysis was used to intuitively demonstrate the correlation between critical prognostic genes and the distribution of immuno-infiltrated cells.RT-qPCR was employed to detect peripheral blood samples from healthy controls,myelodysplastic syndrome and acute myeloid leukemia patients so as to verify the crucial genes preliminarily. RESULTS AND CONCLUSION:(1)A total of 150 differentially expressed genes were obtained between myelodysplastic syndrome and acute myeloid leukemia,among which 16 genes were up-regulated and 134 were down-regulated.(2)The results of DO,GO,KEGG and GSEA analysis suggested that differentially expressed genes might promote the development of myelodysplastic syndrome to acute myeloid leukemia by regulating the immune response.CIBERSORT revealed the differences in immune infiltration between myelodysplastic syndrome and acute myeloid leukemia.The distribution of CD4+ T cells,monocytes,neutrophils and M1 macrophages decreased in acute myeloid leukemia patients.In contrast,the distribution of inflammatory suppressor cells M2 macrophages increased,suggesting that it may be related to the immunosuppression of acute myeloid leukemia.(3)K-M curve and receiver operating characteristic curve analysis of 150 differentially expressed genes screened out four genes relevant to immunity and prognosis with good diagnostic performance:MANSC1,FLT3,BMX and CXCR2.(4)The results of RT-qPCR exhibited that MANSC1,BMX and CXCR2 were low expressed,while FLT3 was highly expressed in acute myeloid leukemia patients.These findings verify that the differential expression of MANSC1,FLT3,BMX and CXCR2 in patients with myelodysplastic syndrome and acute myeloid leukemia is not only significantly correlated with the prognosis of patients but may also affect the occurrence and development of myelodysplastic syndrome and acute myeloid leukemia by regulating the immune infiltration of patients.They can be used as potential biomarkers and therapeutic targets of the transformation from myelodysplastic syndrome to acute myeloid leukemia,providing a new direction for clinical diagnosis and treatment of the transformation of myelodysplastic syndrome.
9.Mannitol inhibits the proliferation of neural stem cell by a p38 mitogen-activated protein kinase-dependent signaling pathway
Hai-Zhen DUAN ; Xin ZHOU ; Quan HU ; Meng-Long LIU ; Shu-Hong WANG ; Ji ZHANG ; Xu-Heng JIANG ; Tian-Xi ZHANG ; An-Yong YU
Chinese Journal of Traumatology 2024;27(1):42-52
Purpose::Mannitol is one of the first-line drugs for reducing cerebral edema through increasing the extracellular osmotic pressure. However, long-term administration of mannitol in the treatment of cerebral edema triggers damage to neurons and astrocytes. Given that neural stem cell (NSC) is a subpopulation of main regenerative cells in the central nervous system after injury, the effect of mannitol on NSC is still elusive. The present study aims to elucidate the role of mannitol in NSC proliferation.Methods::C57 mice were derived from the animal house of Zunyi Medical University. A total of 15 pregnant mice were employed for the purpose of isolating NSCs in this investigation. Initially, mouse primary NSCs were isolated from the embryonic cortex of mice and subsequently identified through immunofluorescence staining. In order to investigate the impact of mannitol on NSC proliferation, both cell counting kit-8 assays and neurospheres formation assays were conducted. The in vitro effects of mannitol were examined at various doses and time points. In order to elucidate the role of Aquaporin 4 (AQP4) in the suppressive effect of mannitol on NSC proliferation, various assays including reverse transcription polymerase chain reaction, western blotting, and immunocytochemistry were conducted on control and mannitol-treated groups. Additionally, the phosphorylated p38 (p-p38) was examined to explore the potential mechanism underlying the inhibitory effect of mannitol on NSC proliferation. Finally, to further confirm the involvement of the p38 mitogen-activated protein kinase-dependent (MAPK) signaling pathway in the observed inhibition of NSC proliferation by mannitol, SB203580 was employed. All data were analyzed using SPSS 20.0 software (SPSS, Inc., Chicago, IL). The statistical analysis among multiple comparisons was performed using one-way analysis of variance (ANOVA), followed by Turkey's post hoc test in case of the data following a normal distribution using a Shapiro-Wilk normality test. Comparisons between 2 groups were determined using Student's t-test, if the data exhibited a normal distribution using a Shapiro-Wilk normality test. Meanwhile, data were shown as median and interquartile range and analyzed using the Mann-Whitney U test, if the data failed the normality test. A p < 0.05 was considered as significant difference. Results::Primary NSC were isolated from the mice, and the characteristics were identified using immunostaining analysis. Thereafter, the results indicated that mannitol held the capability of inhibiting NSC proliferation in a dose-dependent and time-dependent manner using cell counting kit-8, neurospheres formation, and immunostaining of Nestin and Ki67 assays. During the process of mannitol suppressing NSC proliferation, the expression of AQP4 mRNA and protein was downregulated, while the gene expression of p-p38 was elevated by reverse transcription polymerase chain reaction, immunostaining, and western blotting assays. Subsequently, the administration of SB203580, one of the p38 MAPK signaling pathway inhibitors, partially abrogated this inhibitory effect resulting from mannitol, supporting the fact that the p38 MAPK signaling pathway participated in curbing NSC proliferation induced by mannitol.Conclusions::Mannitol inhibits NSC proliferation through downregulating AQP4, while upregulating the expression of p-p38 MAPK.
10.TXN expression in pancreatic cancer and its clinical signifi-cance
Lin-Hai XU ; Mei-Na LI ; Xiao HU
Chinese Journal of Current Advances in General Surgery 2024;27(5):353-358
Objective:Investigate the expression of thioredoxin(TXN)in pancreatic cancer and its impact on the proliferation,invasion,migration,and apoptosis of pancreatic cancer cells.Methods:By collecting pan-cancer and TCGA pancreatic cancer transcriptome and clinical data,the expression levels of the TXN gene family were analyzed.The expression levels of TXN in cancer tissues,adjacent tissues,and different cell lines were detected by fluorescence quantitative PCR(RT-qPCR)and Western blotting.The expression of the TXN gene in Panc-1 and BxPC-3 pancre-atic cancer cells was inhibited using small interfering RNA(siRNA),and control experiments were conducted with Panc-1 and BxPC-3 cells with unblocked TXN gene expression to explore the ef-fects of TXN on the proliferation,migration,invasion,and apoptosis of these two types of cells.Transcriptional data and survival outcome data were used to divide TXN expression into two groups based on the median value,and survival curves of the high and low TXN expression groups were plotted.Results:In pancreatic cancer tissues and cells,the expression level of TXN was signifi-cantly higher than that in adjacent tissues and normal cells(P<0.05).After inhibiting the expression of TXN in pancreatic cancer cells,the proliferation rate,invasion cell number,and healing rate of pancreatic cancer cells with low TXN expression were lower than those of the control group,and their apoptosis rate was significantly higher than that of normal pancreatic cancer cells(P<0.05).The higher the expression level of TXN in the tumors of pancreatic cancer patients,the shorter their survival time(P<0.05).Conclusion:TXN can enhance the proliferation,migration,and invasion ability of pancreatic cancer cells and weaken the degree of cell apoptosis;the higher the expression level of TXN in pancreatic cancer tissues,the worse the prognosis.

Result Analysis
Print
Save
E-mail