1.Novel outpatient infusion model of blinatumomab: case studies of two patients
Guijun LI ; Xuemei JIANG ; Xin WANG ; Qiuxia XU ; Jianhui LI ; Susi DAI ; Ying HE ; Hai YI ; Dan CHEN
Chinese Journal of Blood Transfusion 2025;38(4):557-561
[Objective] To evaluate the feasibility of a novel outpatient infusion model for blinatumomab in two acute lymphoblastic leukemia (ALL) patients, aiming to address challenges of poor treatment tolerance, high healthcare costs, and compromised quality of life, thereby providing clinical insights for broader adoption of this approach. [Methods] Two post-allogeneic hematopoietic stem cell transplantation (allo-HSCT) patients undergoing blinatumomab maintenance therapy were selected to evaluate the efficacy of the outpatient infusion model. Patient selection criteria, nursing protocols, standardized workflows, and advancements in infusion practices were systematically analyzed combined with a review of global developments in this field. [Results] Both patients completed outpatient blinatumomab infusion without severe adverse events, demonstrating preliminary feasibility and safety of this model. The novel approach enhanced treatment convenience, reduced hospitalization costs, and improved quality of life. [Conclusion] Despite the limited sample size, this pilot study highlights the potential of outpatient blinatumomab administration as a viable alternative to traditional inpatient regimens.
2.Mechanism of Chaijin Jieyu Anshen Formula in regulating synaptic damage in nucleus accumbens neurons of rats with insomnia complicated with depression through TREM2/C1q axis.
Ying-Juan TANG ; Jia-Cheng DAI ; Song YANG ; Xiao-Shi YU ; Yao ZHANG ; Hai-Long SU ; Zhi-Yuan LIU ; Zi-Xuan XIANG ; Jun-Cheng LIU ; Hai-Xia HE ; Jian LIU ; Yuan-Shan HAN ; Yu-Hong WANG ; Man-Shu ZOU
China Journal of Chinese Materia Medica 2025;50(16):4538-4545
This study aims to investigate the effect of Chaijin Jieyu Anshen Formula on the neuroinflammation of rats with insomnia complicated with depression through the regulation of triggering receptor expressed on myeloid cells 2(TREM2)/complement protein C1q signaling pathway. Rats were randomly divided into a normal group, a model group, a positive drug group, as well as a high, medium, and low-dose groups of Chaijin Jieyu Anshen Formula, with 10 rats in each group. Except for the normal group, the other groups were injected with p-chlorophenylalanine and exposed to chronic unpredictable mild stress to establish the rat model of insomnia complicated with depression. The sucrose preference experiment, open field experiment, and water maze test were performed to evaluate the depression in rats. Enzyme-linked immunosorbent assay was employed to detect serum 5-hydroxytryptamine(5-HT), dopamine(DA), and norepinephrine(NE) levels. Hematoxylin and eosin staining and Nissl staining were used to observe the damage in nucleus accumbens neurons. Western blot and immunofluorescence were performed to detect TREM2, C1q, postsynaptic density 95(PSD-95), and synaptophysin 1(SYN1) expressions in rat nucleus accumbens, respectively. Golgi-Cox staining was utilized to observe the synaptic spine density of nucleus accumbens neurons. The results show that, compared with the model group, Chaijin Jieyu Anshen Formula can significantly increase the sucrose preference as well as the distance and number of voluntary activities, shorten the immobility time in forced swimming test and the successful incubation period of positioning navigation, and prolong the stay time of space exploration in the target quadrant test. The serum 5-HT, DA, and NE contents in the model group are significantly lower than those in the normal group, with the above contents significantly increased after the intervention of Chaijin Jieyu Anshen Formula. In addition, Chaijin Jieyu Anshen Formula can alleviate pathological damages such as swelling and loose arrangement of tissue cells in the nucleus accumbens, while increasing the Nissl body numbers. Chaijin Jieyu Anshen Formula can improve synaptic damage in the nucleus accumbens and increase the synaptic spine density. Compared to the normal group, the expression of C1q protein was significantly higher in the model group, while the expression of TREM2 protein was significantly lower. Compared to the model group, the intervention with Chaijin Jieyu Anshen Formula significantly downregulated the expression of C1q protein and significantly upregulated the expression of TREM2. Compared with the model group, the PSD-95 and SYN1 fluorescence intensity is significantly increased in the groups receiving different doses of Chaijin Jieyu Anshen Formula. In summary, Chaijin Jieyu Anshen Formula can reduce the C1q protein expression, relieve the TREM2 inhibition, and promote the synapse-related proteins PSD-95 and SNY1 expression. Chaijin Jieyu Anshen Formula improves synaptic injury of the nucleus accumbens neurons, thereby treating insomnia complicated with depression.
Animals
;
Male
;
Rats
;
Nucleus Accumbens/metabolism*
;
Drugs, Chinese Herbal/administration & dosage*
;
Depression/complications*
;
Membrane Glycoproteins/genetics*
;
Rats, Sprague-Dawley
;
Sleep Initiation and Maintenance Disorders/complications*
;
Neurons/metabolism*
;
Receptors, Immunologic/genetics*
;
Signal Transduction/drug effects*
;
Synapses/metabolism*
3.Quality evaluation of Hibisci Mutabilis Folium based on fingerprint and quantitative analysis of multi-components by single-marker method.
Ming CHEN ; Zhen-Hai YUAN ; Xuan TANG ; Dong WANG ; Zhi-Yong ZHENG ; Jing FENG ; Dai-Zhou ZHANG ; Fang WANG
China Journal of Chinese Materia Medica 2025;50(16):4619-4629
To improve the quality evaluation system of Hibisci Mutabilis Folium, this study established high performance liquid chromatography(HPLC) fingerprints of Hibisci Mutabilis Folium and evaluated the quality differences of medicinal materials from different places of production by chemometrics. Furthermore, a content measurement method of differential components was established based on quantitative analysis of multi-components by single-marker(QAMS). The fingerprints of 17 batches of Hibisci Mutabilis Folium from different places of production were constructed, with a total of 19 common peaks marked and seven components confirmed. The similarity between the sample fingerprints and the reference fingerprints ranged from 0.890 to 0.974. By utilizing principal component analysis(PCA), hierarchical cluster analysis(HCA), and orthogonal partial least squares-discriminant analysis(OPLS-DA), the chemical patterns of fingerprints were identified. Five components that could be used to evaluate the quality differences of Hibisci Mutabilis Folium were screened, namely peak 6(quercetin 3-O-β-robinobioside), peak 7(rutin), peak 9(kaempferol-3-O-β-robinobioside), peak 10(kaempferol-3-O-rutinoside), and peak 14(tiliroside). The relative correction factors of isoquercitrin, kaempferol-3-O-β-robinobioside, kaempferol-3-O-rutinoside, kaempferol-3-O-β-D-glucoside, and tiliroside were measured with rutin as the internal reference. The QAMS method was established for the content measurement of six flavonoids, and the results showed there was no significant difference compared to the results obtained by an external standard method. In summary, the HPLC fingerprints and QAMS method established in the study, demonstrating stability and accuracy, can provide a reference for the overall quality evaluation of Hibisci Mutabilis Folium.
Chromatography, High Pressure Liquid/methods*
;
Drugs, Chinese Herbal/chemistry*
;
Quality Control
;
Principal Component Analysis
4.Dimethyloxalylglycine improves functional recovery through inhibiting cell apoptosis and enhancing blood-spinal cord barrier repair after spinal cord injury.
Wen HAN ; Chao-Chao DING ; Jie WEI ; Dan-Dan DAI ; Nan WANG ; Jian-Min REN ; Hai-Lin CHEN ; Ling XIE
Chinese Journal of Traumatology 2025;28(5):361-369
PURPOSE:
The secondary damage of spinal cord injury (SCI) starts from the collapse of the blood spinal cord barrier (BSCB) to chronic and devastating neurological deficits. Thereby, the retention of the integrity and permeability of BSCB is well-recognized as one of the major therapies to promote functional recovery after SCI. Previous studies have demonstrated that activation of hypoxia inducible factor-1α (HIF-1α) provides anti-apoptosis and neuroprotection in SCI. Endogenous HIF-1α, rapidly degraded by prolylhydroxylase, is insufficient for promoting functional recovery. Dimethyloxalylglycine (DMOG), a highly selective inhibitor of prolylhydroxylase, has been reported to have a positive effect on axon regeneration. However, the roles and underlying mechanisms of DMOG in BSCB restoration remain unclear. Herein, we aim to investigate pathological changes of BSCB restoration in rats with SCI treated by DOMG and evaluate the therapeutic effects of DMOG.
METHODS:
The work was performed from 2022 to 2023. In this study, Allen's impact model and human umbilical vein endothelial cells were employed to explore the mechanism of DMOG. In the phenotypic validation experiment, the rats were randomly divided into 3 groups: sham group, SCI group, and SCI + DMOG group (10 rats for each). Histological analysis via Nissl staining, Basso-Beattie-Bresnahan scale, and footprint analysis was used to evaluate the functional recovery after SCI. Western blotting, TUNEL assay, and immunofluorescence staining were employed to exhibit levels of tight junction and adhesion junction of BSCB, HIF-1α, cell apoptosis, and endoplasmic reticulum (ER) stress. The one-way ANOVA test was used for statistical analysis. The difference was considered statistically significant at p < 0.05.
RESULTS:
In this study, we observed the expression of HIF-1α reduced in the SCI model. DMOG treatment remarkably augmented HIF-1α level, alleviated endothelial cells apoptosis and disruption of BSCB, and enhanced functional recovery post-SCI. Besides, the administration of DMOG offset the activation of ER stress induced by SCI, but this phenomenon was blocked by tunicamycin (an ER stress activator). Finally, we disclosed that DMOG maintained the integrity and permeability of BSCB by inhibiting ER stress, and inhibition of HIF-1α erased the protection from DMOG.
CONCLUSIONS
Our findings illustrate that the administration of DMOG alleviates the devastation of BSCB and HIF-1α-induced inhibition of ER stress.
Spinal Cord Injuries/pathology*
;
Animals
;
Apoptosis/drug effects*
;
Amino Acids, Dicarboxylic/therapeutic use*
;
Recovery of Function/drug effects*
;
Rats
;
Rats, Sprague-Dawley
;
Hypoxia-Inducible Factor 1, alpha Subunit/metabolism*
;
Male
;
Spinal Cord/blood supply*
5.A Study of Flow Sorting Lymphocyte Subsets to Detect Epstein-Barr Virus Reactivation in Patients with Hematological Malignancies.
Hui-Ying LI ; Shen-Hao LIU ; Fang-Tong LIU ; Kai-Wen TAN ; Zi-Hao WANG ; Han-Yu CAO ; Si-Man HUANG ; Chao-Ling WAN ; Hai-Ping DAI ; Sheng-Li XUE ; Lian BAI
Journal of Experimental Hematology 2025;33(5):1468-1475
OBJECTIVE:
To analyze the Epstein-Barr virus (EBV) load in different lymphocyte subsets, as well as clinical characteristics and outcomes in patients with hematologic malignancies experiencing EBV reactivation.
METHODS:
Peripheral blood samples from patients were collected. B, T, and NK cells were isolated sorting with magnetic beads by flow cytometry. The EBV load in each subset was quantitated by real-time quantitative polymerase chain reaction (RT-qPCR). Clinical data were colleted from electronic medical records. Survival status was followed up through outpatient visits and telephone calls. Statistical analyses were performed using SPSS 25.0.
RESULTS:
A total of 39 patients with hematologic malignancies were included, among whom 35 patients had undergone allogeneic hematopoietic stem cell transplantation (allo-HSCT). The median time to EBV reactivation was 4.8 months (range: 1.7-57.1 months) after allo-HSCT. EBV was detected in B, T, and NK cells in 20 patients, in B and T cells in 11 patients, and only in B cells in 4 patients. In the 35 patients, the median EBV load in B cells was 2.19×104 copies/ml, significantly higher than that in T cells (4.00×103 copies/ml, P <0.01) and NK cells (2.85×102 copies/ml, P <0.01). Rituximab (RTX) was administered for 32 patients, resulting in EBV negativity in 32 patients with a median time of 8 days (range: 2-39 days). Post-treatment analysis of 13 patients showed EBV were all negative in B, T, and NK cells. In the four non-transplant patients, the median time to EBV reactivation was 35 days (range: 1-328 days) after diagnosis of the primary disease. EBV was detected in one or two subsets of B, T, or NK cells, but not simultaneously in all three subsets. These patients received a combination chemotherapy targeting at the primary disease, with 3 patients achieving EBV negativity, and the median time to be negative was 40 days (range: 13-75 days).
CONCLUSION
In hematologic malignancy patients after allo-HSCT, EBV reactivation commonly involves B, T, and NK cells, with a significantly higher viral load in B cells compared to T and NK cells. Rituximab is effective for EBV clearance. In non-transplant patients, EBV reactivation is restricted to one or two lymphocyte subsets, and clearance is slower, highlighting the need for prompt anti-tumor therapy.
Humans
;
Hematologic Neoplasms/virology*
;
Herpesvirus 4, Human/physiology*
;
Epstein-Barr Virus Infections
;
Hematopoietic Stem Cell Transplantation
;
Virus Activation
;
Lymphocyte Subsets/virology*
;
Flow Cytometry
;
Killer Cells, Natural/virology*
;
Male
;
Female
;
B-Lymphocytes/virology*
;
Viral Load
;
Adult
;
T-Lymphocytes/virology*
;
Middle Aged
6.Value of 6-Minute Walking Test in Predicting Acute Mountain Sickness.
Yu-Fan JIANG ; Qiang MA ; Hai-Wei CHEN ; Bao-Shi HAN ; Bin FENG ; Yun-Dai CHEN
Acta Academiae Medicinae Sinicae 2025;47(4):535-541
Objective To evaluate the value of pre-ascent 6-minute walking test performed at a high altitude in predicting the incidence of acute mountain sickness(AMS)induced by rapid ascent to a very high altitude.Methods After baseline information was collected,participants completed the 6-minute walking test at a high altitude of 2 900 m.Then,they rapidly ascended to a very high altitude of 5 000 m.The Lake Louise score was recorded to assess AMS.Results The AMS group showed a shorter pre-ascent 6-minute walking distance(6MWD)at the high altitude than the non-AMS group[480.00(450.00,521.75)m vs.546.00(516.50,568.50)m,P=0.006].No difference was observed regarding the pre-ascent heart rate or peripheral oxygen saturation(both P>0.05).The pre-ascent 6MWD at the high altitude was negatively correlated with the Lake Louise score assessed after rapid ascent to the very high altitude(r=-0.497,P=0.012).Logistic regression analysis confirmed that the pre-ascent 6MWD at the high altitude was associated with the risk of AMS induced by rapid ascent to the very high altitude(OR=0.971,95% CI=0.947-0.996,P=0.022).The results indicated that the pre-ascent 6MWD demonstrated ideal prediction performance(area under receiver operating characteristic curve=0.846,P=0.006).Conclusion The pre-ascent 6MWD recorded at the high altitude is a convenient and reliable predictor of the AMS induced by rapid ascent to the very high altitude.
Humans
;
Altitude Sickness/diagnosis*
;
Male
;
Adult
;
Female
;
Young Adult
;
Middle Aged
;
Acute Disease
;
Walk Test
;
Walking
;
Altitude
;
Exercise Test
7.The impact of different contrast agent concentrations on excimer laser ablation:an in vitro study
Pan HE ; Yang SHI ; Hai-Wei CHEN ; Jun-Jie YANG ; Jun GUO ; Yun-Dai CHEN ; Qi WANG
Chinese Journal of Interventional Cardiology 2024;32(1):39-44
Objective To explore the impact of contrast agent concentration on the excimer laser's effect on plaque ablation.Methods Using a laser catheter with a diameter of 0.9 mm,we conducted plaque model ablation experiments employing a 308-nanometer xenon chloride excimer laser.During the excimer laser ablation process,five groups were formed based on the injected contrast agent concentrations:a saline group,25%concentration group,50%concentration group,75%concentration group,and 100%concentration group.Optical coherence tomography was utilized to assess the changes in plaque lumen area after excimer laser ablation,evaluating the impact of contrast agent concentration on the excimer laser's ablation efficacy.Simultaneously,a water manometer was used to measure the shockwave pressure generated by the excimer laser in liquids with different contrast agent concentrations,aiming to explore the correlation between the shockwave pressure of the excimer laser and its ablative effect.Results The ablation areas in the 75%concentration group and the 100%concentration group were similar(P>0.05),both exceeding those in the 50%concentration contrast agent group,25%concentration group,and saline group(all P<0.001).Specifically,the ablation area in the 50%concentration group was significantly larger than that in the 25%concentration group and saline group(both P<0.001),while the 25%concentration group was larger than the saline group(P<0.001).The influence of contrast agent concentration on the shockwave pressure of the excimer laser exhibited a similar trend.Additionally,there was a significant positive correlation between the shockwave pressure generated by the excimer laser and its ablation area(r=0.9987,P<0.001).Conclusions The intensity of excimer laser ablation on plaque tissue can be modulated by altering the contrast agent concentration.These findings offer guidance for the application of excimer laser in conjunction with contrast agent injection techniques in the treatment of coronary artery disease.
8.Fangji Fuling Decoction Alleviates Sepsis by Blocking MAPK14/FOXO3A Signaling Pathway.
Yi WANG ; Ming-Qi CHEN ; Lin-Feng DAI ; Hai-Dong ZHANG ; Xing WANG
Chinese journal of integrative medicine 2024;30(3):230-242
OBJECTIVE:
To examine the therapeutic effect of Fangji Fuling Decoction (FFD) on sepsis through network pharmacological analysis combined with in vitro and in vivo experiments.
METHODS:
A sepsis mouse model was constructed through intraperitoneal injection of 20 mg/kg lipopolysaccharide (LPS). RAW264.7 cells were stimulated by 250 ng/mL LPS to establish an in vitro cell model. Network pharmacology analysis identified the key molecular pathway associated with FFD in sepsis. Through ectopic expression and depletion experiments, the effect of FFD on multiple organ damage in septic mice, as well as on cell proliferation and apoptosis in relation to the mitogen-activated protein kinase 14/Forkhead Box O 3A (MAPK14/FOXO3A) signaling pathway, was analyzed.
RESULTS:
FFD reduced organ damage and inflammation in LPS-induced septic mice and suppressed LPS-induced macrophage apoptosis and inflammation in vitro (P<0.05). Network pharmacology analysis showed that FFD could regulate the MAPK14/FOXO signaling pathway during sepsis. As confirmed by in vitro cell experiments, FFD inhibited the MAPK14 signaling pathway or FOXO3A expression to relieve LPS-induced macrophage apoptosis and inflammation (P<0.05). Furthermore, FFD inhibited the MAPK14/FOXO3A signaling pathway to inhibit LPS-induced macrophage apoptosis in the lung tissue of septic mice (P<0.05).
CONCLUSION
FFD could ameliorate the LPS-induced inflammatory response in septic mice by inhibiting the MAPK14/FOXO3A signaling pathway.
Mice
;
Animals
;
Mitogen-Activated Protein Kinase 14/metabolism*
;
Wolfiporia
;
Lipopolysaccharides/pharmacology*
;
Sepsis/complications*
;
Signal Transduction
;
Inflammation/drug therapy*
;
Oxygen Radioisotopes
9.Mechanism of Osteosarcopenia and Its Control by Exercise
Dan JIN ; Xin-Yu DAI ; Miao LIU ; Xue-Jie YI ; Hai-Ning GAO
Progress in Biochemistry and Biophysics 2024;51(5):1105-1118
Osteosarcopenia (OS) is a multifactorial, multiaetiologic degenerative metabolic syndrome in which sarcopenia coexists with osteoporosis, and its influences are related to aging-induced mechanics, genetics, inflammatory factors, endocrine disorders, and irregular lifestyles. With the accelerated aging process in our country, osteosarcopenia has become a public health problem that cannot be ignored, with a higher risk of falls, fractures, impaired mobility and death. In recent years, scholars at home and abroad have conducted a lot of research on osteosarcopenia, but their pathogenesis is still unclear. Understanding the signaling pathways associated with osteosarcopenia is of great significance for further research on the pathogenesis of these disorders and for finding new targets for treatment. Studies have shown that activation of the PI3K/Akt signaling pathway promotes osteoblast differentiation as well as skeletal muscle regeneration, indicating that inhibition of thePI3K/Akt signaling pathway is closely related to the development of osteosarcopenia. Muscle factor-mechanical stress interactions can maintain osteoblast viability by activating the Wnt/β-catenin signaling pathway, suggesting that Wnt signaling is important in muscle and bone crosstalk. The Notch signaling pathway also plays an important role in improving bone and muscle mass and function, but different researchers hold different views, which need to be further validated and refined in subsequent studies. Exercise, as an existing non-pharmacological treatment with strong and sustained effects on physical function and muscle strength, also significantly increases bone density in osteoporosis patients, which may be mainly due to the fact that exercise induces changes in the form and function of bones, in the form of muscular pulling and indirectly improves the bone mass, and changes in the bone strength can also change the number, shape as well as the function of the muscles. At the same time, the mechanism of different exercise modalities focuses on different aspects, and there are differences in exercise time, exercise intensity, and therapeutic effects in the implementation of interventions. Aerobic exercise can improve the quality of skeletal muscle and increase the expression of osteogenesis-related genes by stimulating mitochondrial biosynthesis, as well as improve the quality and strength of bones and muscles through the Wnt/β- catenin and PI3K/Akt signaling pathways, effectively preventing and controlling the occurrence of musculoskeletal disorders. High-intensity resistance exercise has a significant effect on improving the quality of muscles and bone mineral density, but older people with osteosarcopenia suffer from a decline in muscle quality and strength, and a decline in bone mineral density, which makes them very susceptible to fracture, so they should select the intensity of the training in a gradual and orderly manner, from small to large. What kind of exercise intensity and exercise modalities are most effective in improving the occurrence and development of osteosarcopenia needs to be further investigated. Therefore, this paper mainly reviews the epidemiology of osteosarcopenia, diagnostic criteria, the related signaling pathways (PI3K/Akt pathway, Wnt/β-catenin pathway, Notch pathway, NF-κB pathway) that jointly regulate the metabolic process of myocytes and skeletal cells, as well as the interventional effects of different exercise modes on osteosarcopenia, with the aim of providing theoretical bases for the clinical treatment of osteosarcopenia, as well as enhancing the preventive capacity of the disease in old age.
10.The Role and Possible Mechanisms of Exercise in Combating Osteoporosis by Modulating The Bone Autophagy Pathway
Xin-Yu DAI ; Bin LI ; Dan JIN ; Xue-Jie YI ; Rui-Qi HUANG ; Hai-Ning GAO
Progress in Biochemistry and Biophysics 2024;51(7):1589-1603
Osteoporosis leads to an imbalance in bone remodelling, where bone resorption is greater than bone formation and osteoclast degradation increases, resulting in severe bone loss. Autophagy is a lysosomal degradation pathway that regulates the proliferation, differentiation, and apoptosis of various bone cells (including osteoblasts, osteoclasts, and osteoclasts), and is deeply involved in the bone remodelling process. In recent years, the role of autophagy in the progression of osteoporosis and related bone metabolic diseases has received more and more attention, and it has become a research hotspot in this field. Summarising the existing studies, it is found that senile osteoporosis is the result of a combination of factors. On the one hand, it is the imbalance of bone remodelling and the increase of bone resorption/bone formation ratio with ageing, which causes progressive bone loss. On the other hand, aging leads to a general decrease in the level of autophagy, a decrease in the activity of osteoblasts and osteoclasts, and an inhibition of osteogenic differentiation. The lack of oestrogen leads to the immune system being in a low activation state, and the antioxidant capacity is weakened and inflammatory response is increased, inducing autophagy-related proteins to participate in the transmission of inflammatory signals, excessive accumulation of reactive oxygen species (ROS) in the skeleton, and negatively regulating bone formation. In addition, with aging and the occurrence of related diseases, glucocorticoid treatments also mediate autophagy in bone tissue cells, contributing to the decline in bone strength. Exercise, as an effective means of combating osteoporosis, improves bone biomechanical properties and increases bone density. It has been found that exercise induces oxidative stress, energy imbalance, protein defolding and increased intracellular calcium ions in the organism, which in turn activates autophagy. In bone, exercise of different intensities activates messengers such as ROS, PI3K, and AMP. These messengers signal downstream cascades, which in turn induce autophagy to restore dynamic homeostasis in vivo. During exercise, increased production of AMP, PI3K, and ROS activate their downstream effectors, AMPK, Akt, and p38MAPK, respectively, and these molecules in turn lead to activation of the autophagy pathway. Activation of AMPK inhibits mTOR activity and phosphorylates ULK1 at different sites, inducing autophagy. AMPK and p38 up-regulate per-PGC-1α activity and activate transcription factors in the nucleus, resulting in increased autophagy and lysosomal genes. Together, they activate FoxOs, whose transcriptional activity controls cellular processes including autophagy and can act on autophagy key proteins, while FoxOs proteins are expressed in osteoblasts. Exercise also regulates the expression of mTORC1, FoxO1, and PGC-1 through the PI3K/Akt signalling pathway, which ultimately plays a role in the differentiation and proliferation of osteoblasts and regulates bone metabolism. In addition, BMPs signaling pathway and long chain non-coding RNAs also play a role in the proliferation and differentiation of osteoblasts and autophagy process under exercise stimulation. Therefore, exercise may become a new molecular regulatory mechanism to improve osteoporosis through the bone autophagy pathway, but the specific mechanism needs to be further investigated. How exercise affects bone autophagy and thus prevents and treats bone-related diseases will become a future research hotspot in the fields of biology, sports medicine and sports science, and it is believed that future studies will further reveal its mechanism and provide new theoretical basis and ideas.

Result Analysis
Print
Save
E-mail