1.Simultaneous TAVI and McKeown for esophageal cancer with severe aortic regurgitation: A case report
Liang CHENG ; Lulu LIU ; Xin XIAO ; Lin LIN ; Mei YANG ; Jingxiu FAN ; Hai YU ; Longqi CHEN ; Yingqiang GUO ; Yong YUAN
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(02):277-280
A 71-year-old male presented with esophageal cancer and severe aortic valve regurgitation. Treatment strategies for such patients are controversial. Considering the risks of cardiopulmonary bypass and potential esophageal cancer metastasis, we successfully performed transcatheter aortic valve implantation and minimally invasive three-incision thoracolaparoscopy combined with radical resection of esophageal cancer (McKeown) simultaneously in the elderly patient who did not require neoadjuvant treatment. This dual minimally invasive procedure took 6 hours and the patient recovered smoothly without any surgical complications.
2.Expert Consensus on Clinical Application of Qinbaohong Zhike Oral Liquid in Treatment of Acute Bronchitis and Acute Attack of Chronic Bronchitis
Jian LIU ; Hongchun ZHANG ; Chengxiang WANG ; Hongsheng CUI ; Xia CUI ; Shunan ZHANG ; Daowen YANG ; Cuiling FENG ; Yubo GUO ; Zengtao SUN ; Huiyong ZHANG ; Guangxi LI ; Qing MIAO ; Sumei WANG ; Liqing SHI ; Hongjun YANG ; Ting LIU ; Fangbo ZHANG ; Sheng CHEN ; Wei CHEN ; Hai WANG ; Lin LIN ; Nini QU ; Lei WU ; Dengshan WU ; Yafeng LIU ; Wenyan ZHANG ; Yueying ZHANG ; Yongfen FAN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(4):182-188
The Expert Consensus on Clinical Application of Qinbaohong Zhike Oral Liquid in Treatment of Acute Bronchitis and Acute Attack of Chronic Bronchitis (GS/CACM 337-2023) was released by the China Association of Chinese Medicine on December 13th, 2023. This expert consensus was developed by experts in methodology, pharmacy, and Chinese medicine in strict accordance with the development requirements of the China Association of Chinese Medicine (CACM) and based on the latest medical evidence and the clinical medication experience of well-known experts in the fields of respiratory medicine (pulmonary diseases) and pediatrics. This expert consensus defines the application of Qinbaohong Zhike oral liquid in the treatment of cough and excessive sputum caused by phlegm-heat obstructing lung, acute bronchitis, and acute attack of chronic bronchitis from the aspects of applicable populations, efficacy evaluation, usage, dosage, drug combination, and safety. It is expected to guide the rational drug use in medical and health institutions, give full play to the unique value of Qinbaohong Zhike oral liquid, and vigorously promote the inheritance and innovation of Chinese patent medicines.
3.Novel outpatient infusion model of blinatumomab: case studies of two patients
Guijun LI ; Xuemei JIANG ; Xin WANG ; Qiuxia XU ; Jianhui LI ; Susi DAI ; Ying HE ; Hai YI ; Dan CHEN
Chinese Journal of Blood Transfusion 2025;38(4):557-561
[Objective] To evaluate the feasibility of a novel outpatient infusion model for blinatumomab in two acute lymphoblastic leukemia (ALL) patients, aiming to address challenges of poor treatment tolerance, high healthcare costs, and compromised quality of life, thereby providing clinical insights for broader adoption of this approach. [Methods] Two post-allogeneic hematopoietic stem cell transplantation (allo-HSCT) patients undergoing blinatumomab maintenance therapy were selected to evaluate the efficacy of the outpatient infusion model. Patient selection criteria, nursing protocols, standardized workflows, and advancements in infusion practices were systematically analyzed combined with a review of global developments in this field. [Results] Both patients completed outpatient blinatumomab infusion without severe adverse events, demonstrating preliminary feasibility and safety of this model. The novel approach enhanced treatment convenience, reduced hospitalization costs, and improved quality of life. [Conclusion] Despite the limited sample size, this pilot study highlights the potential of outpatient blinatumomab administration as a viable alternative to traditional inpatient regimens.
4.Mechanism of total flavone of Abelmoschus manihot in treating ulcerative colitis and depression via intestinal flora-glycerophospholipid metabolism- macrophage polarization pathway.
Chang-Ye LU ; Xiao-Min YUAN ; Lin-Hai HE ; Jia-Rong MAO ; Yu-Gen CHEN
China Journal of Chinese Materia Medica 2025;50(5):1286-1297
This study delves into the mechanism of total flavone of Abelmoschus manihot(TFA) in treating ulcerative colitis(UC) and depression via inhibiting M1 polarization of macrophages and reshaping intestinal flora and glycerolphospholipid metabolism. The study established a mouse model of UC and depression induced by chronic restraint stress(CRS) and dextran sulfate sodium(DSS). The fecal microbiota transplantation(FMT) experiment after TFA intervention was conducted. Mice in the FMT donor group were modeled and treated, and fecal samples were taken to prepare the bacterial solution. Mice in the FMT receptor group were treated with antibiotic intervention, and then administered bacterial solution by gavage from mice in the donor group, followed by UC depression modeling. After the experiment, behavioral tests were conducted to evaluate depressive-like behaviors by measuring the levels of 5-hydroxytryptamine(5-HT) and brain-derived neurotrophic factor(BDNF) in the hippocampus of mice. The levels of tumor necrosis factor-α(TNF-α),interleukin-6(IL-6),and interleukin-1β(IL-1β)in the brain and colon tissue of mice were also measured, and the polarization status of macrophages was evaluated by measuring the mRNA levels of CD86 and CD206. 16S ribosomal RNA(16S rRNA) sequencing technology was used to analyze changes in the intestinal flora of mice. Wide target lipidomics was used to detect serum lipid metabolite levels in mice after FMT,and correlation analysis was conducted between lipids and differential intestinal flora significantly regulated by TFA. In vitro experiments, representative glycerophospholipid metabolites and glycerophospholipid inhibitors were used to intervene in Raw264.7 macrophages, and the mRNA levels of TNF-α,IL-6,IL-1β,CD86,and CD206 were detected. The results showed that TFA and FMT after intervention could significantly improve depressive-like behavior and intestinal inflammation in mice with UC and depression, significantly downregulate pro-inflammatory cytokines and CD86 mRNA expression in brain and colon tissue, inhibiting M1 polarization of macrophages, and significantly upregulate CD206 mRNA expression, promoting M2 polarization of macrophages. In addition, the high-dose group had a more significant effect. After TFA intervention, FMT significantly corrected the metabolic disorder of glycerophospholipids in mice with UC and depression, and there was a significant correlation between differential intestinal flora and glycerophospholipids. In vitro experiments showed that glycerophospholipid metabolites, especially lysophosphatidylcholine(LPC),significantly upregulated pro-inflammatory cytokines and CD86 mRNA expression, promote M1 polarization of macrophages, while glycerophospholipid inhibitors had the opposite effect. The results indicate that TFA effectively treats depression and UC by correcting intestinal flora dysbiosis and reshaping glycerophospholipid metabolism, thereby inhibiting M1 polarization of macrophages.
Animals
;
Mice
;
Gastrointestinal Microbiome/drug effects*
;
Abelmoschus/chemistry*
;
Macrophages/metabolism*
;
Colitis, Ulcerative/immunology*
;
Flavones/administration & dosage*
;
Male
;
Depression/genetics*
;
Glycerophospholipids/metabolism*
;
Humans
;
Drugs, Chinese Herbal/administration & dosage*
;
Mice, Inbred C57BL
5.Hypolipidemic effect and mechanism of Arisaema Cum Bile based on gut microbiota and metabolomics.
Peng ZHANG ; Fa-Zhi SU ; En-Lin ZHU ; Chen-Xi BAI ; Bao-Wu ZHANG ; Yan-Ping SUN ; Hai-Xue KUANG ; Qiu-Hong WANG
China Journal of Chinese Materia Medica 2025;50(6):1544-1557
Based on the high-fat diet-induced hyperlipidemia rat model, this study aimed to evaluate the lipid-lowering effect of Arisaema Cum Bile and explore its mechanisms, providing experimental evidence for its clinical application. Biochemical analysis was used to detect serum levels of alanine aminotransferase(ALT), aspartate aminotransferase(AST), high-density lipoprotein cholesterol(HDL-C), low-density lipoprotein cholesterol(LDL-C), triglycerides(TG), and total cholesterol(TC) to assess the lipid-lowering activity of Arisaema Cum Bile. Additionally, 16S rDNA sequencing and metabolomics techniques were employed to jointly elucidate the lipid-lowering mechanisms of Arisaema Cum Bile. The experimental results showed that high-dose Arisaema Cum Bile(PBA-H) significantly reduced serum ALT, AST, LDL-C, TG, and TC levels(P<0.01), and significantly increased HDL-C levels(P<0.01). The effect was similar to that of fenofibrate, with no significant difference. Furthermore, Arisaema Cum Bile significantly alleviated hepatocyte ballooning and mitigated fatty degeneration in liver tissues. As indicated by 16S rDNA sequencing results, PBA-H significantly enhanced both alpha and beta diversity of the gut microbiota in the model rats, notably increasing the relative abundance of Akkermansia and Subdoligranulum species(P<0.01). Liver metabolomics analysis revealed that PBA-H primarily regulated pathways involved in arachidonic acid metabolism, vitamin B_6 metabolism, and steroid biosynthesis. In summary, Arisaema Cum Bile significantly improved abnormal blood lipid levels and liver pathology induced by a high-fat diet, regulated hepatic metabolic disorders, and improved the abundance and structural composition of gut microbiota, thereby exerting its lipid-lowering effect. The findings of this study provide experimental evidence for the clinical application of Arisaema Cum Bile and the treatment of hyperlipidemia.
Animals
;
Gastrointestinal Microbiome/drug effects*
;
Rats
;
Male
;
Metabolomics
;
Hyperlipidemias/microbiology*
;
Drugs, Chinese Herbal/administration & dosage*
;
Rats, Sprague-Dawley
;
Hypolipidemic Agents/pharmacology*
;
Liver/metabolism*
;
Humans
;
Alanine Transaminase/metabolism*
;
Triglycerides/metabolism*
;
Aspartate Aminotransferases/metabolism*
6.Color-component correlation and mechanism of component transformation of processed Citri Reticulatae Semen.
Kui-Lin ZHU ; Jin-Lian ZOU ; Xu-Li DENG ; Mao-Xin DENG ; Hai-Ming WANG ; Rui YIN ; Zhang-Xian CHEN ; Yun-Tao ZHANG ; Hong-Ping HE ; Fa-Wu DONG
China Journal of Chinese Materia Medica 2025;50(9):2382-2390
High-performance liquid chromatography(HPLC) was used to determine the content of three major components in Citri Reticulatae Semen(CRS), including limonin, nomilin, and obacunone. The chromaticity of the CRS sample during salt processing and stir-frying was measured using a color difference meter. Next, the relationship between the color and content of the salt-processed CRS sample was investigated through correlation analysis. By integrating the oil bath technique for processing simulation with HPLC, the changes in the relative content of nomilin and its transformation products were analyzed, with its structural transformation pattern during processing identified. Additionally, RAW264.7 cells were induced with lipopolysaccharides(LPSs) to establish an inflammatory model, and the anti-inflammatory activity of nomilin and its transformation product, namely obacunone was evaluated. The results indicated that as processing progressed, E~*ab and L~* values showed a downward trend; a~* values exhibited a slow increase over a certain period, followed by no significant changes, and b~* values remained stable with no significant changes over a certain period and then started to decrease. The limonin content remained barely unchanged; the nomilin content decreased, and the obacunone increased significantly. The changing trends in content and color parameters during salt-processing and stir-frying were basically consistent. The content of nomilin and obacunone was significantly correlated with the colorimetric values(L~*, a~*, b~*, and E~*ab), while limonin content showed no significant correlation with these values. By analyzing HPLC patterns of nomylin at different heating temperatures and time, it was found that under conditions of 200-250 ℃ for heating of 5-60 min, the content of nomilin significantly decreased, while the obacunone content increased pronouncedly. The in vitro anti-inflammatory activity results indicated that compared to the model group, the group with a high concentration of nomilin and the groups with varying concentrations of obacunone showed significantly reduced release of nitric oxide(NO)(P<0.01). When both were at the same concentration, obacunone showed better performance in inhibiting NO release. In this study, the obvious correlation between the color and content of major components during the processing of CRS samples was identified, and the dynamic patterns of quality change in CRS samples during processing were revealed. Additionally, the study revealed and confirmed the transformation of nomilin into obacunone during processing, with the in vitro anti-inflammatory activity of obacunone significantly greater than that of nomilin. These findings provided a scientific basis for CRS processing optimization, tablet quality control, and its clinical application.
Mice
;
Animals
;
Drugs, Chinese Herbal/pharmacology*
;
RAW 264.7 Cells
;
Limonins/chemistry*
;
Chromatography, High Pressure Liquid
;
Citrus/chemistry*
;
Color
;
Benzoxepins/chemistry*
;
Anti-Inflammatory Agents/chemistry*
7.Multifaceted mechanisms of Danggui Shaoyao San in ameliorating Alzheimer's disease based on transcriptomics and metabolomics.
Min-Hao YAN ; Han CAI ; Hai-Xia DING ; Shi-Jie SU ; Xu-Nuo LI ; Zi-Qiao XU ; Wei-Cheng FENG ; Qi-Qing WU ; Jia-Xin CHEN ; Hong WANG ; Qi WANG
China Journal of Chinese Materia Medica 2025;50(8):2229-2236
This study explored the potential therapeutic targets and mechanisms of Danggui Shaoyao San(DSS) in the prevention and treatment of Alzheimer's disease(AD) through transcriptomics and metabolomics, combined with animal experiments. Fifty male C57BL/6J mice, aged seven weeks, were randomly divided into the following five groups: control, model, positive drug, low-dose DSS, and high-dose DSS groups. After the intervention, the Morris water maze was used to assess learning and memory abilities of mice, and Nissl staining and hematoxylin-eosin(HE) staining were performed to observe pathological changes in the hippocampal tissue. Transcriptomics and metabolomics were employed to sequence brain tissue and identify differential metabolites, analyzing key genes and metabolites related to disease progression. Reverse transcription-quantitative polymerase chain reaction(RT-qPCR) was employed to validate the expression of key genes. The Morris water maze results indicated that DSS significantly improved learning and cognitive function in scopolamine(SCOP)-induced model mice, with the high-dose DSS group showing the best results. Pathological staining showed that DSS effectively reduced hippocampal neuronal damage, increased Nissl body numbers, and reduced nuclear pyknosis and neuronal loss. Transcriptomics identified seven key genes, including neurexin 1(Nrxn1) and sodium voltage-gated channel α subunit 1(Scn1a), and metabolomics revealed 113 differential metabolites, all of which were closely associated with synaptic function, oxidative stress, and metabolic regulation. RT-qPCR experiments confirmed that the expression of these seven key genes was consistent with the transcriptomics results. This study suggests that DSS significantly improves learning and memory in SCOP model mice and alleviates hippocampal neuronal pathological damage. The mechanisms likely involve the modulation of synaptic function, reduction of oxidative stress, and metabolic balance, with these seven key genes serving as important targets for DSS in the treatment of AD.
Animals
;
Alzheimer Disease/genetics*
;
Male
;
Drugs, Chinese Herbal/administration & dosage*
;
Mice
;
Mice, Inbred C57BL
;
Metabolomics
;
Transcriptome/drug effects*
;
Maze Learning/drug effects*
;
Hippocampus/metabolism*
;
Humans
;
Disease Models, Animal
;
Memory/drug effects*
8.Caffeoylquinic acids from Erigeron breviscapus ameliorates cognitive impairment and mitochondrial dysfunction in AD by activating PINK1/Parkin-mediated mitophagy.
Yuan-Zhu PU ; Hai-Feng CHEN ; Xin-Yi WANG ; Can SU
China Journal of Chinese Materia Medica 2025;50(14):3969-3979
This study aimed to investigate the effects of caffeoylquinic acids from Erigeron breviscapus(EBCQA) on cognitive impairment and mitochondrial dysfunction in Alzheimer's disease(AD), and to explore its underlying mechanisms. The impacts of EBCQA on paralysis, β-amyloid(Aβ) oligomerization, and mRNA expression of mitophagy-related genes [PTEN-induced putative kinase 1(PINK1) homolog-encoding gene pink-1, Parkin homolog-encoding gene pdr-1, Bcl-2 interacting coiled-coil protein 1(Beclin 1) homolog-encoding gene bec-1, microtubule-associated protein 1 light chain 3(LC3) homolog-encoding gene lgg-1, autophagic adapter protein 62(p62) homolog-encoding gene sqst-1] were examined in the AD Caenorhabditis elegans CL4176 model, along with mitochondrial functions including adenosine triphosphate(ATP) content, enzyme activities of mitochondrial respiratory chain complexes Ⅰ,Ⅲ, and Ⅳ, and mitochondrial membrane potential. Additionally, the effects of EBCQA on the green fluorescent protein(GFP)/red fluorescent protein from Discosoma sp.(DsRed) ratio, the expression of phosphatidylethanolamine-modified and GFP-labeled LGG-1(PE-GFP::LGG-1)/GFP-labeled LGG-1(GFP::LGG-1), and GFP-labeled SQST-1(GFP::SQST-1) proteins were investigated in transgenic C. elegans strains. The effect of EBCQA on paralysis was further evaluated after RNA interference(RNAi)-mediated suppression of the pink-1 and pdr-1 genes in CL4176 strain. An AD rat model was established through intraperitoneal injection of D-galactose and intragastric administration of aluminum trichloride. The effects of β-nicotinamide mononucleotide(NMN) and EBCQA on learning and memory ability, neuronal morphology, mitophagy occurrence, mitophagy-related protein expression(PINK1, Parkin, Beclin 1, LC3-Ⅱ/LC3-Ⅰ, p62), and mitochondrial functions(ATP content; enzyme activities of mitochondrial respiratory chain complexes Ⅰ, Ⅲ, and Ⅳ; mitochondrial membrane potential) were investigated in this AD rat model. The results showed that EBCQA delayed paralysis onset in the CL4176 strain, reduced Aβ oligomer formation, and upregulated the mRNA expression levels of lgg-1, bec-1, pink-1, and pdr-1, while downregulating sqst-1 mRNA expression. EBCQA also enhanced ATP content, mitochondrial membrane potential, and the activities of mitochondrial respiratory chain complexes Ⅰ, Ⅲ, and Ⅳ. Furthermore, EBCQA improved the PE-GFP::LGG-1/GFP::LGG-1 ratio, reduced GFP::SQST-1 expression, and decreased the GFP/DsRed ratio. Notably, the ability of EBCQA to delay paralysis was significantly reduced following RNAi-mediated suppression of pink-1 and pdr-1 in CL4176 strain. In AD rats, the administration of NMN or EBCQA significantly improved learning and memory, restored neuronal morphology in the hippocampus, increased autophagosome numbers, and upregulated the expression of PINK1, Parkin, Beclin 1, and the LC3-Ⅱ/LC3-Ⅰ ratio, while reducing p62 expression. Additionally, the treatment with NMN or EBCQA both elevated ATP content, mitochondrial respiratory chain complex Ⅰ, Ⅲ, and Ⅳ activities, and mitochondrial membrane potential in the hippocampus. The above findings indicate that EBCQA improves cognitive impairment and mitochondrial dysfunction in AD, possibly through activation of PINK1/Parkin-mediated mitophagy.
Animals
;
Alzheimer Disease/psychology*
;
Mitophagy/drug effects*
;
Mitochondria/genetics*
;
Caenorhabditis elegans/metabolism*
;
Ubiquitin-Protein Ligases/genetics*
;
Cognitive Dysfunction/physiopathology*
;
Rats
;
Protein Kinases/genetics*
;
Humans
;
Male
;
Disease Models, Animal
;
Caenorhabditis elegans Proteins/genetics*
;
Drugs, Chinese Herbal/administration & dosage*
9.Quality evaluation of Hibisci Mutabilis Folium based on fingerprint and quantitative analysis of multi-components by single-marker method.
Ming CHEN ; Zhen-Hai YUAN ; Xuan TANG ; Dong WANG ; Zhi-Yong ZHENG ; Jing FENG ; Dai-Zhou ZHANG ; Fang WANG
China Journal of Chinese Materia Medica 2025;50(16):4619-4629
To improve the quality evaluation system of Hibisci Mutabilis Folium, this study established high performance liquid chromatography(HPLC) fingerprints of Hibisci Mutabilis Folium and evaluated the quality differences of medicinal materials from different places of production by chemometrics. Furthermore, a content measurement method of differential components was established based on quantitative analysis of multi-components by single-marker(QAMS). The fingerprints of 17 batches of Hibisci Mutabilis Folium from different places of production were constructed, with a total of 19 common peaks marked and seven components confirmed. The similarity between the sample fingerprints and the reference fingerprints ranged from 0.890 to 0.974. By utilizing principal component analysis(PCA), hierarchical cluster analysis(HCA), and orthogonal partial least squares-discriminant analysis(OPLS-DA), the chemical patterns of fingerprints were identified. Five components that could be used to evaluate the quality differences of Hibisci Mutabilis Folium were screened, namely peak 6(quercetin 3-O-β-robinobioside), peak 7(rutin), peak 9(kaempferol-3-O-β-robinobioside), peak 10(kaempferol-3-O-rutinoside), and peak 14(tiliroside). The relative correction factors of isoquercitrin, kaempferol-3-O-β-robinobioside, kaempferol-3-O-rutinoside, kaempferol-3-O-β-D-glucoside, and tiliroside were measured with rutin as the internal reference. The QAMS method was established for the content measurement of six flavonoids, and the results showed there was no significant difference compared to the results obtained by an external standard method. In summary, the HPLC fingerprints and QAMS method established in the study, demonstrating stability and accuracy, can provide a reference for the overall quality evaluation of Hibisci Mutabilis Folium.
Chromatography, High Pressure Liquid/methods*
;
Drugs, Chinese Herbal/chemistry*
;
Quality Control
;
Principal Component Analysis
10.A novel dual-targeting strategy of nanobody-driven protein corona modulation for glioma therapy.
Yupei ZHANG ; Shugang QIN ; Tingting SONG ; Zhiying HUANG ; Zekai LV ; Yang ZHAO ; Xiangyu JIAO ; Min SUN ; Yinghan ZHANG ; Guang XIE ; Yuting CHEN ; Xuli RUAN ; Ruyue LIU ; Haixing SHI ; Chunli YANG ; Siyu ZHAO ; Zhongshan HE ; Hai HUANG ; Xiangrong SONG
Acta Pharmaceutica Sinica B 2025;15(9):4917-4931
Glioma represents the most prevalent malignant tumor of the central nervous system, with chemotherapy serving as an essential adjunctive treatment. However, most chemotherapeutic agents exhibit limited ability to penetrate the blood-brain barrier (BBB). This study introduced a novel dual-targeting strategy for glioma therapy by modulating the formation of nanobody-driven protein coronas to enhance the brain and tumor-targeting efficiency of hydrophobic cisplatin prodrug-loaded lipid nanoparticles (C8Pt-Ls). Specifically, nanobodies (Nbs) with fibrinogen-binding capabilities were conjugated to the surface of C8Pt-Ls, resulting in the generation of Nb-C8Pt-Ls. Within the bloodstream, Nb-C8Pt-Ls could bound more fibrinogen, forming the protein corona that specifically interacted with LRP-1, a receptor highly expressed on the BBB. This interaction enabled a "Hitchhiking Effect" mechanism, facilitating efficient trans-BBB transport and promoting effective brain targeting. Additionally, the protein corona interacted with LRP-1, which is also overexpressed in glioma cells, achieving precise tumor targeting. Computational simulations and SPR detection clarified the molecular interaction mechanism of the Nb-fibrinogen-(LRP-1) complex, confirming its binding specificity and stability. Our results demonstrated that this strategy significantly enhanced C8Pt accumulation in brain tissues and tumors, induced apoptosis in glioma cells, and improved therapeutic efficacy. This study provides a novel framework for glioma therapy and underscores the potential of protein corona modulation-based dual-targeting strategies in advancing treatments for brain tumors.

Result Analysis
Print
Save
E-mail