1.Analysis of factors for international normalized ratio levels>3.0 in patients undergoing warfarin anticoagulation therapy after mechanical heart valve replacement
Shengmin ZHAO ; Bo FU ; Fengying ZHANG ; Weijie MA ; Shourui HUANG ; Qian LI ; Huan TAO ; Li DONG ; Jin CHEN
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(05):655-662
Objective To investigate the factors influencing international normalized ratio (INR)>3.0 in patients undergoing warfarin anticoagulation therapy after mechanical heart valve replacement. Methods A retrospective analysis was performed on the clinical data of patients who underwent mechanical heart valve replacement surgery and received warfarin anticoagulation therapy at West China Hospital of Sichuan University from January 1, 2011 to June 30, 2022. Based on the discharge INR values, patients were divided into two groups: an INR≤3.0 group and an INR>3.0 group. The factors associated with INR>3.0 at the time of discharge were analyzed. Results A total of 8901 patients were enrolled, including 3409 males and 5492 females, with a median age of 49.3 (43.5, 55.6) years. The gender, body mass index (BMI), New York Heart Association (NYHA) cardiac function grading, INR, glutamic oxaloacetic transaminase, and preoperative prothrombin time (PT) were statistically different between the two groups (P<0.05). Multivariate logistic regression analysis revealed that lower BMI, preoperative PT>15 s, and mitral valve replacement were independent risk factors for INR>3.0 at discharge (P<0.05). Conclusion BMI, preoperative PT, and surgical site are factors influencing INR>3.0 at discharge in patients undergoing warfarin anticoagulation therapy after mechanical heart valve replacement. Special attention should be given to patients with lower BMI, longer preoperative PT, and mitral valve replacement to avoid excessive anticoagulation therapy.
2.Potential utility of albumin-bilirubin and body mass index-based logistic model to predict survival outcome in non-small cell lung cancer with liver metastasis treated with immune checkpoint inhibitors.
Lianxi SONG ; Qinqin XU ; Ting ZHONG ; Wenhuan GUO ; Shaoding LIN ; Wenjuan JIANG ; Zhan WANG ; Li DENG ; Zhe HUANG ; Haoyue QIN ; Huan YAN ; Xing ZHANG ; Fan TONG ; Ruiguang ZHANG ; Zhaoyi LIU ; Lin ZHANG ; Xiaorong DONG ; Ting LI ; Chao FANG ; Xue CHEN ; Jun DENG ; Jing WANG ; Nong YANG ; Liang ZENG ; Yongchang ZHANG
Chinese Medical Journal 2025;138(4):478-480
3.Coptidis Rhizoma-Scutellariae Radix alleviates CpG1826-induced cytokine storm secondary lung injury in mice by inhibiting mPTP/NLRP3 pyroptosis pathway.
Qing-Rui ZHONG ; Hong-Kai HUANG ; Yue-Jia LAN ; Huan WANG ; Yong ZENG ; Jia-Si WU
China Journal of Chinese Materia Medica 2025;50(15):4141-4152
This study aims to investigate the therapeutic effects of the Coptidis Rhizoma-Scutellariae Radix on cytokine storm secondary lung injury(CSSLI) induced by CpG1826 in mice, and to elucidate the potential molecular mechanisms by which its major active components, i.e., coptisine and wogonin, alleviate CSSLI by inhibiting the mitochondrial permeability transition pore(mPTP)/nucleotide-binding oligomerization domain-like receptor protein 3(NLRP3) inflammasome pyroptosis pathway. In vivo, a mouse model of CSSLI was established by CpG1826 induction. Pulmonary edema was assessed by lung wet-to-dry weight ratio(W/D), lung injury was evaluated by hematoxylin-eosin(HE) staining, and ultrastructural changes in lung tissue were observed by transmission electron microscopy(TEM). The levels of interleukin(IL)-1β, high mobility group box 1 protein(HMGB1), IL-18, and IL-1α in bronchoalveolar lavage fluid were measured by enzyme-linked immunosorbent assay(ELISA). The results showed that the decoction of the Coptidis Rhizoma-Scutellariae Radix significantly reduced pulmonary edema, alleviated lung injury, and decreased the concentrations of related cytokines in BALF more effectively than either single herb alone, thereby improving CSSLI. In vitro, a CpG1826-induced CSSLI model was established in mouse alveolar macrophage MH-S cells. Calcein-AM quenching was used to screen for the most effective monomer components from the herb pair in inhibiting mPTP opening. Coptisine(5, 10, 20 μmol·L~(-1)) and wogonin(10, 20, 40 μmol·L~(-1)) markedly inhibited mPTP opening, with optimal effects and a clear dose-dependent pattern. These components suppressed mPTP opening, thereby reducing the release of mitochondrial DNA(mtDNA) and the accumulation of reactive oxygen species(ROS), effectively reversing the CpG1826-induced decrease in mitochondrial membrane potential(MMP). Further studies revealed that both coptisine and wogonin inhibited pyroptosis and downregulated the expression of key proteins in the NLRP3/Caspase-1/gasdermin D(GSDMD) pathway. In conclusion, the Coptidis Rhizoma-Scutellariae Radix improves CpG1826-induced CSSLI in mice, and this effect is associated with the inhibition of the mPTP/NLRP3 pyroptosis pathway, providing scientific evidence for its clinical application and further development.
Animals
;
Mice
;
Drugs, Chinese Herbal/administration & dosage*
;
Pyroptosis/drug effects*
;
NLR Family, Pyrin Domain-Containing 3 Protein/immunology*
;
Male
;
Lung Injury/immunology*
;
Cytokines/immunology*
;
Scutellaria baicalensis/chemistry*
;
Oligodeoxyribonucleotides/adverse effects*
;
Mice, Inbred C57BL
;
Coptis chinensis
4.Potential mechanism of Yueju Pills in improving depressive symptoms of psychocardiac diseases based on metabolomics and network pharmacology.
Cheng-Yu DU ; Xue-Feng GUO ; Han-Wen ZHANG ; Jian LIANG ; Huan ZHANG ; Guo-Wei HUANG ; Ping NI ; Hai-Jun MA ; You YU ; Rui YU
China Journal of Chinese Materia Medica 2025;50(16):4564-4573
The therapeutic effects of Yueju Pills on depression and cardiovascular diseases have been widely recognized. Previous studies have shown that the drug can significantly improve depressive-like behaviors induced by chronic unpredictable mild stress(CUMS) combined with atherosclerosis(AS). Given the complex pathogenesis of psychocardiac diseases, this study integrated metabolomics and network pharmacology to systematically elucidate the mechanism of Yueju Pills in alleviating depressive symptoms in psychocardiac diseases. The results demonstrate that, after Yueju Pill intervention, the levels of 9 abnormal metabolites in the hippocampus restore to normal ranges, primarily involving key pathways or signaling pathways, including the cyclic adenosine monophosphate(cAMP), mammalian target of rapamycin(mTOR), glycine/serine/threonine metabolism, and aminoacyl-tRNA biosynthesis. In a high-fat diet-induced CUMS ApoE~(-/-) mouse model, Yueju Pills significantly increases adenosine monophosphate(AMP) levels and decreases L-alanine and D-glyceric acid levels in the hippocampus. In conclusion, Yueju Pills exert antidepressant effects by regulating multiple metabolic axes, including glycine/serine/threonine metabolism and the cAMP, mTOR signaling pathways. Network pharmacology predictions reveal that the treatment of CUMS combined with AS by its core active components may be realized through modulating pathways concerning neuroinflammation and synaptic plasticity, including serine/threonine-protein kinase 1(AKT1), mitogen-activated protein kinase 1(MAPK1), and prostaglandin-endoperoxide synthase 2(PTGS2). This study provides a theoretical reference for the clinical application of Yueju Pills in alleviating the depressive symptoms of psychocardiac diseases.
Animals
;
Network Pharmacology
;
Mice
;
Drugs, Chinese Herbal/administration & dosage*
;
Metabolomics
;
Male
;
Depression/genetics*
;
Humans
;
Hippocampus/drug effects*
;
Mice, Inbred C57BL
;
Signal Transduction/drug effects*
5.Exploring the clinical implications of novel SRD5A2 variants in 46,XY disorders of sex development.
Yu MAO ; Jian-Mei HUANG ; Yu-Wei CHEN-ZHANG ; He LIN ; Yu-Huan ZHANG ; Ji-Yang JIANG ; Xue-Mei WU ; Ling LIAO ; Yun-Man TANG ; Ji-Yun YANG
Asian Journal of Andrology 2025;27(2):211-218
This study was conducted retrospectively on a cohort of 68 patients with steroid 5 α-reductase 2 (SRD5A2) deficiency and 46,XY disorders of sex development (DSD). Whole-exon sequencing revealed 28 variants of SRD5A2 , and further analysis identified seven novel mutants. The preponderance of variants was observed in exon 1 and exon 4, specifically within the nicotinamide adenine dinucleotide phosphate (NADPH)-binding region. Among the entire cohort, 53 patients underwent initial surgery at Sichuan Provincial People's Hospital (Chengdu, China). The external genitalia scores (EGS) of these participants varied from 2.0 to 11.0, with a mean of 6.8 (standard deviation [s.d.]: 2.5). Thirty patients consented to hormone testing. Their average testosterone-to-dihydrotestosterone (T/DHT) ratio was 49.3 (s.d.: 23.4). Genetic testing identified four patients with EGS scores between 6 and 9 as having this syndrome; and their T/DHT ratios were below the diagnostic threshold. Furthermore, assessments conducted using the crystal structure of human SRD5A2 have provided insights into the potential pathogenic mechanisms of these novel variants. These mechanisms include interference with NADPH binding (c.356G>C, c.365A>G, c.492C>G, and c.662T>G) and destabilization of the protein structure (c.727C>T). The c.446-1G>T and c.380delG variants were verified to result in large alterations in the transcripts. Seven novel variations were identified, and the variant database for the SRD5A2 gene was expanded. These findings contribute to the progress of diagnostic and therapeutic approaches for individuals with SRD5A2 deficiency.
Humans
;
3-Oxo-5-alpha-Steroid 4-Dehydrogenase/genetics*
;
Disorder of Sex Development, 46,XY/blood*
;
Male
;
Membrane Proteins/genetics*
;
Child, Preschool
;
Child
;
Retrospective Studies
;
Adolescent
;
Female
;
Mutation
;
Testosterone/blood*
;
Infant
;
Dihydrotestosterone/blood*
6.Development of a predictive scoring model for non-response to intravenous immunoglobulin in Kawasaki disease.
Yi-Xu HUANG ; Yu HUANG ; Guang-Huan PI
Chinese Journal of Contemporary Pediatrics 2025;27(1):75-81
OBJECTIVES:
To explore the predictive factors for non-response to intravenous immunoglobulin (IVIG) in children with Kawasaki disease (KD) and to establish an IVIG non-response prediction scoring model for the Sichuan region.
METHODS:
A retrospective study was conducted by collecting clinical data from children with KD admitted to four tertiary hospitals in Sichuan Province between 2019 and 2023. Among them, 940 children responded to IVIG, while 74 children did not respond. Multivariate logistic regression analysis was used to identify the predictive factors for non-response to IVIG and to establish a predictive scoring model. The model's effectiveness was assessed using the receiver operating characteristic curve (ROC) and validated with an independent dataset.
RESULTS:
Multivariate logistic regression analysis showed that the platelet-to-lymphocyte ratio (PLR), hemoglobin (Hb), serum creatinine, aspartate aminotransferase (AST), and platelet count (PLT) were closely related to non-response to IVIG in children with KD (P<0.05). Based on these indicators, a predictive scoring model was established: PLR > 199, 0.4 points; Hb ≤ 116 g/L, 4 points; AST > 58 U/L, 0.2 points; serum creatinine > 38 µmol/L, 3.9 points; PLT count ≤ 275 × 109/L, 0.3 points. Using this model, children with KD were scored, and a total score greater than 4.3 was considered high risk of non-response to IVIG. The sensitivity of the model in predicting non-response to IVIG was 77.0%, specificity was 65.7%, and the area under the ROC curve was 0.746 (95%CI: 0.688-0.805).
CONCLUSIONS
The predictive scoring model based on PLR, Hb, serum creatinine, AST, and PLT demonstrates good predictive performance for non-response to IVIG in children with KD in the Sichuan region and can serve as a reference for clinical decision-making.
Humans
;
Mucocutaneous Lymph Node Syndrome/blood*
;
Immunoglobulins, Intravenous/therapeutic use*
;
Male
;
Female
;
Retrospective Studies
;
Child, Preschool
;
Infant
;
Logistic Models
;
Child
;
Platelet Count
;
ROC Curve
7.Research progress on the mechanisms of male reproductive function damage by bisphenol A and traditional Chinese medicine intervention.
Nian-Wen HUANG ; Zun-Guang BAI ; Zhi-Ming HONG ; Huan-Zhou BI
National Journal of Andrology 2025;31(5):457-461
Bisphenol A (BPA) is a kind of exogenous chemicals presenting in the human living environment widely which affects the action of endocrine hormones in the human body. Numerous studies have shown that BPA has reproductive toxicity in the spermatogenic function damage of the testes through a variety of mechanisms such as interfering with endocrine function, inducing oxidative stress, promoting spermatogonial cell apoptosis, destroying the integrity of the blood-testis barrier, and regulating epigenetic inheritance, thereby destroying male fertility. Relevant studies have shown that TCM can improve male fertility by reversing BPA-induced reproductive damage through multi-component, multi-target and multi-mechanisms. However, there is no systematic review on the mechanism of TCM to reduce the reproductive toxicity of BPA. Based on the existing studies, this article will systematically introduce the mechanisms of BPA-induced reproductive impairment in men and the progress of TCM interventions, with a view to providing reference targets and research directions for the development of new Chinese medicines.
Humans
;
Benzhydryl Compounds/adverse effects*
;
Male
;
Phenols/adverse effects*
;
Medicine, Chinese Traditional
;
Infertility, Male/chemically induced*
;
Testis/drug effects*
;
Drugs, Chinese Herbal/therapeutic use*
;
Bisphenol A Compounds
8.NIR-II-activated whole-cell vaccine with ultra-efficient semiconducting diradical oligomers for breast carcinoma growth and metastasis inhibition.
Yijian GAO ; Yachao ZHANG ; Yujie MA ; Xiliang LI ; Yu WANG ; Huan CHEN ; Yingpeng WAN ; Zhongming HUANG ; Weimin LIU ; Pengfei WANG ; Lidai WANG ; Chun-Sing LEE ; Shengliang LI
Acta Pharmaceutica Sinica B 2025;15(2):1159-1170
High-performance phototheranostics with combined photothermal therapy and photoacoustic imaging have been considered promising approaches for efficient cancer diagnosis and treatment. However, developing phototheranostic materials with efficient photothermal conversion efficiency (PCE), especially over the second near-infrared window (NIR-II, 1000-1700 nm), remains challenging. Herein, we report an ultraefficient NIR-II-activated nanomedicine with phototheranostic and vaccination capability for highly efficient in vivo tumor elimination and metastasis inhibition. The NIR-II nanomedicine of a semiconducting biradical oligomer with a motor-flexible design was demonstrated with a record-breaking PCE of 87% upon NIR-II excitation. This nanomedicine inherently features extraordinary photothermal stability, good biocompatibility, and excellent photoacoustic performance, contributing to high-contrast photoacoustic imaging in living mice and high-performance photothermal elimination of tumors. Moreover, a whole-cell vaccine based on a NIR-II nanomedicine with NIR-II-activated performance was further designed to remotely activate the antitumor immunologic memory and effectively inhibit tumor occurrence and metastasis in vivo, with good biosafety. Thus, this work paves a new avenue for designing NIR-II active semiconducting biradical materials as a promising theranostics platform and further promotes the development of NIR-II nanomedicine for personalized cancer treatment.
9.Targeted inhibition of macrophage STING signaling alleviates inflammatory injury and ventricular remodeling in acute myocardial infarction.
Huan YAO ; Qingman HE ; Shujun WEI ; Li XIANG ; Yuanyuan LUO ; Cong HUANG ; Weiwei LIU ; Chuan ZHENG ; Xueping LI ; Yongxiang GAO
Acta Pharmaceutica Sinica B 2025;15(8):4030-4046
Mitochondrial DNA (mtDNA) acts as a damage-associated molecular pattern to activate the stimulator of interferon genes (STING) signaling in macrophages, promoting tissue inflammation. However, its role in acute myocardial infarction (AMI) remains unclear. Macrophage-specific Sting1 knockout mice were used to validate STING's pathological role in AMI. Cardiac and liver mtDNA were used to activate macrophages in co-culture systems with cardiomyocytes to assess fibrosis and hypertrophy. Panaxatriol saponin (PTS) was tested for its ability to block mtDNA-driven macrophage activation and subsequent cardiomyocyte damage. STING-PTS binding ability was analyzed. AMI rats received PTS to evaluate its effects on myocardial inflammation and ventricular remodeling. In vivo, macrophage-specific Sting1 knockout reduced myocardial inflammation and injury after AMI. In vitro, mtDNA-activated macrophages induced cardiomyocyte fibrosis and hypertrophy through STING signaling. PTS suppressed mtDNA-driven macrophage activation by directly binding STING, thereby blocking inflammatory cascades. In AMI rats, PTS treatment attenuated acute inflammation and reversed ventricular remodeling. These findings establish the mtDNA-STING axis in macrophages as a critical driver of post-AMI inflammation and identify pharmacological STING inhibition with PTS as a promising therapeutic strategy. The study bridges genetic validation with translational applications, highlighting macrophage STING as a novel target for ischemic heart disease management.
10.An injectable bioceramics-containing composite hydrogel promoting innervation for pulp-dentin complex repair.
Xingyu TAO ; Hongjian ZHANG ; Peng MEI ; Jinzhou HUANG ; Bing FANG ; Zhiguang HUAN ; Chengtie WU
International Journal of Oral Science 2025;17(1):66-66
Dental pulp-dentin complex defects remain a major unresolved problem in oral medicines. Clinical therapeutic methods including root canal therapy and vital pulp therapy are both considered as conservative strategies, which are incapable of repairing the pulp-dentin complex defects. Although biomaterial-based strategies show remarkable progress in antibacterial, anti-inflammatory, and pulp regeneration, the important modulatory effects of nerves within pulp cavity have been greatly overlooked, making it challenging to achieve functional pulp-dentin complex regeneration. In this study, we propose an injectable bioceramics-containing composite hydrogel in combination of Li-Ca-Si (LCS) bioceramics and gelatin methacrylate matrix with photo-crosslinking properties. Due to the sustained release of bioactive Li, Ca and Si ions from LCS, the composite hydrogels possess multiple functions of promoting the neurogenic differentiation of Schwann cells, odontogenic differentiation of dental pulp stem cells, and neurogenesis-odontogenesis couples in vitro. In addition, the in vivo results showed that LCS-containing composite hydrogel can significantly promote the pulp-dentin complex repair. More importantly, LCS bioceramics-containing composite hydrogel can induce the growth of nerve fibers, leading to the re-innervation of pulp tissues. Taken together, the study suggests that LCS bioceramics can induce the innervation of pulp-dentin complex repair, offering a referable strategy of designing multifunctional filling materials for functional periodontal tissue regeneration.
Dental Pulp/drug effects*
;
Hydrogels/pharmacology*
;
Animals
;
Ceramics/pharmacology*
;
Dentin/drug effects*
;
Biocompatible Materials/pharmacology*
;
Rats
;
Gelatin
;
Regeneration/drug effects*
;
Cell Differentiation/drug effects*
;
Injections
;
Humans
;
Odontogenesis/drug effects*

Result Analysis
Print
Save
E-mail