1.The in vitro HAART pharmacodynamics study with dolutegravir as the "anchor".
Acta Pharmaceutica Sinica 2015;50(1):50-58
This study is to evaluate the HAART pharmacodynamics with dolutegravir as the "anchor" in vitro. A nucleoside reverse transcriptase inhibitors (NRTIs) resistant recombinant virus model (VSVG/HIV-1(RT-D67N,K70R,T215F)) and an integrase inhibitors (INIs) resistant recombinant virus model (VSVG/HIV-1(IN-G140S,QI48H)) were constructed and established. The anti-viral pharmacodynamics was evaluated with drug combinations including two NRTIs along with one INI or one NNRTI. The results showed that the combination with an INI gave a stronger synergism on wild type HIV-1 replication comparing to that with an NNRTI. Comparing the two INIs as the "anchor" for HAART, DTG exhibited an equivalent CI to that of RAL on wild type HIV-1 replication; but a greater synergy than RAL on INI-resistant HIV-1 replication. Besides of the pharmacodynamics results of DTG-based drug combination, the results may contribute to clinical antiviral therapy.
Antiretroviral Therapy, Highly Active
;
Cells, Cultured
;
Drug Resistance, Viral
;
HIV Integrase Inhibitors
;
pharmacology
;
HIV-1
;
drug effects
;
physiology
;
Heterocyclic Compounds, 3-Ring
;
pharmacology
;
Humans
;
Virus Replication
;
drug effects
2.Wikstroelide M potently inhibits HIV replication by targeting reverse transcriptase and integrase nuclear translocation.
Xuan ZHANG ; Sheng-Zhuo HUANG ; Wan-Gang GU ; Liu-Meng YANG ; Huan CHEN ; Chang-Bo ZHENG ; You-Xing ZHAO ; David Chi-Cheong WAN ; Yong-Tang ZHENG
Chinese Journal of Natural Medicines (English Ed.) 2014;12(3):186-193
AIM:
To evaluate the anti-HIV activity and mechanism of action of wikstroelide M, a daphnane diterpene from Daphne acutiloba Rehder (Thymelaeaceae).
METHODS:
The anti-HIV activities of wikstroelide M against different HIV strains were evaluated by cytopathic effect assay and p24 quantification assay with ELISA. The inhibitory effect of wikstroelide M on HIV reverse transcription was analyzed by real-time PCR and ELISA. The effect of wikstroelide M on HIV-1 integrase nuclear translocation was observed with a cell-based imaging assay. The effect of wikstroelide M on LEDGF/p75-IN interaction was assayed by molecular docking.
RESULTS:
Wikstroelide M potently inhibited different HIV-1 strains, including HIV-1IIIB, HIV-1A17, and HIV-19495, induced a cytopathic effect, with EC50 values ranging from 3.81 to 15.65 ng·mL⁻¹. Wikstroelide M also had high inhibitory activities against HIV-2ROD and HIV-2CBL-20-induced cytopathic effects with EC50 values of 18.88 and 31.90 ng·mL⁻¹. The inhibitory activities of wikstroelide M on the three HIV-1 strains were further confirmed by p24 quantification assay, with EC50 values ranging from 15.16 to 35.57 ng·mL⁻¹. Wikstroelide M also potently inhibited HIV-1IIIB induced cytolysis in MT-4 cells, with an EC50 value of 9.60 ng·mL⁻¹. The mechanistic assay showed that wikstroelide M targeted HIV-1 reverse transcriptase and nuclear translocation of integrase through disrupting the interaction between integrase and LEDGF/p75.
CONCLUSION
Wikstroelide M may be a potent HIV-1 and HIV-2 inhibitor, the mechanisms of action may include inhibition of reverse trascriptase activity and inhibition of integrase nuclear translocation through disrupting the interaction between integrase and LEDGF/p75.
Anti-HIV Agents
;
pharmacology
;
therapeutic use
;
Cell Line
;
Daphne
;
chemistry
;
Diterpenes
;
pharmacology
;
HIV Infections
;
drug therapy
;
virology
;
HIV Integrase
;
metabolism
;
HIV Integrase Inhibitors
;
pharmacology
;
therapeutic use
;
HIV Reverse Transcriptase
;
antagonists & inhibitors
;
HIV-1
;
drug effects
;
enzymology
;
HIV-2
;
drug effects
;
Humans
;
Intercellular Signaling Peptides and Proteins
;
metabolism
;
Phytotherapy
;
Plant Extracts
;
pharmacology
;
therapeutic use
;
Virus Integration
;
drug effects
;
Virus Replication
;
drug effects
3.Isolation, idetification and anti-HIV-1 integrase activity of culturable endophytic fungi from Tibetan medicinal plant Phlomis younghusbandii Mukerjee.
Da-Wei ZHANG ; Ming-Ming ZHAO ; Juan CHEN ; Chao LI ; Shun-Xing GUO
Acta Pharmaceutica Sinica 2013;48(5):780-789
A total of 52 endophytic fungi were isolated from roots and stems of Tibetan medicinal plant Phlomis younghusbandii Mukerjee. These fungal isolates were molecularly identified based on ITS sequnces and 28S sequences distributed to 12 genera, including Phoma, Chaetosphaeronema, Fusarium and Leptosphaeria, etc. Among them, the dominant genus was Phoma. Extracts of all strains were evaluated for anti-HIV-1 integrase activity by using soluable integrase expressed in E. coli BL21 (DE3). The results showed that seven samples from five fungal endophytes PHY-24, PHY-38, PHY-40, PHY-51, PHY-53, which belonged to genus Chaetosphaeronema, inhibited strand transfer reaction catalyzed by HIV-1 integrase with IC50 values, of 6.60, 5.20, 2.86, 7.86, 4.47, 4.56 and 3.23 microg x mL(-1) respectively. In conclusion, the endophytic fungi of Phlomis younghusbandii Mukerjee are valuable for further screening anti-HIV-1 integrase agents.
Ascomycota
;
enzymology
;
isolation & purification
;
Chaetomium
;
enzymology
;
isolation & purification
;
Endophytes
;
enzymology
;
isolation & purification
;
Escherichia coli
;
enzymology
;
HIV Integrase
;
genetics
;
metabolism
;
HIV Integrase Inhibitors
;
pharmacology
;
Phlomis
;
microbiology
;
Phylogeny
;
Plant Roots
;
microbiology
;
Plant Stems
;
microbiology
;
Plants, Medicinal
;
microbiology
;
Plasmids
;
Recombinant Proteins
;
genetics
;
metabolism
4.Research progress of dual inhibitors targeting HIV-1 reverse transcriptase and integrase.
Hong LIU ; Peng ZHAN ; Xin-Yong LIU
Acta Pharmaceutica Sinica 2013;48(4):466-476
Both reverse transcriptase (RT) and integrase (IN) play crucial roles in the life cycle of HIV-1, which are also key targets in the area of anti-HIV drug research. Reverse transcriptase inhibitors are involved in the most employed drugs used to treat AIDS patients and HIV-infected people, while one of the integrase inhibitors has already been approved by US FDA to appear on the market. Great achievement has been made in the research on both, separately. Recently, much more attention of medicinal chemistry researchers has been attracted to the strategies of multi-target drugs. Compounds with excellent potency against both HIV RT and IN, evidently defined as dual inhibitors targeting both enzymes, have been obtained through considerable significant exploration, which can be classified into two categories according to different strategies. Combinatorial chemistry approach together with high throughput screening methods and multi-target-based virtual screening strategy have been useful tools for identifying selective anti-HIV compounds for long times; Rational drug design based on pharmacophore combination has also led to remarkable results. In this paper, latest progress of both categories in the discovery and structural modification will be covered, with a view to contribute to the career of anti-HIV research.
Drug Design
;
HIV Integrase Inhibitors
;
chemistry
;
pharmacology
;
HIV Reverse Transcriptase
;
antagonists & inhibitors
;
HIV-1
;
drug effects
;
Humans
;
Molecular Structure
;
Reverse Transcriptase Inhibitors
;
chemistry
;
pharmacology
;
Structure-Activity Relationship
5.Design, synthesis of quinolinone acid-containing compounds with anti-HIV integrase activity.
Xiao-fang CHEN ; Yan-bin WU ; Jie JIN ; Rui-zhen WANG ; Chong WANG ; Jun LIU
Acta Pharmaceutica Sinica 2010;45(2):263-267
A series of novel quinolinone acid-containing compounds were designed and synthesized. Their structures were confirmed with 1H NMR and MS. The target compounds were tested for anti-HIV-1 integrase activities in vitro with enzyme linked immunosorbent assay (ELISA). The result showed that D-2, D-4 and D-7 have anti-integrase activity with IC50 < 100 micromol L(-1).
HIV Integrase
;
metabolism
;
HIV Integrase Inhibitors
;
chemical synthesis
;
chemistry
;
pharmacology
;
Inhibitory Concentration 50
;
Quinolones
;
chemical synthesis
;
chemistry
;
pharmacology
;
Structure-Activity Relationship
6.Effective components against HIV-1 replicative enzymes isolated from plants.
Zong-gen PENG ; Li-jia XU ; Wen-cai YE ; Pei-gen XIAO ; Hong-shan CHEN
Acta Pharmaceutica Sinica 2010;45(2):235-240
Plant active components characterized of many different structures and activities on multiple targets, have made them to be the important sources of inhibitors on HIV-1. For finding leading compounds with new structure against HIV-1, three key HIV-1 replicative enzymes (reverse transcriptase, protease and integrase) were used as screening models. The in vitro activities of 45 plant derived components isolated from Schisandraceae, Rutaceae and Ranunculaceae were reported. Within twelve triterpene components isolated, eight compounds were found to inhibit HIV-1 protease, in these eight active compounds, kadsuranic acid A (7) and nigranoic acid (8), inhibited both HIV-1 protease and integrase; Among fifteen lignans, meso-dihydroguaiaretic acid (15) and kadsurarin (16) were active on HIV-1 reverse transcriptase, and 4, 4-di(4-hydroxy-3-methoxyphenly)-2, 3-dimethylbutanol (13) active on HIV-1 integrase. All of the six alkaloids, seven flavones, and five others compounds were not active or only with low activities against HIV-1 replicative enzymes. Further studies of the triterpene components showing strong inhibitory activities on HIV-1 were warranted.
Alkaloids
;
chemistry
;
isolation & purification
;
pharmacology
;
Anti-HIV Agents
;
chemistry
;
isolation & purification
;
pharmacology
;
Drugs, Chinese Herbal
;
chemistry
;
isolation & purification
;
pharmacology
;
Flavones
;
chemistry
;
isolation & purification
;
pharmacology
;
Guaiacol
;
analogs & derivatives
;
chemistry
;
isolation & purification
;
pharmacology
;
HIV Integrase
;
drug effects
;
HIV Protease
;
drug effects
;
HIV Reverse Transcriptase
;
antagonists & inhibitors
;
Lignans
;
chemistry
;
isolation & purification
;
pharmacology
;
Plants, Medicinal
;
chemistry
;
Ranunculaceae
;
chemistry
;
Rutaceae
;
chemistry
;
Schisandraceae
;
chemistry
;
Triterpenes
;
chemistry
;
isolation & purification
;
pharmacology
7.Advances in the study of HIV-1 integrase inhibitors of alpha, gamma-diketo compounds.
Sheng-hui YU ; Yan-mei TAN ; Gui-sen ZHAO
Acta Pharmaceutica Sinica 2010;45(2):215-223
HIV-1 integrase (IN) is an essential enzyme for retroviral replication. There is no analogue for this enzyme in human cells so that inhibition of IN will not bring strong effect on human body. Thus, HIV-1 IN has become a rational target for therapy of AIDS. This review provides a comprehensive report of alpha, gamma-diketo IN inhibitors discovered in recent years. Compilation of such data will prove to be beneficial in developing QSAR, pharmacophore hypothesis generation and validation, virtual screening and synthesis of compounds with higher activity.
Anti-HIV Agents
;
chemical synthesis
;
chemistry
;
pharmacology
;
HIV Integrase
;
chemistry
;
physiology
;
HIV Integrase Inhibitors
;
chemical synthesis
;
chemistry
;
pharmacology
;
HIV-1
;
drug effects
;
Humans
;
Keto Acids
;
chemical synthesis
;
chemistry
;
pharmacology
;
Molecular Structure
;
Quantitative Structure-Activity Relationship
8.The newest developments in anti-HIV-1 drugs.
Acta Pharmaceutica Sinica 2010;45(2):194-204
In the two decades since AZT was first approved for clinical use in 1987, 24 additional antiretroviral agents have been approved. They include 7 nucleoside analogs, a nucleotide analog and 4 non-nucleoside reverse transcriptase inhibitors, 10 protease inhibitors, 2 entry inhibitors and an integrase inhibitor. More than 20 investigational agents are currently being studied in clinical trials. Highly active antiretroviral therapy (HAART), which involves a combination of anti-HIV-1 drugs, is extremely effective in suppressing HIV-1 replication and increasing CD4+ number and results in substantial reductions in HIV-1-related morbidity and mortality. In last 20 years, much has been learned about resistance to antiretroviral drugs, drug interactions and metabolic complications of antiviral drug use. Drugs are now selected on the basis of resistance tests and on the risk of specific drug complications in individual patients. As a result, decisions about the therapy of HIV/AIDS have become personalized and are made on a patient-by-patient basis. With appropriate medical management, a person with HIV-1 now has the possibility of a nearly normal life expectancy.
Anti-HIV Agents
;
adverse effects
;
pharmacology
;
therapeutic use
;
Antiretroviral Therapy, Highly Active
;
Cyclohexanes
;
chemistry
;
pharmacology
;
therapeutic use
;
Drug Resistance, Viral
;
HIV Envelope Protein gp41
;
chemistry
;
therapeutic use
;
HIV Fusion Inhibitors
;
chemistry
;
pharmacology
;
therapeutic use
;
HIV Infections
;
drug therapy
;
HIV Integrase Inhibitors
;
chemistry
;
pharmacology
;
therapeutic use
;
HIV Protease Inhibitors
;
chemistry
;
pharmacology
;
therapeutic use
;
HIV Reverse Transcriptase
;
chemistry
;
pharmacology
;
therapeutic use
;
HIV-1
;
drug effects
;
physiology
;
Humans
;
Molecular Structure
;
Peptide Fragments
;
chemistry
;
therapeutic use
;
Pyrrolidinones
;
chemistry
;
pharmacology
;
therapeutic use
;
Raltegravir Potassium
;
Saquinavir
;
chemistry
;
pharmacology
;
therapeutic use
;
Triazoles
;
chemistry
;
pharmacology
;
therapeutic use
;
Virus Replication
;
drug effects
;
Zidovudine
;
chemistry
;
pharmacology
;
therapeutic use
9.Advances in novel anti-HIV-1 drugs and drug candidates: 2005-2008.
Pu-rong ZHENG ; Hai XUE ; Zhi-yan XIAO ; Gang LIU
Acta Pharmaceutica Sinica 2010;45(2):154-164
HIV and AIDS remain as the crucial global health concern, therefore, research and development of novel anti-HIV-1 chemical therapeutics is still of paramount significance, which may be illuminated by cases of successful marketed drugs. Herein, we document the discovery and biological profile of new anti-HIV-1 drugs approved by FDA between 2005 and 2008 and some drug candidates are also discussed.
Acquired Immunodeficiency Syndrome
;
drug therapy
;
Anti-HIV Agents
;
chemistry
;
pharmacology
;
therapeutic use
;
HIV Fusion Inhibitors
;
chemistry
;
pharmacology
;
therapeutic use
;
HIV Infections
;
drug therapy
;
HIV Integrase Inhibitors
;
chemistry
;
pharmacology
;
therapeutic use
;
HIV Protease Inhibitors
;
chemistry
;
pharmacology
;
therapeutic use
;
HIV-1
;
drug effects
;
Humans
;
Molecular Structure
;
Reverse Transcriptase Inhibitors
;
chemistry
;
pharmacology
;
therapeutic use
10.The development of anti-HIV-1 drugs.
Acta Pharmaceutica Sinica 2010;45(2):165-176
Human immunodeficiency virus type 1 (HIV-1) is the causative agent of acquired immunodeficiency disease syndrome (AIDS). After over 26 years of efforts, there is still not a therapeutic cure or an effective vaccine against HIV/AIDS. The clinical management of HIV-1 infected people largely relies on antiretroviral therapy (ART). Although highly active antiretroviral therapy (HAART) has provided an effective way to treat AIDS patients, the huge burden of ART in developing countries, together with the increasing incidence of drug resistant viruses among treated people, calls for continuous efforts for the development of anti-HIV-1 drugs. Currently, four classes of over 30 licensed antiretrovirals (ARVs) and combination regimens of these ARVs are in use clinically including: reverse transcriptase inhibitors (RTIs) (e.g. nucleoside reverse transcriptase inhibitors, NRTIs; and non-nucleoside reverse transcriptase inhibitors, NNRTIs), protease inhibitors (PIs), integrase inhibitors and entry inhibitors (e.g. fusion inhibitors and CCR5 antagonists). Here, we intend to provide updated information of currently available antiretroviral drugs for ART to promote the development of novel anti-HIV-1 drugs.
Acquired Immunodeficiency Syndrome
;
drug therapy
;
Anti-HIV Agents
;
chemistry
;
pharmacology
;
therapeutic use
;
HIV Fusion Inhibitors
;
chemistry
;
pharmacology
;
therapeutic use
;
HIV Infections
;
drug therapy
;
HIV Integrase Inhibitors
;
chemistry
;
pharmacology
;
therapeutic use
;
HIV Protease Inhibitors
;
chemistry
;
pharmacology
;
therapeutic use
;
HIV-1
;
drug effects
;
Humans
;
Molecular Structure
;
Reverse Transcriptase Inhibitors
;
chemistry
;
pharmacology
;
therapeutic use

Result Analysis
Print
Save
E-mail