1.Exploiting targeted degradation of cyclins and cyclin-dependent kinases for cancer therapeutics: a review.
Suya ZHENG ; Ye CHEN ; Zhipeng ZHU ; Nan LI ; Chunyu HE ; H Phillip KOEFFLER ; Xin HAN ; Qichun WEI ; Liang XU
Journal of Zhejiang University. Science. B 2025;26(8):713-739
Cancer is characterized by abnormal cell proliferation. Cyclins and cyclin-dependent kinases (CDKs) have been recognized as essential regulators of the intricate cell cycle, orchestrating DNA replication and transcription, RNA splicing, and protein synthesis. Dysregulation of the CDK pathway is prevalent in the development and progression of human cancers, rendering cyclins and CDKs attractive therapeutic targets. Several CDK4/6 inhibitors have demonstrated promising anti-cancer efficacy and have been successfully translated into clinical use, fueling the development of CDK-targeted therapies. With this enthusiasm for finding novel CDK-targeting anti-cancer agents, there have also been exciting advances in the field of targeted protein degradation through innovative strategies, such as using proteolysis-targeting chimera, heat shock protein 90 (HSP90)-mediated targeting chimera, hydrophobic tag-based protein degradation, and molecular glue. With a focus on the translational potential of cyclin- and CDK-targeting strategies in cancer, this review presents the fundamental roles of cyclins and CDKs in cancer. Furthermore, it summarizes current strategies for the proteasome-dependent targeted degradation of cyclins and CDKs, detailing the underlying mechanisms of action for each approach. A comprehensive overview of the structure and activity of existing CDK degraders is also provided. By examining the structure‒activity relationships, target profiles, and biological effects of reported cyclin/CDK degraders, this review provides a valuable reference for both CDK pathway-targeted biomedical research and cancer therapeutics.
Humans
;
Neoplasms/metabolism*
;
Cyclin-Dependent Kinases/antagonists & inhibitors*
;
Cyclins/metabolism*
;
Proteolysis
;
Antineoplastic Agents/pharmacology*
;
Molecular Targeted Therapy
;
Proteasome Endopeptidase Complex/metabolism*
;
Animals
2.Mouse models of colorectal cancer.
Yunguang TONG ; Wancai YANG ; H Phillip KOEFFLER
Chinese Journal of Cancer 2011;30(7):450-462
Colorectal cancer is one of the most common malignancies in the world. Many mouse models have been developed to evaluate features of colorectal cancer in humans. These can be grouped into genetically-engineered, chemically-induced, and inoculated models. However, none recapitulates all of the characteristics of human colorectal cancer. It is critical to use a specific mouse model to address a particular research question. Here, we review commonly used mouse models for human colorectal cancer.
Adenomatous Polyposis Coli
;
genetics
;
pathology
;
Animals
;
Colorectal Neoplasms
;
chemically induced
;
etiology
;
genetics
;
pathology
;
Colorectal Neoplasms, Hereditary Nonpolyposis
;
genetics
;
pathology
;
Disease Models, Animal
;
Genetic Engineering
;
Humans
;
Inflammation
;
complications
;
Mice
;
Mice, Transgenic
;
Neoplasm Metastasis

Result Analysis
Print
Save
E-mail