1.Anti-cancer and anti-inflammatory effects of flavan-4-ol and flavan glycosides from the roots of Pronephrium penangianum.
Feibing HUANG ; Yong YANG ; Qingling XIE ; Hanwen YUAN ; Muhammad AAMER ; Yuqing JIAN ; Ye ZHANG ; Wei WANG
Chinese Journal of Natural Medicines (English Ed.) 2025;23(5):593-603
Five new flavan-4-ol glycosides jixueqiosides A-E (1-5) and two new flavan glycosides jixueqiosides F and G (6 and 7), along with twelve known flavan-4-ol glycosides (8-19), were isolated from the roots of Pronephrium penangianum. Comprehensive spectral analyses, X-ray single-crystal diffraction, and theoretical electronic circular dichroism (ECD) calculations established structures and absolute configurations. A single crystal structure of flavan-4-ol glycoside (14) was reported for the first time, while the characteristic ECD and NMR data for all isolated flavan-4-ol glycosides (1-5 , 8-19) were analyzed, establishing a set of empirical rules. Activity screening of these isolates showed that 8 and 9 could inhibit the proliferation of MDA-MB-231 and MCF-7 cells with IC50 values of 7.93 ? 2.85 ?mol?L-1 and 5.87 ? 1.58 ?mol?L-1 (MDA-MB-231), and 2.21 ? 1.38 ?mol?L-1 and 3.52 ? 1.55 ?mol?L-1 (MCF-7), respectively. Western blotting and flow cytometry analyses demonstrated that 8 and 9 dose-dependently induced apoptosis in MDA-MB-231 cells by up-regulating BAX, activating caspase-3 and down-regulating BCL-2. Additionally, compound 8 affected autophagy-related proteins, increasing the ratio of LC3-II/LC3-I and Beclin-1 levels to inhibit MDA-MB-231 cell proliferation. Moreover, anti-inflammatory studies indicated that 2, 3, 7, 13, 14, and 18 moderately inhibited tumor necrosis factor-a (TNF-a), interleukin-6 (IL-6), and nitric oxide (NO) release.
Humans
;
Plant Roots/chemistry*
;
Glycosides/isolation & purification*
;
Anti-Inflammatory Agents/isolation & purification*
;
Flavonoids/isolation & purification*
;
Cell Proliferation/drug effects*
;
Antineoplastic Agents, Phytogenic/isolation & purification*
;
Molecular Structure
;
Apoptosis/drug effects*
;
Cell Line, Tumor
;
Tumor Necrosis Factor-alpha/immunology*
;
Drugs, Chinese Herbal/pharmacology*
;
Interleukin-6/immunology*
;
Animals
;
Mice
3.Research Progress in Pyroptosis, Drug Therapy and Immunotherapy in Glioblastoma
Ke TANG ; Ni HUANG ; Qinyou TAN
Chinese Journal of Modern Applied Pharmacy 2024;41(2):287-294
Pyroptosis, a form of inflammatory cell death mediated by the Gasdermins family, promotes the release of inflammatory mediators and activates immune cell populations such as NK cells, T cells and macrophages in the tumor microenvironment(TME) to exert immune-regulating and anti-tumor effects. Glioblastoma(GBM) is the most serious and malignant glioma, and the median survival of patients diagnosed with GBM is less than 2 years, and the presence of the blood-brain barrier makes it difficult to deliver drugs to the brain, thus affecting the effect of drugs against GBM. Therefore, it is important to explore new measures and mechanisms to treat GBM, which has a complex TME with a large number of immune cell populations that are often immunosuppressed by GBM. Cellular pyroptosis as a mode of cell death capable of activating immunity, has the effect of activating the body’s immunity to help reverse TME immunosuppression. This review will focus on the relationship between cell pyroptosis and the immune system, how cell pyroptosis affects the immune cell population of TME in GBM, and the new progress in drug research on cell pyroptosis pathways in GBM treatment, providing new directions and strategies for future clinical treatment of GBM.
4.Multimodal prerehabilitation for elderly patients with sarcopenia in colorectal surgery
Jingting WU ; Hannah CHI ; Shawn KOK ; Jason M.W. CHUA ; Xi-Xiao HUANG ; Shipin ZHANG ; Shimin MAH ; Li-Xin FOO ; Hui-Yee PEH ; Hui-Bing LEE ; Phoebe TAY ; Cherie TONG ; Jasmine LADLAD ; Cheryl H.M. TAN ; Nathanelle KHOO ; Darius AW ; Cheryl X.Z. CHONG ; Leonard M.L. HO ; Sharmini S. SIVARAJAH ; Jialin NG ; Winson J.H. TAN ; Fung-Joon FOO ; Bin-Tean TEH ; Frederick H. KOH
Annals of Coloproctology 2024;40(1):3-12
Sarcopenia, which is characterized by progressive and generalized loss of skeletal muscle mass and strength, has been well described to be associated with numerous poor postoperative outcomes, such as increased perioperative mortality, postoperative sepsis, prolonged length of stay, increased cost of care, decreased functional outcome, and poorer oncological outcomes in cancer surgery. Multimodal prehabilitation, as a concept that involves boosting and optimizing the preoperative condition of a patient prior to the upcoming stressors of a surgical procedure, has the purported benefits of reversing the effects of sarcopenia, shortening hospitalization, improving the rate of return to bowel activity, reducing the costs of hospitalization, and improving quality of life. This review aims to present the current literature surrounding the concept of sarcopenia, its implications pertaining to colorectal cancer and surgery, a summary of studied multimodal prehabilitation interventions, and potential future advances in the management of sarcopenia.
5.Implementation of the enhanced recovery after surgery protocol for radical cystectomy patients: A single centre experience
Brendan A. YANADA ; Brendan H. DIAS ; Niall M. CORCORAN ; Homayoun ZARGAR ; Conrad BISHOP ; Sue WALLACE ; Diana HAYES ; James G. HUANG
Investigative and Clinical Urology 2024;65(1):32-39
Purpose:
The enhanced recovery after surgery (ERAS) protocol for radical cystectomy aims to facilitate postoperative recovery and hasten a return to normal daily activities. This study aims to report on the perioperative outcomes of implementation of an ERAS protocol at a single Australian institution.
Materials and Methods:
We identified 73 patients with pT1–T4 bladder cancer who underwent open radical cystectomy at Western Health, Victoria between June 2016 and August 2021. A retrospective analysis of a prospectively maintained database was performed. Perioperative outcomes included length of hospital stay, nasogastric tube requirement and duration of postoperative ileus.
Results:
The median age was 74 years (interquartile range [IQR] 66–78) for the ERAS group and 70 years (IQR 65–78) for the preERAS group patients. All patients in each group underwent ileal conduit formation. The median length of hospital stay was 7.0 days (IQR 7.0–9.3) for the ERAS group and 12.0 days (IQR 8.0–16.0) for the pre-ERAS group (p=0.003). Within the ERAS group, 25.0% had a postoperative ileus, and 25.0% had a nasogastric tube inserted, compared with 64.9% (p=0.001) and 45.9% (p=0.063) respectively within pre-ERAS group. The median bowel function recovery time, defined as duration from surgery to first bowel action, was 5.0 days (IQR 4.0–7.0) in the ERAS group and 7.5 days (IQR 5.0–8.5) in the pre-ERAS group (p=0.016).
Conclusions
Implementation of an ERAS protocol is associated with a reduction in hospital length of stay, postoperative ileus and bowel function recovery time.
9.Perivascular epithelioid cell tumor of the lung: a clinicopathological analysis of eight cases.
J LI ; R P HUANG ; P PANG ; X GUO ; Y H WANG ; L C GUO ; S HUANG
Chinese Journal of Pathology 2023;52(11):1126-1131
Objective: To investigate the clinicopathological features of perivascular epithelioid cell tumor (PEComa) of the lung. Methods: Eight PEComa cases of the lung diagnosed at the First Affiliated Hospital of Soochow University, Suzhou, China from July 2008 to December 2021 were collected and subject to immunohistochemical staining, fluorescence in situ hybridization and next generation sequencing. The relevant literature was reviewed and the clinicopathological features were analyzed. Results: There were 5 males and 3 females, aged from 18 to 70 years (mean 39 years). There were 3 cases of the right upper lung, 3 cases of the left lower lung, 1 case of the left upper lung and 1 case of the right middle lung. Seven cases were solitary and 1 case was multifocal (4 lesions). Seven cases were benign while one was malignant. The tumors were all located in the peripheral part of the lung, with a maximum diameter of 0.2-4.0 cm. Grossly, they were oval and well circumscribed. Microscopically, the tumor cells were oval, short spindle-shaped, arranged in solid nests, acinar or hemangiopericytoma-like patterns, with clear or eosinophilic cytoplasm. The stroma was rich in blood vessels with hyalinization. Coagulated necrosis and high-grade nuclei were seen in the malignant case, and calcification was seen in 2 cases. Immunohistochemically, the tumor cells were positive for Melan A (8/8), HMB45 (7/8), CD34 (6/8), TFE3 (4/7), and SMA (3/8). All cases were negative for CKpan and S-100. TFE3 (Xp11.2) gene fusion was examined using the TFE3 break-apart fluorescence in situ hybridization in 5 cases, in which only the malignant case was positive. The next generation sequencing revealed the SFPQ-TFE3 [t(X;1)(p11.2;p34)] fusion. Follow-up of the patients ranged from 12 to 173 months while one patient was lost to the follow-up. The malignant case had tumor metastasis to the brain 4 years after the operation and then received radiotherapy. Other 6 cases had no recurrence and metastasis, and all the 7 patients survived. Conclusions: Most of the PEComas of the lung are benign. When there are malignant morphological features such as necrosis, high-grade nuclei or SFPQ-TFE3 gene fusion, close follow-up seems necessary.
Male
;
Female
;
Humans
;
In Situ Hybridization, Fluorescence
;
Perivascular Epithelioid Cell Neoplasms/pathology*
;
Lung/pathology*
;
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics*
;
Necrosis
;
Biomarkers, Tumor/analysis*
10.Application and evaluation of artificial intelligence TPS-assisted cytologic screening system in urine exfoliative cytology.
L ZHU ; M L JIN ; S R HE ; H M XU ; J W HUANG ; L F KONG ; D H LI ; J X HU ; X Y WANG ; Y W JIN ; H HE ; X Y WANG ; Y Y SONG ; X Q WANG ; Z M YANG ; A X HU
Chinese Journal of Pathology 2023;52(12):1223-1229
Objective: To explore the application of manual screening collaborated with the Artificial Intelligence TPS-Assisted Cytologic Screening System in urinary exfoliative cytology and its clinical values. Methods: A total of 3 033 urine exfoliated cytology samples were collected at the Henan People's Hospital, Capital Medical University, Beijing, China. Liquid-based thin-layer cytology was prepared. The slides were manually read under the microscope and digitally presented using a scanner. The intelligent identification and analysis were carried out using an artificial intelligence TPS assisted screening system. The Paris Report Classification System of Urinary Exfoliated Cytology 2022 was used as the evaluation standard. Atypical urothelial cells and even higher grade lesions were considered as positive when evaluating the recognition sensitivity, specificity, and diagnostic accuracy of artificial intelligence-assisted screening systems and human-machine collaborative cytologic screening methods in urine exfoliative cytology. Among the collected cases, there were also 1 100 pathological tissue controls. Results: The accuracy, sensitivity and specificity of the AI-assisted cytologic screening system were 77.18%, 90.79% and 69.49%; those of human-machine coordination method were 92.89%, 99.63% and 89.09%, respectively. Compared with the histopathological results, the accuracy, sensitivity and specificity of manual reading were 79.82%, 74.20% and 95.80%, respectively, while those of AI-assisted cytologic screening system were 93.45%, 93.73% and 92.66%, respectively. The accuracy, sensitivity and specificity of human-machine coordination method were 95.36%, 95.21% and 95.80%, respectively. Both cytological and histological controls showed that human-machine coordination review method had higher diagnostic accuracy and sensitivity, and lower false negative rates. Conclusions: The artificial intelligence TPS assisted cytologic screening system has achieved acceptable accuracy in urine exfoliation cytologic screening. The combination of manual screening and artificial intelligence TPS assisted screening system can effectively improve the sensitivity and accuracy of cytologic screening and reduce the risk of misdiagnosis.
Humans
;
Artificial Intelligence
;
Urothelium/pathology*
;
Cytodiagnosis
;
Epithelial Cells/pathology*
;
Sensitivity and Specificity
;
Urologic Neoplasms/urine*


Result Analysis
Print
Save
E-mail