1.Enriched environment reduces pyramidal neuron excitability in the anterior cingulate cortex to alleviate restraint stress-induced anxiety-like behaviors in mice.
Changfeng CHEN ; Qin FANG ; Yinhuan GAO ; Liecheng WANG ; Lei CHEN
Journal of Southern Medical University 2025;45(5):962-968
OBJECTIVES:
To investigate the mechanism by which the pyramidal neurons of the anterior cingulate cortex (ACC) modulate the effects of enriched environment (EE) for relieving anxiety-like behaviors in mice.
METHODS:
C57BL/6J mice were randomly divided into control group, restraint stress (RS) group, and RS+EE group (n=8). The mice in the latter two groups were subjected to RS for 2 h daily for 3 days, and those in RS+EE group were housed in an EE during modeling. Anxiety-like behaviors of the mice were evaluated using the elevated plus-maze tests (EPM) and open field test (OFT). Changes in c-Fos expression in the ACC of the mice were detected with immunofluorescence assay, and pyramidal neuron excitability in the ACC (PynACC) was measured using patch-clamp technique. The miniature excitatory and inhibitory postsynaptic currents (mEPSC and mIPSC, respectively) were analyzed to assess synaptic transmission changes.
RESULTS:
Behavioral tests showed obvious anxiety-like behaviors in RS mice, and such behavioral changes were significantly improved in RS+EE mice. Immunofluorescence staining revealed significantly increased c-Fos expression in the ACC in RS mice but lowered c-Fos expression in RS+EE group. Compared with the control mice, the RS mice showed increased action potential firing rate of PynACC, which was significantly reduced in RS+EE group. Compared with the RS mice, the RS+EE mice showed also decreased frequency of mEPSCs of PynACC, but the amplitude exhibited no significant changes. No obvious changes in the frequency or amplitude of mIPSCs were observed in RS+EE mice.
CONCLUSIONS
EE reduces excitability of PynACC to alleviate anxiety-like behaviors induced by RS in mice.
Animals
;
Anxiety/physiopathology*
;
Gyrus Cinguli
;
Mice, Inbred C57BL
;
Mice
;
Pyramidal Cells/physiology*
;
Restraint, Physical
;
Stress, Psychological
;
Proto-Oncogene Proteins c-fos/metabolism*
;
Male
;
Behavior, Animal
;
Environment
;
Excitatory Postsynaptic Potentials
2.Computational Modeling of the Prefrontal-Cingulate Cortex to Investigate the Role of Coupling Relationships for Balancing Emotion and Cognition.
Jinzhao WEI ; Licong LI ; Jiayi ZHANG ; Erdong SHI ; Jianli YANG ; Xiuling LIU
Neuroscience Bulletin 2025;41(1):33-45
Within the prefrontal-cingulate cortex, abnormalities in coupling between neuronal networks can disturb the emotion-cognition interactions, contributing to the development of mental disorders such as depression. Despite this understanding, the neural circuit mechanisms underlying this phenomenon remain elusive. In this study, we present a biophysical computational model encompassing three crucial regions, including the dorsolateral prefrontal cortex, subgenual anterior cingulate cortex, and ventromedial prefrontal cortex. The objective is to investigate the role of coupling relationships within the prefrontal-cingulate cortex networks in balancing emotions and cognitive processes. The numerical results confirm that coupled weights play a crucial role in the balance of emotional cognitive networks. Furthermore, our model predicts the pathogenic mechanism of depression resulting from abnormalities in the subgenual cortex, and network functionality was restored through intervention in the dorsolateral prefrontal cortex. This study utilizes computational modeling techniques to provide an insight explanation for the diagnosis and treatment of depression.
Prefrontal Cortex/physiology*
;
Humans
;
Emotions/physiology*
;
Cognition/physiology*
;
Gyrus Cinguli/physiology*
;
Computer Simulation
;
Models, Neurological
;
Neural Pathways/physiology*
;
Nerve Net/physiology*
3.Temporal Unfolding of Racial Ingroup Bias in Neural Responses to Perceived Dynamic Pain in Others.
Chenyu PANG ; Yuqing ZHOU ; Shihui HAN
Neuroscience Bulletin 2024;40(2):157-170
In this study, we investigated how empathic neural responses unfold over time in different empathy networks when viewing same-race and other-race individuals in dynamic painful conditions. We recorded magnetoencephalography signals from Chinese adults when viewing video clips showing a dynamic painful (or non-painful) stimulation to Asian and White models' faces to trigger painful (or neutral) expressions. We found that perceived dynamic pain in Asian models modulated neural activities in the visual cortex at 100 ms-200 ms, in the orbitofrontal and subgenual anterior cingulate cortices at 150 ms-200 ms, in the anterior cingulate cortex around 250 ms-350 ms, and in the temporoparietal junction and middle temporal gyrus around 600 ms after video onset. Perceived dynamic pain in White models modulated activities in the visual, anterior cingulate, and primary sensory cortices after 500 ms. Our findings unraveled earlier dynamic activities in multiple neural circuits in response to same-race (vs other-race) individuals in dynamic painful situations.
Adult
;
Humans
;
Brain Mapping
;
Pain
;
Empathy
;
Racism
;
Gyrus Cinguli/physiology*
;
Magnetic Resonance Imaging
;
Brain/physiology*
4.Treadmill exercise alleviates neuropathic pain by regulating mitophagy of the anterior cingulate cortex in rats.
Cui LI ; Xiao-Ge WANG ; Shuai YANG ; Yi-Hang LYU ; Xiao-Juan GAO ; Jing CAO ; Wei-Dong ZANG
Acta Physiologica Sinica 2023;75(2):160-170
This study aimed to investigate the effect of treadmill exercise on neuropathic pain and to determine whether mitophagy of the anterior cingulate cortex (ACC) contributes to exercise-mediated amelioration of neuropathic pain. Chronic constriction injury of the sciatic nerve (CCI) was used to establish a neuropathic pain model in Sprague-Dawley (SD) rats. Von-Frey filaments were used to assess the mechanical paw withdrawal threshold (PWT), and a thermal radiation meter was used to assess the thermal paw withdrawal latency (PWL) in rats. qPCR was used to evaluate the mRNA levels of Pink1, Parkin, Fundc1, and Bnip3. Western blot was used to evaluate the protein levels of PINK1 and PARKIN. To determine the impact of the mitophagy inducer carbonyl cyanide m-chlorophenylhydrazone (CCCP) on pain behaviors in CCI rats, 24 SD rats were randomly divided into CCI drug control group (CCI+Veh group), CCI+CCCP low-dose group (CCI+CCCP0.25), CCI+CCCP medium-dose group (CCI+CCCP2.5), and CCI+CCCP high-dose group (CCI+CCCP5). Pain behaviors were assessed on 0, 1, 3, 5, and 7 days after modeling. To explore whether exercise regulates pain through mitophagy, 24 SD rats were divided into sham, CCI, and CCI+Exercise (CCI+Exe) groups. The rats in the CCI+Exe group underwent 4-week low-moderate treadmill training one week after modeling. The mechanical pain and thermal pain behaviors of the rats in each group were assessed on 0, 7, 14, 21, and 35 days after modeling. Western blot was used to detect the levels of the mitophagy-related proteins PINK1, PARKIN, LC3 II/LC3 I, and P62 in ACC tissues. Transmission electron microscopy was used to observe the ultrastructure of mitochondrial morphology in the ACC. The results showed that: (1) Compared with the sham group, the pain thresholds of the ipsilateral side of the CCI group decreased significantly (P < 0.001). Meanwhile, the mRNA and protein levels of Pink1 were significantly higher, and those of Parkin were lower in the CCI group (P < 0.05). (2) Compared with the CCI+Veh group, each CCCP-dose group showed higher mechanical and thermal pain thresholds, and the levels of PINK1 and LC3 II/LC3 I were elevated significantly (P < 0.05, P < 0.01). (3) The pain thresholds of the CCI+Exe group increased significantly compared with those of the CCI group after treadmill intervention (P < 0.001, P < 0.01). Compared with the CCI group, the protein levels of PINK1 and P62 were decreased (P < 0.001, P < 0.01), and the protein levels of PARKIN and LC3 II/LC3 I were increased in the CCI+Exe group (P < 0.01, P < 0.05). Rod-shaped mitochondria were observed in the ACC of CCI+Exe group, and there were little mitochondrial fragmentation, swelling, or vacuoles. The results suggest that the mitochondrial PINK1/PARKIN autophagy pathway is blocked in the ACC of neuropathic pain model rats. Treadmill exercise could restore mitochondrial homeostasis and relieve neuropathic pain via the PINK1/PARKIN pathway.
Rats
;
Animals
;
Mitophagy/physiology*
;
Rats, Sprague-Dawley
;
Carbonyl Cyanide m-Chlorophenyl Hydrazone/pharmacology*
;
Gyrus Cinguli
;
Neuralgia
;
Ubiquitin-Protein Ligases/metabolism*
;
Protein Kinases
;
Membrane Proteins/metabolism*
;
Mitochondrial Proteins/metabolism*
5.An Anterior Cingulate Cortex-to-Midbrain Projection Controls Chronic Itch in Mice.
Ting-Ting ZHANG ; Su-Shan GUO ; Hui-Ying WANG ; Qi JING ; Xin YI ; Zi-Han HU ; Xin-Ren YU ; Tian-Le XU ; Ming-Gang LIU ; Xuan ZHAO
Neuroscience Bulletin 2023;39(5):793-807
Itch is an unpleasant sensation that provokes the desire to scratch. While acute itch serves as a protective system to warn the body of external irritating agents, chronic itch is a debilitating but poorly-treated clinical disease leading to repetitive scratching and skin lesions. However, the neural mechanisms underlying the pathophysiology of chronic itch remain mysterious. Here, we identified a cell type-dependent role of the anterior cingulate cortex (ACC) in controlling chronic itch-related excessive scratching behaviors in mice. Moreover, we delineated a neural circuit originating from excitatory neurons of the ACC to the ventral tegmental area (VTA) that was critically involved in chronic itch. Furthermore, we demonstrate that the ACC→VTA circuit also selectively modulated histaminergic acute itch. Finally, the ACC neurons were shown to predominantly innervate the non-dopaminergic neurons of the VTA. Taken together, our findings uncover a cortex-midbrain circuit for chronic itch-evoked scratching behaviors and shed novel insights on therapeutic intervention.
Mice
;
Animals
;
Gyrus Cinguli/physiology*
;
Pruritus/pathology*
;
Mesencephalon
;
Cerebral Cortex/pathology*
;
Neurons/pathology*
6.Brain basis of physical pain and social pain.
Si CHENG ; Si-Jin LI ; Zi-Xin ZHENG ; Dan-Dan ZHANG
Acta Physiologica Sinica 2022;74(4):669-677
Increasing studies have provided cognitive and neuron evidence for not only the similarities, but also the differences between physical pain and social pain in the brain basis. Comparing the similarities and differences of the brain basis of physical pain and social pain helps us to clarify the mechanism of the occurrence and change of pain, and provide theoretical evidence for clinical pain treatment. In this review, we summarized studies to delineate the brain mechanisms of physical pain and social pain. Through the review of existing studies, we found that both physical pain and social pain can invoke the same brain regions that process emotional experience (the dorsal anterior cingulate cortex, anterior insula), emotion regulation (lateral prefrontal cortex) and somatosensory (the posterior insula, secondary sensory cortex). However, the voxel-level activated patterns of physical and social pain differ in the same brain region (dorsal anterior cingulate gyrus, dorsolateral prefrontal cortex, etc.), and the overlapping brain regions (for example, ventrolateral prefrontal cortex) have varied effect on these two types of pain. In addition, studies have shown that the brain activation pattern for social pain may be influenced by the experimental paradigm. Future studies should actively adopt a data-driven way to examine the brain basis of physical pain and social pain, especially the nerve activation mode, aiming to consummate the theory of pain.
Brain
;
Gyrus Cinguli
;
Humans
;
Magnetic Resonance Imaging
;
Pain/psychology*
;
Prefrontal Cortex/physiology*
7.Central Regulation of Micturition and Its Association With Epilepsy.
Hyun Jong JANG ; Min Jung KWON ; Kyung Ok CHO
International Neurourology Journal 2018;22(1):2-8
Micturition is a complex process involving the bladder, spinal cord, and the brain. Highly sophisticated central neural program controls bladder function by utilizing multiple brain regions, including pons and suprapontine structures. Periaqueductal grey, insula, anterior cingulate cortex, and medial prefrontal cortex are components of suprapontine micturition centers. Under pathologic conditions such as epilepsy, urinary dysfunction is a frequent symptom and it seems to be associated with increased suprapontine cortical activity. Interestingly, micturition can also trigger seizures known as reflex epilepsy. During voiding behavior, frontotemporal cortical activation has been reported and it may induce reflex seizures. As current researches are only limited to present clinical cases, more rigorous investigations are needed to elucidate biological mechanisms of micturition to advance our knowledge on the process of micturition in physiology and pathology.
Brain
;
Epilepsy*
;
Epilepsy, Reflex
;
Gyrus Cinguli
;
Pathology
;
Physiology
;
Pons
;
Prefrontal Cortex
;
Reflex
;
Seizures
;
Spinal Cord
;
Urinary Bladder
;
Urination*
8.Basal Forebrain Cholinergic Deficits Reduce Glucose Metabolism and Function of Cholinergic and GABAergic Systems in the Cingulate Cortex.
Da Un JEONG ; Jin Hwan OH ; Ji Eun LEE ; Jihyeon LEE ; Zang Hee CHO ; Jin Woo CHANG ; Won Seok CHANG
Yonsei Medical Journal 2016;57(1):165-172
PURPOSE: Reduced brain glucose metabolism and basal forebrain cholinergic neuron degeneration are common features of Alzheimer's disease and have been correlated with memory function. Although regions representing glucose hypometabolism in patients with Alzheimer's disease are targets of cholinergic basal forebrain neurons, the interaction between cholinergic denervation and glucose hypometabolism is still unclear. The aim of the present study was to evaluate glucose metabolism changes caused by cholinergic deficits. MATERIALS AND METHODS: We lesioned basal forebrain cholinergic neurons in rats using 192 immunoglobulin G-saporin. After 3 weeks, lesioned animals underwent water maze testing or were analyzed by 18F-2-fluoro-2-deoxyglucose positron emission tomography. RESULTS: During water maze probe testing, performance of the lesioned group decreased with respect to time spent in the target quadrant and platform zone. Cingulate cortex glucose metabolism in the lesioned group decreased, compared with the normal group. Additionally, acetylcholinesterase activity and glutamate decarboxylase 65/67 expression declined in the cingulate cortex. CONCLUSION: Our results reveal that spatial memory impairment in animals with selective basal forebrain cholinergic neuron damage is associated with a functional decline in the GABAergic and cholinergic system associated with cingulate cortex glucose hypometabolism.
Acetylcholine/metabolism
;
Alzheimer Disease
;
Animals
;
Antibodies, Monoclonal/*pharmacology
;
Basal Forebrain/*drug effects/metabolism
;
Cholinergic Agents/administration & dosage/*pharmacology
;
Cholinergic Neurons/*drug effects/metabolism
;
Fluorodeoxyglucose F18
;
GABAergic Neurons/*drug effects/metabolism
;
Glucose/*metabolism
;
Gyrus Cinguli/*drug effects/metabolism
;
Humans
;
Injections
;
Maze Learning
;
Motor Activity/physiology
;
Positron-Emission Tomography
;
Rats
;
Ribosome Inactivating Proteins, Type 1/*pharmacology
9.Empathy for pain: A novel bio-psychosocial-behavioral laboratory animal model.
Jun CHEN ; Zhen LI ; Yun-Fei LV ; Chun-Li LI ; Yan WANG ; Rui-Rui WANG ; Kai-Wen GENG ; Ting HE
Acta Physiologica Sinica 2015;67(6):561-570
Empathy, a basic prosocial behavior, is referred to as an ability to understand and share others' emotional state. Generally, empathy is also a social-behavioral basis of altruism. In contrast, impairment of empathy development may be associated with autism, narcissism, alexithymia, personality disorder, schizophrenia and depression. Thus, study of the brain mechanisms of empathy has great importance to not only scientific and clinical advances but also social harmony. However, research on empathy has long been avoided due to the fact that it has been considered as a distinct feature of human beings from animals, leading to paucity of knowledge in the field. In 2006, a Canadian group from McGill University found that a mouse in pain could be shared by its paired cagemate, but not a paired stranger, showing decreased pain threshold and increased pain responses through emotional contagion while they were socially interacting. In 2014, we further found that a rat in pain could also be shared by its paired cagemate 30 min after social interaction, showing long-term decreased pain threshold and increased pain responses, suggesting persistence of empathy for pain (empathic memory). We also mapped out that the medial prefrontal cortex, including the anterior cingulate cortex, prelimbic cortex and infralimbic cortex, is involved in empathy for pain in rats, suggesting that a neural network may be associated with development of pain empathy in the CNS. In the present brief review, we give a brief outline of the advances and challenges in study of empathy for pain in humans and animals, and try to provide a novel bio-psychosocial-behavioral model for study of pain and its emotional comorbidity using laboratory animals.
Animals
;
Cerebral Cortex
;
physiology
;
Emotions
;
Empathy
;
Gyrus Cinguli
;
physiology
;
Humans
;
Mice
;
Models, Animal
;
Pain
;
Pain Threshold
;
Prefrontal Cortex
;
physiology
;
Rats
10.Brain-derived neurotrophic factor in the anterior cingulate cortex is involved in the formation of fear memory.
Acta Physiologica Sinica 2015;67(5):455-462
Brain-derived neurotrophic factor (BDNF), a small dimeric secretory protein, plays a vital role in activity-dependent synaptic plasticity, learning and memory. It has been shown that BDNF in the hippocampus and amygdala participates in the formation of fear memory. However, little is known about the functional role of BDNF in the anterior cingulate cortex (ACC). To address this question, we examined the mRNA and protein levels of BDNF in the ACC of rats at various time points after fear conditioning, using quantitative real-time PCR and enzyme-linked immunosorbent assay (ELISA). The results showed that BDNF exhibited a temporally specific increase in both mRNA and protein levels after CS (tone) and US (foot shock) was paired. Such increase did not occur after the animals were exposed to CS or US alone. When BDNF antibody was locally infused into the ACC prior to CS-US pairing, both contextual and auditory fear memories were severely impaired. Taken together, these results suggest that BDNF in the ACC is required for the formation of fear memory.
Animals
;
Brain-Derived Neurotrophic Factor
;
metabolism
;
Enzyme-Linked Immunosorbent Assay
;
Fear
;
Gyrus Cinguli
;
metabolism
;
Memory
;
physiology
;
RNA, Messenger
;
metabolism
;
Rats
;
Real-Time Polymerase Chain Reaction

Result Analysis
Print
Save
E-mail