1.The combination of CDX2 expression status and tumor-infiltrating lymphocyte density as a prognostic factor in adjuvant FOLFOX-treated patients with stage III colorectal cancers
Ji-Ae LEE ; Hye Eun PARK ; Hye-Yeong JIN ; Lingyan JIN ; Seung Yeon YOO ; Nam-Yun CHO ; Jeong Mo BAE ; Jung Ho KIM ; Gyeong Hoon KANG
Journal of Pathology and Translational Medicine 2025;59(1):50-59
Background:
Colorectal carcinomas (CRCs) with caudal-type homeobox 2 (CDX2) loss are recognized to pursue an aggressive behavior but tend to be accompanied by a high density of tumor-infiltrating lymphocytes (TILs). However, little is known about whether there is an interplay between CDX2 loss and TIL density in the survival of patients with CRC.
Methods:
Stage III CRC tissues were assessed for CDX2 loss using immunohistochemistry and analyzed for their densities of CD8 TILs in both intraepithelial (iTILs) and stromal areas using a machine learning-based analytic method.
Results:
CDX2 loss was significantly associated with a higher density of CD8 TILs in both intraepithelial and stromal areas. Both CDX2 loss and a high CD8 iTIL density were found to be prognostic parameters and showed hazard ratios of 2.314 (1.050–5.100) and 0.378 (0.175–0.817), respectively, for cancer-specific survival. A subset of CRCs with retained CDX2 expression and a high density of CD8 iTILs showed the best clinical outcome (hazard ratio of 0.138 [0.023–0.826]), whereas a subset with CDX2 loss and a high density of CD8 iTILs exhibited the worst clinical outcome (15.781 [3.939–63.230]).
Conclusions
Altogether, a high density of CD8 iTILs did not make a difference in the survival of patients with CRC with CDX2 loss. The combination of CDX2 expression and intraepithelial CD8 TIL density was an independent prognostic marker in adjuvant chemotherapy-treated patients with stage III CRC.
2.Synthetic data production for biomedical research
Yun Gyeong LEE ; Mi-Sook KWAK ; Jeong Eun KIM ; Min Sun KIM ; Dong Un NO ; Hee Youl CHAI
Osong Public Health and Research Perspectives 2025;16(2):94-99
Synthetic data, generated using advanced artificial intelligence (AI) techniques, replicates the statistical properties of real-world datasets while excluding identifiable information.Although synthetic data does not consist of actual data points, it is derived from original datasets, thereby enabling analyses that yield results comparable to those obtained with real data. Synthetic datasets are evaluated based on their utility—a measure of how effectively they mirror real data for analytical purposes. This paper presents the generation of synthetic datasets through the Healthcare Big Data Showcase Project (2019–2023). The original dataset comprises comprehensive multi-omics data from 400 individuals, including cancer survivors, chronic disease patients, and healthy participants. Synthetic data facilitates efficient access and robust analyses, serving as a practical tool for research and education. It addresses privacy concerns, supports AI research, and provides a foundation for innovative applications across diverse fields, such as public health and precision medicine.
3.Synthetic data production for biomedical research
Yun Gyeong LEE ; Mi-Sook KWAK ; Jeong Eun KIM ; Min Sun KIM ; Dong Un NO ; Hee Youl CHAI
Osong Public Health and Research Perspectives 2025;16(2):94-99
Synthetic data, generated using advanced artificial intelligence (AI) techniques, replicates the statistical properties of real-world datasets while excluding identifiable information.Although synthetic data does not consist of actual data points, it is derived from original datasets, thereby enabling analyses that yield results comparable to those obtained with real data. Synthetic datasets are evaluated based on their utility—a measure of how effectively they mirror real data for analytical purposes. This paper presents the generation of synthetic datasets through the Healthcare Big Data Showcase Project (2019–2023). The original dataset comprises comprehensive multi-omics data from 400 individuals, including cancer survivors, chronic disease patients, and healthy participants. Synthetic data facilitates efficient access and robust analyses, serving as a practical tool for research and education. It addresses privacy concerns, supports AI research, and provides a foundation for innovative applications across diverse fields, such as public health and precision medicine.
4.The combination of CDX2 expression status and tumor-infiltrating lymphocyte density as a prognostic factor in adjuvant FOLFOX-treated patients with stage III colorectal cancers
Ji-Ae LEE ; Hye Eun PARK ; Hye-Yeong JIN ; Lingyan JIN ; Seung Yeon YOO ; Nam-Yun CHO ; Jeong Mo BAE ; Jung Ho KIM ; Gyeong Hoon KANG
Journal of Pathology and Translational Medicine 2025;59(1):50-59
Background:
Colorectal carcinomas (CRCs) with caudal-type homeobox 2 (CDX2) loss are recognized to pursue an aggressive behavior but tend to be accompanied by a high density of tumor-infiltrating lymphocytes (TILs). However, little is known about whether there is an interplay between CDX2 loss and TIL density in the survival of patients with CRC.
Methods:
Stage III CRC tissues were assessed for CDX2 loss using immunohistochemistry and analyzed for their densities of CD8 TILs in both intraepithelial (iTILs) and stromal areas using a machine learning-based analytic method.
Results:
CDX2 loss was significantly associated with a higher density of CD8 TILs in both intraepithelial and stromal areas. Both CDX2 loss and a high CD8 iTIL density were found to be prognostic parameters and showed hazard ratios of 2.314 (1.050–5.100) and 0.378 (0.175–0.817), respectively, for cancer-specific survival. A subset of CRCs with retained CDX2 expression and a high density of CD8 iTILs showed the best clinical outcome (hazard ratio of 0.138 [0.023–0.826]), whereas a subset with CDX2 loss and a high density of CD8 iTILs exhibited the worst clinical outcome (15.781 [3.939–63.230]).
Conclusions
Altogether, a high density of CD8 iTILs did not make a difference in the survival of patients with CRC with CDX2 loss. The combination of CDX2 expression and intraepithelial CD8 TIL density was an independent prognostic marker in adjuvant chemotherapy-treated patients with stage III CRC.
5.The combination of CDX2 expression status and tumor-infiltrating lymphocyte density as a prognostic factor in adjuvant FOLFOX-treated patients with stage III colorectal cancers
Ji-Ae LEE ; Hye Eun PARK ; Hye-Yeong JIN ; Lingyan JIN ; Seung Yeon YOO ; Nam-Yun CHO ; Jeong Mo BAE ; Jung Ho KIM ; Gyeong Hoon KANG
Journal of Pathology and Translational Medicine 2025;59(1):50-59
Background:
Colorectal carcinomas (CRCs) with caudal-type homeobox 2 (CDX2) loss are recognized to pursue an aggressive behavior but tend to be accompanied by a high density of tumor-infiltrating lymphocytes (TILs). However, little is known about whether there is an interplay between CDX2 loss and TIL density in the survival of patients with CRC.
Methods:
Stage III CRC tissues were assessed for CDX2 loss using immunohistochemistry and analyzed for their densities of CD8 TILs in both intraepithelial (iTILs) and stromal areas using a machine learning-based analytic method.
Results:
CDX2 loss was significantly associated with a higher density of CD8 TILs in both intraepithelial and stromal areas. Both CDX2 loss and a high CD8 iTIL density were found to be prognostic parameters and showed hazard ratios of 2.314 (1.050–5.100) and 0.378 (0.175–0.817), respectively, for cancer-specific survival. A subset of CRCs with retained CDX2 expression and a high density of CD8 iTILs showed the best clinical outcome (hazard ratio of 0.138 [0.023–0.826]), whereas a subset with CDX2 loss and a high density of CD8 iTILs exhibited the worst clinical outcome (15.781 [3.939–63.230]).
Conclusions
Altogether, a high density of CD8 iTILs did not make a difference in the survival of patients with CRC with CDX2 loss. The combination of CDX2 expression and intraepithelial CD8 TIL density was an independent prognostic marker in adjuvant chemotherapy-treated patients with stage III CRC.
6.Synthetic data production for biomedical research
Yun Gyeong LEE ; Mi-Sook KWAK ; Jeong Eun KIM ; Min Sun KIM ; Dong Un NO ; Hee Youl CHAI
Osong Public Health and Research Perspectives 2025;16(2):94-99
Synthetic data, generated using advanced artificial intelligence (AI) techniques, replicates the statistical properties of real-world datasets while excluding identifiable information.Although synthetic data does not consist of actual data points, it is derived from original datasets, thereby enabling analyses that yield results comparable to those obtained with real data. Synthetic datasets are evaluated based on their utility—a measure of how effectively they mirror real data for analytical purposes. This paper presents the generation of synthetic datasets through the Healthcare Big Data Showcase Project (2019–2023). The original dataset comprises comprehensive multi-omics data from 400 individuals, including cancer survivors, chronic disease patients, and healthy participants. Synthetic data facilitates efficient access and robust analyses, serving as a practical tool for research and education. It addresses privacy concerns, supports AI research, and provides a foundation for innovative applications across diverse fields, such as public health and precision medicine.
7.Synthetic data production for biomedical research
Yun Gyeong LEE ; Mi-Sook KWAK ; Jeong Eun KIM ; Min Sun KIM ; Dong Un NO ; Hee Youl CHAI
Osong Public Health and Research Perspectives 2025;16(2):94-99
Synthetic data, generated using advanced artificial intelligence (AI) techniques, replicates the statistical properties of real-world datasets while excluding identifiable information.Although synthetic data does not consist of actual data points, it is derived from original datasets, thereby enabling analyses that yield results comparable to those obtained with real data. Synthetic datasets are evaluated based on their utility—a measure of how effectively they mirror real data for analytical purposes. This paper presents the generation of synthetic datasets through the Healthcare Big Data Showcase Project (2019–2023). The original dataset comprises comprehensive multi-omics data from 400 individuals, including cancer survivors, chronic disease patients, and healthy participants. Synthetic data facilitates efficient access and robust analyses, serving as a practical tool for research and education. It addresses privacy concerns, supports AI research, and provides a foundation for innovative applications across diverse fields, such as public health and precision medicine.
8.Synthetic data production for biomedical research
Yun Gyeong LEE ; Mi-Sook KWAK ; Jeong Eun KIM ; Min Sun KIM ; Dong Un NO ; Hee Youl CHAI
Osong Public Health and Research Perspectives 2025;16(2):94-99
Synthetic data, generated using advanced artificial intelligence (AI) techniques, replicates the statistical properties of real-world datasets while excluding identifiable information.Although synthetic data does not consist of actual data points, it is derived from original datasets, thereby enabling analyses that yield results comparable to those obtained with real data. Synthetic datasets are evaluated based on their utility—a measure of how effectively they mirror real data for analytical purposes. This paper presents the generation of synthetic datasets through the Healthcare Big Data Showcase Project (2019–2023). The original dataset comprises comprehensive multi-omics data from 400 individuals, including cancer survivors, chronic disease patients, and healthy participants. Synthetic data facilitates efficient access and robust analyses, serving as a practical tool for research and education. It addresses privacy concerns, supports AI research, and provides a foundation for innovative applications across diverse fields, such as public health and precision medicine.
9.Prospective external validation of a deep-learning-based early-warning system for major adverse events in general wards in South Korea
Taeyong SIM ; Eun Young CHO ; Ji-hyun KIM ; Kyung Hyun LEE ; Kwang Joon KIM ; Sangchul HAHN ; Eun Yeong HA ; Eunkyeong YUN ; In-Cheol KIM ; Sun Hyo PARK ; Chi-Heum CHO ; Gyeong Im YU ; Byung Eun AHN ; Yeeun JEONG ; Joo-Yun WON ; Hochan CHO ; Ki-Byung LEE
Acute and Critical Care 2025;40(2):197-208
Background:
Acute deterioration of patients in general wards often leads to major adverse events (MAEs), including unplanned intensive care unit transfers, cardiac arrest, or death. Traditional early warning scores (EWSs) have shown limited predictive accuracy, with frequent false positives. We conducted a prospective observational external validation study of an artificial intelligence (AI)-based EWS, the VitalCare - Major Adverse Event Score (VC-MAES), at a tertiary medical center in the Republic of Korea.
Methods:
Adult patients from general wards, including internal medicine (IM) and obstetrics and gynecology (OBGYN)—the latter were rarely investigated in prior AI-based EWS studies—were included. The VC-MAES predictions were compared with National Early Warning Score (NEWS) and Modified Early Warning Score (MEWS) predictions using the area under the receiver operating characteristic curve (AUROC), area under the precision-recall curve (AUPRC), and logistic regression for baseline EWS values. False-positives per true positive (FPpTP) were assessed based on the power threshold.
Results:
Of 6,039 encounters, 217 (3.6%) had MAEs (IM: 9.5%, OBGYN: 0.26%). Six hours prior to MAEs, the VC-MAES achieved an AUROC of 0.918 and an AUPRC of 0.352, including the OBGYN subgroup (AUROC, 0.964; AUPRC, 0.388), outperforming the NEWS (0.797 and 0.124) and MEWS (0.722 and 0.079). The FPpTP was reduced by up to 71%. Baseline VC-MAES was strongly associated with MAEs (P<0.001).
Conclusions
The VC-MAES significantly outperformed traditional EWSs in predicting adverse events in general ward patients. The robust performance and lower FPpTP suggest that broader adoption of the VC-MAES may improve clinical efficiency and resource allocation in general wards.
10.Central odontogenic fibroma case report
Su-Wan KIM ; Jae-Seek YOU ; Gyeong-Yun KIM ; Dong-Ho SHIN
Oral Biology Research 2024;48(1):26-30
Central odontogenic fibroma (COF) is a rare tumor, accounting for only 0.1% of all odontogenic tumors of the jaw. Clinically, these tumors grow slowly and expand the cortical bone without causing pain. Radiographically, they typically appear as unilocular radiolucent lesions with relatively well-defined linings, although multilocular lesions can also be observed. In some cases, the lesion may lead to root resorption of affected teeth and increased tooth mobility. The standard treatment for COF is surgical excision.However, due to its rarity, the optimal approach regarding affected tooth extraction remains unclear. In this report, we present cases of COF in 58- and 56-year-old females, outlining the diagnostic workup, treatment strategy, and postoperative outcomes, particularly regarding affected tooth extraction. Through this case study, we aim to contribute to the existing literature on COF management and achieve successful treatment outcomes.

Result Analysis
Print
Save
E-mail