1.Safety of teriflunomide in Chinese adult patients with relapsing multiple sclerosis: A phase IV, 24-week multicenter study.
Chao QUAN ; Hongyu ZHOU ; Huan YANG ; Zheng JIAO ; Meini ZHANG ; Baorong ZHANG ; Guojun TAN ; Bitao BU ; Tao JIN ; Chunyang LI ; Qun XUE ; Huiqing DONG ; Fudong SHI ; Xinyue QIN ; Xinghu ZHANG ; Feng GAO ; Hua ZHANG ; Jiawei WANG ; Xueqiang HU ; Yueting CHEN ; Jue LIU ; Wei QIU
Chinese Medical Journal 2025;138(4):452-458
BACKGROUND:
Disease-modifying therapies have been approved for the treatment of relapsing multiple sclerosis (RMS). The present study aims to examine the safety of teriflunomide in Chinese patients with RMS.
METHODS:
This non-randomized, multi-center, 24-week, prospective study enrolled RMS patients with variant (c.421C>A) or wild type ABCG2 who received once-daily oral teriflunomide 14 mg. The primary endpoint was the relationship between ABCG2 polymorphisms and teriflunomide exposure over 24 weeks. Safety was assessed over the 24-week treatment with teriflunomide.
RESULTS:
Eighty-two patients were assigned to variant ( n = 42) and wild type groups ( n = 40), respectively. Geometric mean and geometric standard deviation (SD) of pre-dose concentration (variant, 54.9 [38.0] μg/mL; wild type, 49.1 [32.0] μg/mL) and area under plasma concentration-time curve over a dosing interval (AUC tau ) (variant, 1731.3 [769.0] μg∙h/mL; wild type, 1564.5 [1053.0] μg∙h/mL) values at steady state were approximately similar between the two groups. Safety profile was similar and well tolerated across variant and wild type groups in terms of rates of treatment emergent adverse events (TEAE), treatment-related TEAE, grade ≥3 TEAE, and serious adverse events (AEs). No new specific safety concerns or deaths were reported in the study.
CONCLUSION:
ABCG2 polymorphisms did not affect the steady-state exposure of teriflunomide, suggesting a similar efficacy and safety profile between variant and wild type RMS patients.
REGISTRATION
NCT04410965, https://clinicaltrials.gov .
Humans
;
Crotonates/adverse effects*
;
Toluidines/adverse effects*
;
Nitriles
;
Hydroxybutyrates
;
Female
;
Male
;
Adult
;
ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics*
;
Middle Aged
;
Multiple Sclerosis, Relapsing-Remitting/genetics*
;
Prospective Studies
;
Young Adult
;
Neoplasm Proteins/genetics*
;
East Asian People
2.Intracellular trafficking of TREM2 is regulated by presenilin 1.
Yingjun ZHAO ; Xiaoguang LI ; Timothy HUANG ; Lu lin JIANG ; Zhenqiu TAN ; Muxian ZHANG ; Irene Han Juo CHENG ; Xin WANG ; Guojun BU ; Yun wu ZHANG ; Qi WANG ; Huaxi XU
Experimental & Molecular Medicine 2017;49(12):e405-
Genetic mutations in triggering receptor expressed on myeloid cells 2 (TREM2) have been linked to a variety of neurodegenerative diseases including Alzheimer’s disease, amyotrophic lateral sclerosis, frontotemporal dementia and Parkinson’s disease. In the brain, TREM2 is highly expressed on the cell surface of microglia, where it can transduce signals to regulate microglial functions such as phagocytosis. To date, mechanisms underlying intracellular trafficking of TREM2 remain elusive. Mutations in the presenilin 1 (PS1) catalytic subunit of the γ-secretase complex have been associated with increased generation of the amyloidogenic Aβ (amyloid-β) 42 peptide through cleavage of the Aβ precursor amyloid precursor protein. Here we found that TREM2 interacts with PS1 in a manner independent of γ-secretase activity. Mutations in TREM2 alter its subcellular localization and affects its interaction with PS1. Upregulation of PS1 reduces, whereas downregulation of PS1 increases, steady-state levels of cell surface TREM2. Furthermore, PS1 overexpression results in attenuated phagocytic uptake of Aβ by microglia, which is reversed by TREM2 overexpression. Our data indicate a novel role for PS1 in regulating TREM2 intracellular trafficking and pathophysiological function.

Result Analysis
Print
Save
E-mail