1.Analysis of Quality Uniformity of Hengzhi Kechuan Capsules Based on HPLC-DAD-CAD
Qian MA ; An LIU ; Qingxia XU ; Cong GUO ; Jun ZHANG ; Maoqing WANG ; Xiaodi KOU ; Yan LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(3):168-174
ObjectiveTo establish the fingerprints of 15 batches of Hengzhi Kechuan capsules, to quantitatively analyze 10 index components, and to evaluate the quality uniformity of samples from different batches. MethodsThe fingerprints and quantitative analysis of Hengzhi Kechuan capsules were established by a combination method of high performance liquid chromatography coupled with diode array detector and charged aerosol detector(HPLC-DAD-CAD), adenosine, guanosine, vanillic acid, safflomin A, agarotetrol, naringin, hesperidin, militarine, ginsenoside Rb1, and glycyrrhizic acid were selected as quality attribute indexes. A total of 15 batches of Hengzhi Kechuan capsules from 2022 to 2024(3 boxes per batch) were qualitatively and quantitatively analyzed, and the quality uniformity level of the manufacturers was characterized by parameters of intra-batch consistency(PA) and inter-batch consistency(PB). The homogeneity and difference of quality attribute indexes of samples from different years were analyzed by heatmap clustering analysis. ResultsHPLC fingerprints and quantitative method of Hengzhi Kechuan capsules were established, and the methods could be used for qualitative and quantitative analysis of this preparation, which was found to be stable and reliable by method validation. The similarity of fingerprints of 15 batches of samples was 0.887-0.975, a total of 13 common peaks were calibrated, and 10 common peaks were designated, all of which were quality attribute index components. The results of quantitative analysis showed that the contents of the above 10 ingredients in the samples were 0.038-0.078, 0.115-0.251, 0.007-0.018, 0.291-0.673, 0.122-0.257, 0.887-1.905, 1.841-3.364, 1.412-2.450, 2.207-3.112, 0.650-1.161, respectively. And the contents of ginsenoside Rb1 and glycyrrhizic acid met the limit requirements in the 2020 edition of Chinese Pharmacopoeia. For the samples from 15 batches, the PA values of the 10 index components were all <10%, indicating good intra-batch homogeneity, and the PB values ranged from 33.86% to 92.97%, suggesting that the inter-batch homogeneity was poor. Heatmap clustering analysis showed that the samples from different years were clustered into separate categories, and adenosine, guanosine, safflomin A, naringin, hesperidin and agarotetrol were the main differential components. ConclusionThe intra-annual quality uniformity of Hengzhi Kechuan capsules is good and the inter-annual quality uniformity is insufficient, which may be related to the quality difference of Pinellinae Rhizoma Praeparatum, Carthami Flos, Citri Sarcodactylis Fructus, Citri Reticulatae Pericarpium, Aquilariae Lignum Resinatum, Citri Fructus, etc. In this study, the fingerprint and multi-indicator determination method of Hengzhi Kechuan capsules was established, which can be used for more accurate and efficient quality control and standardization enhancement.
2.Advances in the diagnosis and treatment of hepatocellular carcinoma with bile duct tumor thrombus
Yuxiang GUO ; Maosen WANG ; Zhongyuan LIU ; Xudong ZHANG ; Pengfei MA ; Xiangkun WANG ; Renfeng LI
Journal of Clinical Hepatology 2025;41(2):359-364
Hepatocellular carcinoma (HCC) with biliary duct tumor thrombus (BDTT) is currently not common in clinical practice and is easily misdiagnosed, and previously, it was often considered an advanced stage of the disease with a poor prognosis, making its treatment challenging. However, in-depth studies in recent years have gradually deepened our understanding of this disease, leading to significant changes in diagnostic and treatment concepts. Currently, comprehensive treatment, mainly surgery, is used for treatment, but there is still controversy over the selection of clinical treatment strategies. This article provides a detailed discussion on surgical methods and prognosis, in order to provide a reference for clinical treatment options.
3.Network pharmacology-based mechanism of combined leech and bear bile on hepatobiliary diseases
Chen GAO ; Yu-shi GUO ; Xin-yi GUO ; Ling-zhi ZHANG ; Guo-hua YANG ; Yu-sheng YANG ; Tao MA ; Hua SUN
Acta Pharmaceutica Sinica 2025;60(1):105-116
In order to explore the possible role and molecular mechanism of the combined action of leech and bear bile in liver and gallbladder diseases, this study first used network pharmacology methods to screen the components and targets of leech and bear bile, as well as the related target genes of liver and gallbladder diseases. The selected key genes were subjected to interaction network and GO/KEGG enrichment analysis. Then, using sodium oleate induced HepG2 cell lipid deposition model and
4.Effect of Wenshen Tongluo Zhitong formula on mouse H-type bone microvascular endothelial cell/bone marrow mesenchymal stem cell co-culture system
Shijie ZHOU ; Muzhe LI ; Li YUN ; Tianchi ZHANG ; Yuanyuan NIU ; Yihua ZHU ; Qinfeng ZHOU ; Yang GUO ; Yong MA ; Lining WANG
Chinese Journal of Tissue Engineering Research 2025;29(1):8-15
BACKGROUND:Bone relies on the close connection between blood vessels and bone cells to maintain its integrity.Bones are in a physiologically hypoxic environment.Therefore,the study of angiogenesis and osteogenesis in hypoxic environment is closer to the microenvironment in vivo. OBJECTIVE:To explore the influence of Wenshen Tongluo Zhitong(WSTLZT)formula on H-type bone microvascular endothelial cell/bone marrow mesenchymal stem cell co-culture system in hypoxia environment and its related mechanism. METHODS:Enzyme digestion method and flow sorting technique were used to isolate and identify H-type bone microvascular endothelial cells.Mouse bone marrow mesenchymal stem cells were isolated and obtained by bone marrow adhesion method.H-type bone microvascular endothelial cell/bone marrow mesenchymal stem cell hypoxic co-culture system was established using Transwell chamber and anoxic culture workstation.WSTLZT formula powder was used to intervene in each group at a mass concentration of 50 and 100 μg/mL.The angiogenic function of H-type bone microvascular endothelial cells in the co-culture system was evaluated by scratch migration test and tube formation test.The osteogenic differentiation ability of bone marrow mesenchymal stem cells in the co-cultured system was evaluated by alkaline phosphatase staining and alizarin red staining.The protein and mRNA expression changes of PDGF/PI3K/AKT signal axis related molecules in H-type bone microvascular endothelial cells in the co-cultured system were detected by Western Blotting and q-PCR,respectively. RESULTS AND CONCLUSION:(1)Compared with the normal oxygen group,the scratch mobility and new blood vessel length of H-type bone microvascular endothelial cells were significantly higher(P<0.05);the osteogenic differentiation capacity of bone marrow mesenchymal stem cells was higher(P<0.05);the expression of PDGF/PI3K/AKT axis-related molecular protein and mRNA increased(P<0.05)in the hypoxia group.(2)Compared with the hypoxia group,scratch mobility and new blood vessel length were significantly increased in the H-type bone microvascular endothelial cells(P<0.05);bone marrow mesenchymal stem cells had stronger osteogenic function(P<0.05);the expression of PDGF/PI3K/AKT axis-related molecular proteins and mRNA further increased(P<0.05)after treatment with different dose concentrations of WSTLZT formula.These findings conclude that H-type angiogenesis and osteogenesis under hypoxia may be related to the PDGF/PI3K/AKT signaling axis,and WSTLZT formula may promote H-type vasculo-dependent bone formation by activating the PDGF/PI3K/AKT signaling axis,thereby preventing and treating osteoporosis.
5.Effect and mechanism of BYL-719 on Mycobacterium tuberculosis-induced differentiation of abnormal osteoclasts
Jun ZHANG ; Jian GUO ; Qiyu JIA ; Lili TANG ; Xi WANG ; Abudusalamu·Alimujiang ; Tong WU ; Maihemuti·Yakufu ; Chuang MA
Chinese Journal of Tissue Engineering Research 2025;29(2):355-362
BACKGROUND:The phosphatidylinositol 3-kinase/protein kinase(PI3K/AKT)signaling pathway plays a pivotal role in regulating osteoclast activation,which is essential for maintaining bone homeostasis.Bone destruction in osteoarticular tuberculosis is caused by aberrant osteoclastogenesis induced by Mycobacterium tuberculosis infection.However,the role of the PI3K signaling pathway in Mycobacterium tuberculosis-induced aberrant osteoclastogenesis remains unclear. OBJECTIVE:To investigate the effects and mechanisms of the PI3K/AKT signaling pathway inhibitor BYL-719 on aberrant osteoclastogenesis induced by Mycobacterium tuberculosis. METHODS:RAW264.7 cells were infected with bovine Mycobacterium tuberculosis bacillus calmette-cuerin vaccine,and Ag85B was used for cellular immunofluorescence staining.The cell counting kit-8 assay was employed to determine the safe concentration of BYL-719.There were four groups in the experiment:blank control group,BYL-719 group,BCG group,and BCG+BYL-719 group.Under the induction of receptor activator of nuclear factor kappa-B ligand,the effects of BYL-719 on post-infection osteoclast differentiation and fusion were explored through tartrate-resistant acid phosphatase staining and phalloidin staining.RT-PCR and western blot were used to detect the expression of osteoclast-related genes and proteins,and further investigate the mechanism of action. RESULTS AND CONCLUSION:Immunofluorescence staining showed that RAW264.7 cells phagocytosed Mycobacterium tuberculosis.Cell counting kit-8 data indicated that 40 nmol/L BYL-719 was non-toxic to cells.Tartrate-resistant acid phosphatase staining and phalloidin staining showed that BYL-719 inhibited the generation and fusion ability of osteoclasts following infection.RT-PCR and western blot results also indicated that BYL-719 suppressed the upregulation of osteoclast-specific genes(including c-Fos,NFATc1,matrix metalloproteinase 9,and CtsK)induced by Mycobacterium tuberculosis infection(P<0.05).Western blot and immunofluorescence staining revealed that BYL-719 inhibited excessive osteoclast differentiation induced by Mycobacterium tuberculosis by downregulating the expression of IκBα-p65.To conclude,BYL-719 inhibits aberrant osteoclastogenesis induced by Mycobacterium tuberculosis through the downregulation of IκBα/p65.Therefore,the IκBα/p65 signaling pathway is a potential therapeutic target for osteoarticular tuberculosis,and BYL-719 holds potential value for the preventing and amelioration of bone destruction in osteoarticular tuberculosis.BYL-719 has the potential to prevent and ameliorate bone destruction in osteoarticular tuberculosis.
6.Wen-Shen-Tong-Du Decoction promoting spinal cord injury repair in mice
Ruihua ZHAO ; Sixian CHEN ; Yang GUO ; Lei SHI ; Chengjie WU ; Mao WU ; Guanglu YANG ; Haoheng ZHANG ; Yong MA
Chinese Journal of Tissue Engineering Research 2025;29(6):1118-1126
BACKGROUND:Previous studies have confirmed that Wen-Shen-Tong-Du Decoction can promote the recovery of spinal cord injury by inhibiting pyroptosis of splenic B cells,promoting the phagocytosis of myelin debris by microvascular endothelial cells,affecting the migration and infiltration of microglia,promoting the recovery of damaged neurons,and decreasing neuronal apoptosis after spinal cord injury,but the mechanism of this is still not clear. OBJECTIVE:To investigate the effect of Wen-Shen-Tong-Du Decoction on the triggering receptor expressed on myeloid cells 2(TREM2)and PI3K/Akt signaling pathways in mice following spinal cord injury. METHODS:Thirty-six C57BL/6 mice were selected and randomly divided into a sham-operation group,a model group and a Wen-Shen-Tong-Du Decoction group,with 12 mice in each group.In the model and Wen-Shen-Tong-Du Decoction groups,mouse models of T10 spinal cord injury were prepared by the modified Allen's method.On the 1st day after modeling,the Wen-Shen-Tong-Du Decoction group was given Wen-Shen-Tong-Du Decoction by gavage,and the sham-operation group and the model group were given saline by gavage once a day for 28 days.During the drug administration period,mouse motor function was evaluated by Basso Mouse Scale score and inclined plane test.On the 7th and 28th days after modeling,hematoxylin-eosin staining was used to observe the histopathological changes in the spinal cord tissue of the mice;immunofluorescence double staining was used to detect the protein expression of ionized calcium binding adaptor molecule 1(IBA1)and TREM2;and western blot assay was used to detect the expression of TREM2,PI3K,p-PI3K,Akt,p-Akt,Bcl2,Bax and Caspase3 in spinal cord tissue. RESULTS AND CONCLUSION:Basso Mouse Scale scores and inclined plane test results indicated that the motor function of the mouse hindlimbs was declined after spinal cord injury,and Wen-Shen-Tong-Du Decoction significantly improved motor function in mice with spinal cord injury.Hematoxylin-eosin staining results revealed that Wen-Shen-Tong-Du Decoction significantly ameliorated the pathological structure of spinal cord tissue compared with the model group,manifesting as reduced degrees of dorsal white matter and neuronal atrophy,decreased cytoplasmic vacuolization,and reduced inflammatory cell infiltration.Immunofluorescence double staining results showed that on the 7th day after modeling,the protein expression of IBA1 and TREM2 in the model group was lower than that in the sham-operation group(P<0.05),and the protein expression of IBA1 and TREM2 in the Wen-Shen-Tong-Du Decoction group was higher than that in the model group(P<0.05);on the 28th day after modeling,the protein expression of TREM2 in the model group was lower than that in the sham-operation group(P<0.05),and the protein expression of TREM2 in the spinal cord tissue of the mice in the Wen-Shen-Tong-Du Decoction group was higher than that in the model group(P<0.05).Western blot results analysis demonstrated that on the 7th day after modeling,compared with the sham-operation group,the model group exhibited a significant reduction in TREM2,PI3K,and Bcl2/Bax(P<0.05),as well as a significant increase in p-Akt,Bax and p-Akt/Aktp-PI3K(P<0.05);compared with the model group,the Wen-Shen-Tong-Du Decoction group showed a significant increase in TREM2,PI3K,p-PI3K,Akt,p-Akt,Bcl2,p-PI3K/PI3K,p-Akt/Ak,and Bcl2/Bax(P<0.05),as well as a significant decrease in Bax and Caspase3 protein expression(P<0.05).On the 28th day after modeling,compared with the sham-operation group,the model group exhibited a significant reduction in TREM2,PI3K,p-PI3K,Akt,p-Akt,Bcl2 and Bcl2/Bax(P<0.05),as well as a significant increase in Bax protein expression(P<0.05);compared with the model group,the Wen-Shen-Tong-Du Decoction group showed a significant increase in TREM2,PI3K,Akt,p-Akt,Bcl2,and Bcl2/Bax(P<0.05),as well as a significant decrease in Bax protein expression(P<0.05).To conclude,Wen-Shen-Tong-Du Decoction may activate the PI3K/Akt signaling pathway by up-regulating the expression of TREM2 protein in microglia,and then inhibit neuronal apoptosis,thus exerting neuroprotective effects and promoting the repair of spinal cord injury.
7.GOLM1 promotes cholesterol gallstone formation via ABCG5-mediated cholesterol efflux in metabolic dysfunction-associated steatohepatitis livers
Yi-Tong LI ; Wei-Qing SHAO ; Zhen-Mei CHEN ; Xiao-Chen MA ; Chen-He YI ; Bao-Rui TAO ; Bo ZHANG ; Yue MA ; Guo ZHANG ; Rui ZHANG ; Yan GENG ; Jing LIN ; Jin-Hong CHEN
Clinical and Molecular Hepatology 2025;31(2):409-425
Background/Aims:
Metabolic dysfunction-associated steatohepatitis (MASH) is a significant risk factor for gallstone formation, but mechanisms underlying MASH-related gallstone formation remain unclear. Golgi membrane protein 1 (GOLM1) participates in hepatic cholesterol metabolism and is upregulated in MASH. Here, we aimed to explore the role of GOLM1 in MASH-related gallstone formation.
Methods:
The UK Biobank cohort was used for etiological analysis. GOLM1 knockout (GOLM1-/-) and wild-type (WT) mice were fed with a high-fat diet (HFD). Livers were excised for histology and immunohistochemistry analysis. Gallbladders were collected to calculate incidence of cholesterol gallstones (CGSs). Biles were collected for biliary lipid analysis. HepG2 cells were used to explore underlying mechanisms. Human liver samples were used for clinical validation.
Results:
MASH patients had a greater risk of cholelithiasis. All HFD-fed mice developed MASH, and the incidence of gallstones was 16.7% and 75.0% in GOLM1-/- and WT mice, respectively. GOLM1-/- decreased biliary cholesterol concentration and output. In vivo and in vitro assays confirmed that GOLM1 facilitated cholesterol efflux through upregulating ATP binding cassette transporter subfamily G member 5 (ABCG5). Mechanistically, GOLM1 translocated into nucleus to promote osteopontin (OPN) transcription, thus stimulating ABCG5-mediated cholesterol efflux. Moreover, GOLM1 was upregulated by interleukin-1β (IL-1β) in a dose-dependent manner. Finally, we confirmed that IL-1β, GOLM1, OPN, and ABCG5 were enhanced in livers of MASH patients with CGSs.
Conclusions
In MASH livers, upregulation of GOLM1 by IL-1β increases ABCG5-mediated cholesterol efflux in an OPN-dependent manner, promoting CGS formation. GOLM1 has the potential to be a molecular hub interconnecting MASH and CGSs.
8.GOLM1 promotes cholesterol gallstone formation via ABCG5-mediated cholesterol efflux in metabolic dysfunction-associated steatohepatitis livers
Yi-Tong LI ; Wei-Qing SHAO ; Zhen-Mei CHEN ; Xiao-Chen MA ; Chen-He YI ; Bao-Rui TAO ; Bo ZHANG ; Yue MA ; Guo ZHANG ; Rui ZHANG ; Yan GENG ; Jing LIN ; Jin-Hong CHEN
Clinical and Molecular Hepatology 2025;31(2):409-425
Background/Aims:
Metabolic dysfunction-associated steatohepatitis (MASH) is a significant risk factor for gallstone formation, but mechanisms underlying MASH-related gallstone formation remain unclear. Golgi membrane protein 1 (GOLM1) participates in hepatic cholesterol metabolism and is upregulated in MASH. Here, we aimed to explore the role of GOLM1 in MASH-related gallstone formation.
Methods:
The UK Biobank cohort was used for etiological analysis. GOLM1 knockout (GOLM1-/-) and wild-type (WT) mice were fed with a high-fat diet (HFD). Livers were excised for histology and immunohistochemistry analysis. Gallbladders were collected to calculate incidence of cholesterol gallstones (CGSs). Biles were collected for biliary lipid analysis. HepG2 cells were used to explore underlying mechanisms. Human liver samples were used for clinical validation.
Results:
MASH patients had a greater risk of cholelithiasis. All HFD-fed mice developed MASH, and the incidence of gallstones was 16.7% and 75.0% in GOLM1-/- and WT mice, respectively. GOLM1-/- decreased biliary cholesterol concentration and output. In vivo and in vitro assays confirmed that GOLM1 facilitated cholesterol efflux through upregulating ATP binding cassette transporter subfamily G member 5 (ABCG5). Mechanistically, GOLM1 translocated into nucleus to promote osteopontin (OPN) transcription, thus stimulating ABCG5-mediated cholesterol efflux. Moreover, GOLM1 was upregulated by interleukin-1β (IL-1β) in a dose-dependent manner. Finally, we confirmed that IL-1β, GOLM1, OPN, and ABCG5 were enhanced in livers of MASH patients with CGSs.
Conclusions
In MASH livers, upregulation of GOLM1 by IL-1β increases ABCG5-mediated cholesterol efflux in an OPN-dependent manner, promoting CGS formation. GOLM1 has the potential to be a molecular hub interconnecting MASH and CGSs.
9.GOLM1 promotes cholesterol gallstone formation via ABCG5-mediated cholesterol efflux in metabolic dysfunction-associated steatohepatitis livers
Yi-Tong LI ; Wei-Qing SHAO ; Zhen-Mei CHEN ; Xiao-Chen MA ; Chen-He YI ; Bao-Rui TAO ; Bo ZHANG ; Yue MA ; Guo ZHANG ; Rui ZHANG ; Yan GENG ; Jing LIN ; Jin-Hong CHEN
Clinical and Molecular Hepatology 2025;31(2):409-425
Background/Aims:
Metabolic dysfunction-associated steatohepatitis (MASH) is a significant risk factor for gallstone formation, but mechanisms underlying MASH-related gallstone formation remain unclear. Golgi membrane protein 1 (GOLM1) participates in hepatic cholesterol metabolism and is upregulated in MASH. Here, we aimed to explore the role of GOLM1 in MASH-related gallstone formation.
Methods:
The UK Biobank cohort was used for etiological analysis. GOLM1 knockout (GOLM1-/-) and wild-type (WT) mice were fed with a high-fat diet (HFD). Livers were excised for histology and immunohistochemistry analysis. Gallbladders were collected to calculate incidence of cholesterol gallstones (CGSs). Biles were collected for biliary lipid analysis. HepG2 cells were used to explore underlying mechanisms. Human liver samples were used for clinical validation.
Results:
MASH patients had a greater risk of cholelithiasis. All HFD-fed mice developed MASH, and the incidence of gallstones was 16.7% and 75.0% in GOLM1-/- and WT mice, respectively. GOLM1-/- decreased biliary cholesterol concentration and output. In vivo and in vitro assays confirmed that GOLM1 facilitated cholesterol efflux through upregulating ATP binding cassette transporter subfamily G member 5 (ABCG5). Mechanistically, GOLM1 translocated into nucleus to promote osteopontin (OPN) transcription, thus stimulating ABCG5-mediated cholesterol efflux. Moreover, GOLM1 was upregulated by interleukin-1β (IL-1β) in a dose-dependent manner. Finally, we confirmed that IL-1β, GOLM1, OPN, and ABCG5 were enhanced in livers of MASH patients with CGSs.
Conclusions
In MASH livers, upregulation of GOLM1 by IL-1β increases ABCG5-mediated cholesterol efflux in an OPN-dependent manner, promoting CGS formation. GOLM1 has the potential to be a molecular hub interconnecting MASH and CGSs.
10.Factors related to type 2 diabetes mellitus with frailty in the elderly
Bin GUO ; Xin LIAO ; Dong ZHANG ; Lihong MA
Journal of Public Health and Preventive Medicine 2025;36(4):157-160
Objective To investigate and analyze clinical characteristics and related factors of elderly patients with type 2 diabetes mellitus (T2DM) and frailty. Methods A total of 310 elderly patients with T2DM admitted to the hospital from January 2023 to June 2024 were selected as the research subjects. Their general information and disease-related information was collected through questionnaires. The Fried Frailty Scale was used to evaluate frailty status, and the patients were divided into frailty group and non-frailty group based on the Fried Frailty Scale score. Factors related to T2DM with frailty in the elderly were analyzed. Results The incidence of frailty in this study was 31.61% (98/310), and those without frailty accounted for 68.39% (212/310). There were statistically significant differences between the two groups in terms of age, body mass index (BMI), Self-rating Depression Scale (SDS) score, number of chronic complications, glycosylated hemoglobin (HbA1c) level, hemoglobin level, Mini-Nutritional Assessment-Short Form (MNA-SF) score, and Charlson Comorbidity Index (CCI) score (P<0.05). Multivariate logistic regression analysis showed that age, HbA1c level, SDS score, MNA-SF score, and CCI score were risk factors for frailty in elderly patients with T2DM (P<0.05). Conclusion The incidence of frailty is relatively high in elderly patients with T2DM. It is influenced by factors such as age , SDS score , HbA1c level , MNA-SF score and CCI score, and deserves clinical attention.


Result Analysis
Print
Save
E-mail