1.Hypoglycemic Effect and Mechanism of ICK Pattern Peptides
Lin-Fang CHEN ; Jia-Fan ZHANG ; Ye-Ning GUO ; Hui-Zhong HUANG ; Kang-Hong HU ; Chen-Guang YAO
Progress in Biochemistry and Biophysics 2025;52(1):50-60
Diabetes is a very complex endocrine disease whose common feature is the increase in blood glucose concentration. Persistent hyperglycemia can lead to blindness, kidney and heart disease, neurodegeneration, and many other serious complications that have a significant impact on human health and quality of life. The number of people with diabetes is increasing yearly. The global diabetes prevalence in 20-79 year olds in 2021 was estimated to be 10.5% (536.6 million), and it will rise to 12.2% (783.2 million) in 2045. The main modes of intervention for diabetes include medication, dietary management, and exercise conditioning. Medication is the mainstay of treatment. Marketed diabetes drugs such as metformin and insulin, as well as GLP-1 receptor agonists, are effective in controlling blood sugar levels to some extent, but the preventive and therapeutic effects are still unsatisfactory. Peptide drugs have many advantages such as low toxicity, high target specificity, and good biocompatibility, which opens up new avenues for the treatment of diabetes and other diseases. Currently, insulin and its analogs are by far the main life-saving drugs in clinical diabetes treatment, enabling effective control of blood glucose levels, but the risk of hypoglycemia is relatively high and treatment is limited by the route of delivery. New and oral anti-diabetic drugs have always been a market demand and research hotspot. Inhibitor cystine knot (ICK) peptides are a class of multifunctional cyclic peptides. In structure, they contain three conserved disulfide bonds (C3-C20, C7-C22, and C15-C32) form a compact “knot” structure, which can resist degradation of digestive protease. Recent studies have shown that ICK peptides derived from legume, such as PA1b, Aglycin, Vglycin, Iglycin, Dglycin, and aM1, exhibit excellent regulatory activities on glucose and lipid metabolism at the cellular and animal levels. Mechanistically, ICK peptides promote glucose utilization by muscle and liver through activation of IR/AKT signaling pathway, which also improves insulin resistance. They can repair the damaged pancrease through activation of PI3K/AKT/Erk signaling pathway, thus lowering blood glucose. The biostability and hypoglycemic efficacy of the ICK peptides meet the requirements for commercialization of oral drugs, and in theory, they can be developed into natural oral anti-diabetes peptide drugs. In this review, the structural properties, activity and mechanism of ICK pattern peptides in regulating glucose and lipid metabolism were summaried, which provided a reference for the development of new oral peptides for diabetes.
2.In situ Analytical Techniques for Membrane Protein Interactions
Zi-Yuan KANG ; Tong YU ; Chao LI ; Xue-Hua ZHANG ; Jun-Hui GUO ; Qi-Chang LI ; Jing-Xing GUO ; Hao XIE
Progress in Biochemistry and Biophysics 2025;52(5):1206-1218
Membrane proteins are integral components of cellular membranes, accounting for approximately 30% of the mammalian proteome and serving as targets for 60% of FDA-approved drugs. They are critical to both physiological functions and disease mechanisms. Their functional protein-protein interactions form the basis for many physiological processes, such as signal transduction, material transport, and cell communication. Membrane protein interactions are characterized by membrane environment dependence, spatial asymmetry, weak interaction strength, high dynamics, and a variety of interaction sites. Therefore, in situ analysis is essential for revealing the structural basis and kinetics of these proteins. This paper introduces currently available in situ analytical techniques for studying membrane protein interactions and evaluates the characteristics of each. These techniques are divided into two categories: label-based techniques (e.g., co-immunoprecipitation, proximity ligation assay, bimolecular fluorescence complementation, resonance energy transfer, and proximity labeling) and label-free techniques (e.g., cryo-electron tomography, in situ cross-linking mass spectrometry, Raman spectroscopy, electron paramagnetic resonance, nuclear magnetic resonance, and structure prediction tools). Each technique is critically assessed in terms of its historical development, strengths, and limitations. Based on the authors’ relevant research, the paper further discusses the key issues and trends in the application of these techniques, providing valuable references for the field of membrane protein research. Label-based techniques rely on molecular tags or antibodies to detect proximity or interactions, offering high specificity and adaptability for dynamic studies. For instance, proximity ligation assay combines the specificity of antibodies with the sensitivity of PCR amplification, while proximity labeling enables spatial mapping of interactomes. Conversely, label-free techniques, such as cryo-electron tomography, provide near-native structural insights, and Raman spectroscopy directly probes molecular interactions without perturbing the membrane environment. Despite advancements, these methods face several universal challenges: (1) indirect detection, relying on proximity or tagged proxies rather than direct interaction measurement; (2) limited capacity for continuous dynamic monitoring in live cells; and (3) potential artificial influences introduced by labeling or sample preparation, which may alter native conformations. Emerging trends emphasize the multimodal integration of complementary techniques to overcome individual limitations. For example, combining in situ cross-linking mass spectrometry with proximity labeling enhances both spatial resolution and interaction coverage, enabling high-throughput subcellular interactome mapping. Similarly, coupling fluorescence resonance energy transfer with nuclear magnetic resonance and artificial intelligence (AI) simulations integrates dynamic structural data, atomic-level details, and predictive modeling for holistic insights. Advances in AI, exemplified by AlphaFold’s ability to predict interaction interfaces, further augment experimental data, accelerating structure-function analyses. Future developments in cryo-electron microscopy, super-resolution imaging, and machine learning are poised to refine spatiotemporal resolution and scalability. In conclusion, in situ analysis of membrane protein interactions remains indispensable for deciphering their roles in health and disease. While current technologies have significantly advanced our understanding, persistent gaps highlight the need for innovative, integrative approaches. By synergizing experimental and computational tools, researchers can achieve multiscale, real-time, and perturbation-free analyses, ultimately unraveling the dynamic complexity of membrane protein networks and driving therapeutic discovery.
3.Research progress on the chemical composition and antidepressant mechanism of volatile oils of traditional Chinese medicine
Yifei ZHANG ; Lu CHENG ; Mingshi REN ; Dao GUO ; Fengjiao KUANG ; Zonghua KANG ; Jianguang LUO ; Feihua WU
Journal of China Pharmaceutical University 2025;56(1):22-30
Depressive disorder is a mental illness characterized by poor mood and cognitive dysfunction caused by a range of complicated factors. Antidepressants have strong short-term efficacy in clinical application, yet with significant adverse effects and resistance in long-term use. Essential oils are small molecular compounds mainly composed of monoterpenes and sesquiterpenes, most of which are characterized by aromatic odors, easy permeability through the blood-brain barrier, and low toxic side effects. Volatile oil from traditional Chinese medicine can regulate neurotransmitter monoamine, hypothalamic-pituitary-adrenal axis, brain-derived neurotrophic factor, neuroinflammation and oxidative stress, and intestinal microbiota-gut-brain axis to exert an antidepressant effect through multiple pathways and targets. This review summarizes the main antidepressant chemical components of essential oil of traditional Chinese medicine, their pharmacological mechanisms and clinical application, aiming to provide some reference for further development and clinical application of essential oil of traditional Chinese medicine.
4.Research progress on the mechanism of traditional Chinese medicine monomers acting on myelosuppression after chemotherapy based on the four properties theory
Sihan ZHANG ; Tingting WANG ; Zhifen ZHAO ; Hanyu KANG ; Jiaqi JI ; Ziqiang GUO ; Tong LIU ; Shiqing JIANG
China Pharmacy 2025;36(18):2341-2347
Chemotherapy is an important treatment for tumors, but most patients experience varying degrees of chemotherapy- induced myelosuppression. Four properties theory of traditional Chinese medicine (TCM) has unique advantages in improving chemotherapy-induced myelosuppression. The monomers from TCM with different properties and flavors, such as cold-natured (e.g. Scutellaria baicalensis, Rhus chinensis), cool-natured (e.g. Ligustrum lucidum, Ophiopogon japonicus), warm-natured (e.g. Panax ginseng, Epimedium brevicornu, Curcuma longa, Angelica sinensis), hot-natured (e.g. Cinnamomum cassia, Aconitum carmichaeli), and neutral-natured (e. g. donkey-hide gelatin, Lycium barbarum, Rhodiola rosea, fungi), can exert anti- myelosuppressive effects by reducing damage to hematopoietic stem/progenitor cells, improving the bone marrow hematopoietic microenvironment, inhibiting the oxidative stress response, regulating signaling pathways, so as to ultimately repaire inflammatory damage and improve hematopoietic function, thereby playing an anti-myelosuppressive role.
5.Mechanism of action of the nucleotide-binding oligomerization domain-like receptor protein 3 inflammasome and its regulation in liver injury.
Yifan LU ; Tianyu WANG ; Bo YU ; Kang XIA ; Jiayu GUO ; Yiting LIU ; Xiaoxiong MA ; Long ZHANG ; Jilin ZOU ; Zhongbao CHEN ; Jiangqiao ZHOU ; Tao QIU
Chinese Medical Journal 2025;138(9):1061-1071
Nucleotide-binding oligomerization domain (NOD)-like receptor protein 3 (NLRP3) is a cytosolic pattern recognition receptor that recognizes multiple pathogen-associated molecular patterns and damage-associated molecular patterns. It is a cytoplasmic immune factor that responds to cellular stress signals, and it is usually activated after infection or inflammation, forming an NLRP3 inflammasome to protect the body. Aberrant NLRP3 inflammasome activation is reportedly associated with some inflammatory diseases and metabolic diseases. Recently, there have been mounting indications that NLRP3 inflammasomes play an important role in liver injuries caused by a variety of diseases, specifically hepatic ischemia/reperfusion injury, hepatitis, and liver failure. Herein, we summarize new research pertaining to NLRP3 inflammasomes in hepatic injury, hepatitis, and liver failure. The review addresses the potential mechanisms of action of the NLRP3 inflammasome, and its regulation in these liver diseases.
Humans
;
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
Inflammasomes/physiology*
;
Animals
;
Liver Diseases/metabolism*
;
Liver/metabolism*
;
Reperfusion Injury/metabolism*
6.Equivalence of SYN008 versus omalizumab in patients with refractory chronic spontaneous urticaria: A multicenter, randomized, double-blind, parallel-group, active-controlled phase III study.
Jingyi LI ; Yunsheng LIANG ; Wenli FENG ; Liehua DENG ; Hong FANG ; Chao JI ; Youkun LIN ; Furen ZHANG ; Rushan XIA ; Chunlei ZHANG ; Shuping GUO ; Mao LIN ; Yanling LI ; Shoumin ZHANG ; Xiaojing KANG ; Liuqing CHEN ; Zhiqiang SONG ; Xu YAO ; Chengxin LI ; Xiuping HAN ; Guoxiang GUO ; Qing GUO ; Xinsuo DUAN ; Jie LI ; Juan SU ; Shanshan LI ; Qing SUN ; Juan TAO ; Yangfeng DING ; Danqi DENG ; Fuqiu LI ; Haiyun SUO ; Shunquan WU ; Jingbo QIU ; Hongmei LUO ; Linfeng LI ; Ruoyu LI
Chinese Medical Journal 2025;138(16):2040-2042
7.Characteristics, microbial composition, and mycotoxin profile of fermented traditional Chinese medicines.
Hui-Ru ZHANG ; Meng-Yue GUO ; Jian-Xin LYU ; Wan-Xuan ZHU ; Chuang WANG ; Xin-Xin KANG ; Jiao-Yang LUO ; Mei-Hua YANG
China Journal of Chinese Materia Medica 2025;50(1):48-57
Fermented traditional Chinese medicine(TCM) has a long history of medicinal use, such as Sojae Semen Praeparatum, Arisaema Cum Bile, Pinelliae Rhizoma Fermentata, red yeast rice, and Jianqu. Fermentation technology was recorded in the earliest TCM work, Shen Nong's Classic of the Materia Medica. Microorganisms are essential components of the fermentation process. However, the contamination of fermented TCM by toxigenic fungi and mycotoxins due to unstandardized fermentation processes seriously affects the quality of TCM and poses a threat to the life and health of consumers. In this paper, the characteristics, microbial composition, and mycotoxin profile of fermented TCM are systematically summarized to provide a theoretical basis for its quality and safety control.
Fermentation
;
Mycotoxins/analysis*
;
Drugs, Chinese Herbal/analysis*
;
Fungi/classification*
;
Bacteria/genetics*
;
Drug Contamination
;
Medicine, Chinese Traditional
8.Ameliorative effects of Lycii Fructus-Chrysanthemi Flos at different ratios on retinal damage in mice.
Bing LI ; Sheng GUO ; Yue ZHU ; Xue-Sen WANG ; Dan-Dan WEI ; Hong-Jie KANG ; Wen-Hua ZHANG ; Jin-Ao DUAN
China Journal of Chinese Materia Medica 2025;50(3):732-740
This study aimed to compare the ameliorative effects of Lycii Fructus and Chrysanthemi Flos at different ratios on retinal damage in mice and to elucidate the underlying mechanisms. A retinal injury model was established by intraperitoneal injection of sodium iodate(NaIO_3) solution. The mice were divided into the following groups: blank group, model group, positive drug(AREDS 2) group, low-and high-dose groups of Lycii Fructus and Chrysanthemi Flos at 1∶1, low-and high-dose groups at 3∶1, and low-and high-dose groups at 1∶3. Administration was carried out 15 days after modeling. The visual acuity of the mice was assessed using the black-and-white box test. The fundus was observed using an optical coherence tomography device, and retinal thickness was measured. HE staining was used to observe the morphology and pathological changes of the retina. The levels of oxidative factors in serum and ocular tissues were measured using assay kits. The levels of inflammatory factors in serum and ocular tissues were detected by enzyme-linked immunosorbent assay(ELISA), and the expression of Nrf2, HO-1, and NF-κB proteins in ocular tissues was analyzed by Western blot. The results showed that after administration of Lycii Fructus and Chrysanthemi Flos at different ratios, the model group showed improved retinal thinning and disordered arrangement of retinal layers, elevated content of SOD and GSH in the serum and ocular tissues, and reduced levels of MDA, TNF-α, IL-1β, and IL-6. Lycii Fructus and Chrysanthemi Flos at 1∶1 and 1∶3 showed better improvement effects. The combination significantly upregulated the expression levels of Nrf2 and HO-1 and downregulated the expression of NF-κB p65. These results indicate that Lycii Fructus and Chrysanthemi Flos at different ratios can improve retinal damage, reduce oxidative stress, and alleviate inflammation in both the body and ocular tissues of mice. The mechanism may be related to the regulation of the Nrf2/HO-1 and NF-κB signaling pathways in ocular tissues. These findings provide a theoretical basis for the clinical application of Lycii Fructus and Chrysanthemi Flos in the treatment of dry age-related macular degeneration.
Animals
;
Mice
;
Retina/injuries*
;
Male
;
Lycium/chemistry*
;
Drugs, Chinese Herbal/administration & dosage*
;
Chrysanthemum/chemistry*
;
NF-kappa B/genetics*
;
Humans
;
Retinal Diseases/metabolism*
;
NF-E2-Related Factor 2/metabolism*
;
Oxidative Stress/drug effects*
;
Flowers/chemistry*
;
Heme Oxygenase-1/genetics*
9.Current situation of medicinal animal breeding and research progress in sustainable utilization of resources.
Cheng-Cai ZHANG ; Jia WANG ; Yu-Jie ZHOU ; Xiao-Yu DAI ; Xiu-Fu WAN ; Chuan-Zhi KANG ; De-Hua WU ; Jia-Hui SUN ; Sheng WANG ; Lan-Ping GUO
China Journal of Chinese Materia Medica 2025;50(16):4397-4406
Traditional Chinese medicine(TCM) is the pillar for the development of motherland medicine, and animal medicine has a long history of application in China, characterized by wide resources, strong activity, definite efficacy, and great benefits. It has significant potential and important status in the consumption market of raw materials of TCM. In the context of global climate change, farming system alterations, and low renewability, the depletion of wild medicinal animal resources has accelerated. Accordingly, the conservation and sustainable utilization of wild resources of animal medicinal materials has become a problem that garners increasing attention and urgently needs to be solved. This paper summarizes the current situation of domestic and foreign medicinal animal breeding and research progress in industrial application in recent years and points out the issues related to standardized breeding, germplasm selection and breeding, and quality evaluation standards for medicinal animals. Furthermore, this paper discusses standardized breeding, quality standards, resource protection and utilization, and the search for alternative resources for rare and endangered medicinal animals. It proposes that researchers should systematically carry out in-depth basic research on animal medicine, improve the breeding scale and level of medicinal animals, employ modern technology to enhance the quality standards of medicinal materials, and strengthen the research and development of alternative resources. This approach aims to effectively address the relationship between protection and utilization and make a significant contribution to the sustainable development of medicinal animal resources and the animal-based Chinese medicinal material industry.
Animals
;
Breeding
;
China
;
Medicine, Chinese Traditional
;
Conservation of Natural Resources
10.Early impact of robot-assisted total knee arthroplasty on the treatment of varus knee arthritis.
Xin YANG ; Qing-Hao CHENG ; Fu-Qiang ZHANG ; Hua FAN ; Fu-Kang ZHANG ; Zhuang-Zhuang ZHANG ; Yong-Ze YANG ; An-Ren ZHANG ; Hong-Zhang GUO
China Journal of Orthopaedics and Traumatology 2025;38(4):343-351
OBJECTIVE:
To investigate the clinical efficacy and advantages of robot-assisted total knee arthroplasty (TKA) in patients with varus knee osteoarthritis.
METHODS:
Between October 2022 and June 2023, a total of 59 patients with severe knee osteoarthritis resulting in varus were treated with total knee arthroplasty, aged from 59 to 81 years with an average (70.90±4.63) years, including 19 mals and 40 females. The patients were divided into two groups based on the surgical method used:28 patients in the robot group and 31 patients in the traditional group. The robot group consisted of 8 males and 20 femalse patients, with an average age of (70.54±4.80) years and an average disease duration of (14.89±8.72) months. The traditional group consisted of 11 males and 20 females patients, with an average age of (71.39±4.5) years and an average disease duration of (12.32±6.73) months. The operative duration, amount of bleeding during the operation, postoperative activity time after the operation, hip-knee-ankle angle (HKA), lateral distal femoral angle (LDFA), medial proximal tibial angle (MPTA), and complications were compared between the two groups before and after the operation. Lateral tibia component (LTC), frontal tibia component (FTC), frontal femoral component (FFC) and lateral femoral component (LFC) were measured 6 months after operation Additionally, the degree of knee joint motility, American Knee Society score (KSS), and visual analogue scale(VAS) were compared before and after the operation.
RESULTS:
All patients had gradeⅠwound healing without any complications, and all patients were followed up for 6 to 8 months, with an average of (6.5±1.5) months. There were no significant differences preoperative imaging evaluation indexes (including HKA, LDFA, and MPTA), preoperative knee mobility, preoperative VAS, and preoperative KSS between the two groups (P>0.05). Comparing the operation time (109.11±7.16) min vs. (83.90±7.85) min, length of the incision (16.60±2.33) cm vs. (14.47±1.41) cm, intraoperative bleeding (106.93±6.15) ml vs. (147.97±7.62) ml, postoperative activity time (17.86±1.84) h vs. (21.77±2.68) h, between the two groups showed statistically significant differences (P<0.05). There were significant differences in FFC (88.96±0.84)° vs. (87.93±1.09)° and LFC (88.57±1.10)° vs. (87.16±1.2)° between the two groups at 6 months after operation (P<0.05). The robotic group 1, 3, 6 months after KSS (75.96±3.96), (81.53±3.78), (84.50±3.29) scores, VAS (3.68±0.67), (2.43±0.79), (0.54±0.64), knee joint mobility (113.32±4.72) °, (123.93±3.99) °, (135.36±2.34) °;Traditional group KSS (73.77±4.18), (76.48±3.60), (80.19±3.28) scores, VAS (4.16±1.04), (3.03±0.75), (1.42±0.76) scores, knee joint mobility (109.19±6.95) °, (119.94±6.08) °, (134.48±2.14) °. Compared to before surgery, both groups showed significant improvement in KSS, VAS and knee mobility during the three follow-up visits (P<0.001). Additionally, postoperative HKA (180.39±1.95)° vs. (178.52±2.23)°, LDFA (89.67±0.63) ° vs. (89.63±0.63)°, and MPTA (89.44±0.55)° vs. (89.29±0.60)° were significantly improved in both groups compared to before surgery (P<0.001). The robotic group had higher KSS than the traditional group at 1, 3, and 6 months after surgery (P<0.05). The robotic group also had lower VAS than the traditional group at 1, 3, and 6 months after surgery (P<0.05). Furthermore, knee mobility was higher in the robotic group than those in the traditional group at 1 and 6 months after surgery (P<0.05), but there was no significant difference between the two groups at 6 months after surgery.
CONCLUSION
Robot-assisted total knee arthroplasty is a safe and effective method for total knee replacement. The use of robotics can improve the limb axis and prosthesis alignment for patients with preoperative varus deformity, resulting in better clinical and imaging outcomes compared to the conventional group.
Humans
;
Female
;
Male
;
Arthroplasty, Replacement, Knee/methods*
;
Aged
;
Middle Aged
;
Osteoarthritis, Knee/physiopathology*
;
Aged, 80 and over
;
Robotic Surgical Procedures/methods*

Result Analysis
Print
Save
E-mail