1.Research progress in machine learning in processing and quality evaluation of traditional Chinese medicine decoction pieces.
Han-Wen ZHANG ; Yue-E LI ; Jia-Wei YU ; Qiang GUO ; Ming-Xuan LI ; Yu LI ; Xi MEI ; Lin LI ; Lian-Lin SU ; Chun-Qin MAO ; De JI ; Tu-Lin LU
China Journal of Chinese Materia Medica 2025;50(13):3605-3614
Traditional Chinese medicine(TCM) decoction pieces are a core carrier for the inheritance and innovation of TCM, and their quality and safety are critical to public health and the sustainable development of the industry. Conventional quality control models, while having established a well-developed system through long-term practice, still face challenges such as relatively long inspection cycles, insufficient objectivity in characterizing complex traits, and urgent needs for improving the efficiency of integrating multidimensional quality information when confronted with the dual demands of large-scale production and precision quality control. With the rapid development of artificial intelligence, machine learning can deeply analyze multidimensional data of the morphology, spectroscopy, and chemical fingerprints of decoction pieces by constructing high-dimensional feature space analysis models, significantly improving the standardization level and decision-making efficiency of quality evaluation. This article reviews the research progress in the application of machine learning in the processing, production, and rapid quality evaluation of TCM decoction pieces. It further analyzes current challenges in technological implementation and proposes potential solutions, offering theoretical and technical references to advance the digital and intelligent transformation of the industry.
Machine Learning
;
Drugs, Chinese Herbal/standards*
;
Quality Control
;
Medicine, Chinese Traditional/standards*
;
Humans
2.Shuangshi Tonglin Capsule Improves Prostate Fibrosis through Nrf2/TGF-β1 Signaling Pathways.
Zi-Qiang WANG ; Peng MAO ; Bao-An WANG ; Qi GUO ; Hang LIU ; Yong YUAN ; Chuan WANG ; Ji-Ping LIU ; Xing-Mei ZHU ; Hao WEI
Chinese journal of integrative medicine 2025;31(6):518-528
OBJECTIVE:
To investigate the effect and mechanism of Shuangshi Tonglin Capsules (SSTL) in the treatment of prostate fibrosis (PF).
METHODS:
Human prostate stromal cells (WPMY-1) were used for in vitro experiments to establish PF cell models induced with estradiol (E2). The cell proliferation, migration and clonogenic capacity were determined by cell counting kit-8, scratch assay, and crystal violet staining, respectively. Sprague-Dawley rats were used for in vivo experiments. The changes in histomorphology and organ index of rat prostate by SSTL were determined. Pathologic changes and collagen deposition changes in rat prostate were observed by haematoxylin and eosin (HE) and Masson staining. Enzyme-linked immunosorbent assay kits were used to determine changes in rat PF markers fibroblast growth factor-23 (FGF-23), E2 and prostate specific antigen (PSA). Mechanistically, changes in oxidative stress indicators by SSTL were determined in WPMY-1 cells and PF rats. Then the expressions of nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) and transforming growth factor-β1 (TGF-β1)/Smad pathway-related proteins as well as Nrf2 and TGF-β1 mRNA were further detected by Western blot or quantitative real-time polymerase chain reaction both in vivo and in vitro.
RESULTS:
In the efficacy study, SSTL significantly reduced the proliferation, migration, and clonogenic ability of cells, improved the morphology of the glandular tissue, significantly reduced the prostate index, reduced glandular fibrous tissue and collagen deposition, and resulted in a significant decrease in the levels of FGF-23, E2 and PSA (P<0.01 or P<0.05). In the mechanistic study, SSTL ameliorated oxidative stress by significantly increasing superoxide dismutase and glutathione peroxidase levels and decreasing malondialdehyde level in WPMY-1 cells and rats (P<0.01 or P<0.05). SSTL significantly elevated the expressions of Nrf2, HO-1, NAD(P)H quinone oxidoreductase 1 (NQO-1), and Smad7 proteins in both cells and rats, and significantly decreased the expressions of TGF-β1, collagen I, α-smooth muscle actin and Smad4 proteins (P<0.01 or P<0.05). SSTL also elevated the content of Nrf2 mRNA and decreased the content of TGF-β1 mRNA in cells and rats (P<0.01 or P<0.05). The Nrf2 inhibitor ML385 was added in in vitro experiments to further validate the pathway relevance.
CONCLUSION
SSTL was effective in improving PF in vivo and in vitro, and its mechanism of action may function through the Nrf2/TGF-β1 signaling pathway.
Male
;
NF-E2-Related Factor 2/metabolism*
;
Animals
;
Drugs, Chinese Herbal/therapeutic use*
;
Signal Transduction/drug effects*
;
Transforming Growth Factor beta1/metabolism*
;
Rats, Sprague-Dawley
;
Humans
;
Fibrosis
;
Prostate/drug effects*
;
Cell Proliferation/drug effects*
;
Capsules
;
Cell Movement/drug effects*
;
Oxidative Stress/drug effects*
;
Rats
3.A multicenter study of neonatal stroke in Shenzhen,China
Li-Xiu SHI ; Jin-Xing FENG ; Yan-Fang WEI ; Xin-Ru LU ; Yu-Xi ZHANG ; Lin-Ying YANG ; Sheng-Nan HE ; Pei-Juan CHEN ; Jing HAN ; Cheng CHEN ; Hui-Ying TU ; Zhang-Bin YU ; Jin-Jie HUANG ; Shu-Juan ZENG ; Wan-Ling CHEN ; Ying LIU ; Yan-Ping GUO ; Jiao-Yu MAO ; Xiao-Dong LI ; Qian-Shen ZHANG ; Zhi-Li XIE ; Mei-Ying HUANG ; Kun-Shan YAN ; Er-Ya YING ; Jun CHEN ; Yan-Rong WANG ; Ya-Ping LIU ; Bo SONG ; Hua-Yan LIU ; Xiao-Dong XIAO ; Hong TANG ; Yu-Na WANG ; Yin-Sha CAI ; Qi LONG ; Han-Qiang XU ; Hui-Zhan WANG ; Qian SUN ; Fang HAN ; Rui-Biao ZHANG ; Chuan-Zhong YANG ; Lei DOU ; Hui-Ju SHI ; Rui WANG ; Ping JIANG ; Shenzhen Neonatal Data Network
Chinese Journal of Contemporary Pediatrics 2024;26(5):450-455
Objective To investigate the incidence rate,clinical characteristics,and prognosis of neonatal stroke in Shenzhen,China.Methods Led by Shenzhen Children's Hospital,the Shenzhen Neonatal Data Collaboration Network organized 21 institutions to collect 36 cases of neonatal stroke from January 2020 to December 2022.The incidence,clinical characteristics,treatment,and prognosis of neonatal stroke in Shenzhen were analyzed.Results The incidence rate of neonatal stroke in 21 hospitals from 2020 to 2022 was 1/15 137,1/6 060,and 1/7 704,respectively.Ischemic stroke accounted for 75%(27/36);boys accounted for 64%(23/36).Among the 36 neonates,31(86%)had disease onset within 3 days after birth,and 19(53%)had convulsion as the initial presentation.Cerebral MRI showed that 22 neonates(61%)had left cerebral infarction and 13(36%)had basal ganglia infarction.Magnetic resonance angiography was performed for 12 neonates,among whom 9(75%)had involvement of the middle cerebral artery.Electroencephalography was performed for 29 neonates,with sharp waves in 21 neonates(72%)and seizures in 10 neonates(34%).Symptomatic/supportive treatment varied across different hospitals.Neonatal Behavioral Neurological Assessment was performed for 12 neonates(33%,12/36),with a mean score of(32±4)points.The prognosis of 27 neonates was followed up to around 12 months of age,with 44%(12/27)of the neonates having a good prognosis.Conclusions Ischemic stroke is the main type of neonatal stroke,often with convulsions as the initial presentation,involvement of the middle cerebral artery,sharp waves on electroencephalography,and a relatively low neurodevelopment score.Symptomatic/supportive treatment is the main treatment method,and some neonates tend to have a poor prognosis.
4.National bloodstream infection bacterial resistance surveillance report (2022) : Gram-negative bacteria
Zhiying LIU ; Yunbo CHEN ; Jinru JI ; Chaoqun YING ; Qing YANG ; Haishen KONG ; Haifeng MAO ; Hui DING ; Pengpeng TIAN ; Jiangqin SONG ; Yongyun LIU ; Jiliang WANG ; Yan JIN ; Yuanyuan DAI ; Yizheng ZHOU ; Yan GENG ; Fenghong CHEN ; Lu WANG ; Yanyan LI ; Dan LIU ; Peng ZHANG ; Junmin CAO ; Xiaoyan LI ; Dijing SONG ; Xinhua QIANG ; Yanhong LI ; Qiuying ZHANG ; Guolin LIAO ; Ying HUANG ; Baohua ZHANG ; Liang GUO ; Aiyun LI ; Haiquan KANG ; Donghong HUANG ; Sijin MAN ; Zhuo LI ; Youdong YIN ; Kunpeng LIANG ; Haixin DONG ; Donghua LIU ; Hongyun XU ; Yinqiao DONG ; Rong XU ; Lin ZHENG ; Shuyan HU ; Jian LI ; Qiang LIU ; Liang LUAN ; Jilu SHEN ; Lixia ZHANG ; Bo QUAN ; Xiaoping YAN ; Xiaoyan QI ; Dengyan QIAO ; Weiping LIU ; Xiusan XIA ; Ling MENG ; Jinhua LIANG ; Ping SHEN ; Yonghong XIAO
Chinese Journal of Clinical Infectious Diseases 2024;17(1):42-57
Objective:To report the results of national surveillance on the distribution and antimicrobial resistance profile of clinical Gram-negative bacteria isolates from bloodstream infections in China in 2022.Methods:The clinical isolates of Gram-negative bacteria from blood cultures in member hospitals of national bloodstream infection Bacterial Resistant Investigation Collaborative System(BRICS)were collected during January 2022 to December 2022. Antibiotic susceptibility tests were conducted by agar dilution or broth dilution methods recommended by Clinical and Laboratory Standards Institute(CLSI). WHONET 5.6 and SPSS 25.0 software were used to analyze the data.Results:During the study period,9 035 strains of Gram-negative bacteria were collected from 51 hospitals,of which 7 895(87.4%)were Enterobacteriaceae and 1 140(12.6%)were non-fermenting bacteria. The top 5 bacterial species were Escherichia coli( n=4 510,49.9%), Klebsiella pneumoniae( n=2 340,25.9%), Pseudomonas aeruginosa( n=534,5.9%), Acinetobacter baumannii complex( n=405,4.5%)and Enterobacter cloacae( n=327,3.6%). The ESBLs-producing rates in Escherichia coli, Klebsiella pneumoniae and Proteus spp. were 47.1%(2 095/4 452),21.0%(427/2 033)and 41.1%(58/141),respectively. The prevalence of carbapenem-resistant Escherichia coli(CREC)and carbapenem-resistant Klebsiella pneumoniae(CRKP)were 1.3%(58/4 510)and 13.1%(307/2 340);62.1%(36/58)and 9.8%(30/307)of CREC and CRKP were resistant to ceftazidime/avibactam combination,respectively. The prevalence of carbapenem-resistant Acinetobacter baumannii(CRAB)complex was 59.5%(241/405),while less than 5% of Acinetobacter baumannii complex was resistant to tigecycline and polymyxin B. The prevalence of carbapenem-resistant Pseudomonas aeruginosa(CRPA)was 18.4%(98/534). There were differences in the composition ratio of Gram-negative bacteria in bloodstream infections and the prevalence of main Gram-negative bacteria resistance among different regions,with statistically significant differences in the prevalence of CRKP and CRPA( χ2=20.489 and 20.252, P<0.001). The prevalence of CREC,CRKP,CRPA,CRAB,ESBLs-producing Escherichia coli and Klebsiella pneumoniae were higher in provinicial hospitals than those in municipal hospitals( χ2=11.953,81.183,10.404,5.915,12.415 and 6.459, P<0.01 or <0.05),while the prevalence of CRPA was higher in economically developed regions(per capita GDP ≥ 92 059 Yuan)than that in economically less-developed regions(per capita GDP <92 059 Yuan)( χ2=6.240, P=0.012). Conclusions:The proportion of Gram-negative bacteria in bloodstream infections shows an increasing trend,and Escherichia coli is ranked in the top,while the trend of CRKP decreases continuously with time. Decreasing trends are noted in ESBLs-producing Escherichia coli and Klebsiella pneumoniae. Low prevalence of carbapenem resistance in Escherichia coli and high prevalence in CRAB complex have been observed. The composition ratio and antibacterial spectrum of bloodstream infections in different regions of China are slightly different,and the proportion of main drug resistant bacteria in provincial hospitals is higher than those in municipal hospitals.
5.National bloodstream infection bacterial resistance surveillance report(2022): Gram-positive bacteria
Chaoqun YING ; Yunbo CHEN ; Jinru JI ; Zhiying LIU ; Qing YANG ; Haishen KONG ; Haifeng MAO ; Hui DING ; Pengpeng TIAN ; Jiangqin SONG ; Yongyun LIU ; Jiliang WANG ; Yan JIN ; Yuanyuan DAI ; Yizheng ZHOU ; Yan GENG ; Fenghong CHEN ; Lu WANG ; Yanyan LI ; Dan LIU ; Peng ZHANG ; Junmin CAO ; Xiaoyan LI ; Dijing SONG ; Xinhua QIANG ; Yanhong LI ; Qiuying ZHANG ; Guolin LIAO ; Ying HUANG ; Baohua ZHANG ; Liang GUO ; Aiyun LI ; Haiquan KANG ; Donghong HUANG ; Sijin MAN ; Zhuo LI ; Youdong YIN ; Kunpeng LIANG ; Haixin DONG ; Donghua LIU ; Hongyun XU ; Yinqiao DONG ; Rong XU ; Lin ZHENG ; Shuyan HU ; Jian LI ; Qiang LIU ; Liang LUAN ; Jilu SHEN ; Lixia ZHANG ; Bo QUAN ; Xiaoping YAN ; Xiaoyan QI ; Dengyan QIAO ; Weiping LIU ; Xiusan XIA ; Ling MENG ; Jinhua LIANG ; Ping SHEN ; Yonghong XIAO
Chinese Journal of Clinical Infectious Diseases 2024;17(2):99-112
Objective:To report the results of national surveillance on the distribution and antimicrobial resistance profile of clinical Gram-positive bacteria isolates from bloodstream infections in China in 2022.Methods:The clinical isolates of Gram-positive bacteria from blood cultures in member hospitals of National Bloodstream Infection Bacterial Resistant Investigation Collaborative System(BRICS)were collected during January 2022 to December 2022. Antibiotic susceptibility tests were conducted by agar dilution or broth dilution methods recommended by Clinical and Laboratory Standards Institute(CLSI). WHONET 5.6 and SPSS 25.0 software were used to analyze the data.Results:A total of 3 163 strains of Gram-positive pathogens were collected from 51 member units,and the top five bacteria were Staphylococcus aureus( n=1 147,36.3%),coagulase-negative Staphylococci( n=928,29.3%), Enterococcus faecalis( n=369,11.7%), Enterococcus faecium( n=296,9.4%)and alpha-hemolyticus Streptococci( n=192,6.1%). The detection rates of methicillin-resistant Staphylococcus aureus(MRSA)and methicillin-resistant coagulase-negative Staphylococci(MRCNS)were 26.4%(303/1 147)and 66.7%(619/928),respectively. No glycopeptide and daptomycin-resistant Staphylococci were detected. The sensitivity rates of Staphylococcus aureus to cefpirome,rifampin,compound sulfamethoxazole,linezolid,minocycline and tigecycline were all >95.0%. Enterococcus faecium was more prevalent than Enterococcus faecalis. The resistance rates of Enterococcus faecium to vancomycin and teicoplanin were both 0.5%(2/369),and no vancomycin-resistant Enterococcus faecium was detected. The detection rate of MRSA in southern China was significantly lower than that in other regions( χ2=14.578, P=0.002),while the detection rate of MRCNS in northern China was significantly higher than that in other regions( χ2=15.195, P=0.002). The detection rates of MRSA and MRCNS in provincial hospitals were higher than those in municipal hospitals( χ2=13.519 and 12.136, P<0.001). The detection rates of MRSA and MRCNS in economically more advanced regions(per capita GDP≥92 059 Yuan in 2022)were higher than those in economically less advanced regions(per capita GDP<92 059 Yuan)( χ2=9.969 and 7.606, P=0.002和0.006). Conclusions:Among the Gram-positive pathogens causing bloodstream infections in China, Staphylococci is the most common while the MRSA incidence decreases continuously with time;the detection rate of Enterococcus faecium exceeds that of Enterococcus faecalis. The overall prevalence of vancomycin-resistant Enterococci is still at a low level. The composition ratio of Gram-positive pathogens and resistant profiles varies slightly across regions of China,with the prevalence of MRSA and MRCNS being more pronounced in provincial hospitals and areas with a per capita GDP≥92 059 yuan.
6.Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients (version 2024)
Yao LU ; Yang LI ; Leiying ZHANG ; Hao TANG ; Huidan JING ; Yaoli WANG ; Xiangzhi JIA ; Li BA ; Maohong BIAN ; Dan CAI ; Hui CAI ; Xiaohong CAI ; Zhanshan ZHA ; Bingyu CHEN ; Daqing CHEN ; Feng CHEN ; Guoan CHEN ; Haiming CHEN ; Jing CHEN ; Min CHEN ; Qing CHEN ; Shu CHEN ; Xi CHEN ; Jinfeng CHENG ; Xiaoling CHU ; Hongwang CUI ; Xin CUI ; Zhen DA ; Ying DAI ; Surong DENG ; Weiqun DONG ; Weimin FAN ; Ke FENG ; Danhui FU ; Yongshui FU ; Qi FU ; Xuemei FU ; Jia GAN ; Xinyu GAN ; Wei GAO ; Huaizheng GONG ; Rong GUI ; Geng GUO ; Ning HAN ; Yiwen HAO ; Wubing HE ; Qiang HONG ; Ruiqin HOU ; Wei HOU ; Jie HU ; Peiyang HU ; Xi HU ; Xiaoyu HU ; Guangbin HUANG ; Jie HUANG ; Xiangyan HUANG ; Yuanshuai HUANG ; Shouyong HUN ; Xuebing JIANG ; Ping JIN ; Dong LAI ; Aiping LE ; Hongmei LI ; Bijuan LI ; Cuiying LI ; Daihong LI ; Haihong LI ; He LI ; Hui LI ; Jianping LI ; Ning LI ; Xiying LI ; Xiangmin LI ; Xiaofei LI ; Xiaojuan LI ; Zhiqiang LI ; Zhongjun LI ; Zunyan LI ; Huaqin LIANG ; Xiaohua LIANG ; Dongfa LIAO ; Qun LIAO ; Yan LIAO ; Jiajin LIN ; Chunxia LIU ; Fenghua LIU ; Peixian LIU ; Tiemei LIU ; Xiaoxin LIU ; Zhiwei LIU ; Zhongdi LIU ; Hua LU ; Jianfeng LUAN ; Jianjun LUO ; Qun LUO ; Dingfeng LYU ; Qi LYU ; Xianping LYU ; Aijun MA ; Liqiang MA ; Shuxuan MA ; Xainjun MA ; Xiaogang MA ; Xiaoli MA ; Guoqing MAO ; Shijie MU ; Shaolin NIE ; Shujuan OUYANG ; Xilin OUYANG ; Chunqiu PAN ; Jian PAN ; Xiaohua PAN ; Lei PENG ; Tao PENG ; Baohua QIAN ; Shu QIAO ; Li QIN ; Ying REN ; Zhaoqi REN ; Ruiming RONG ; Changshan SU ; Mingwei SUN ; Wenwu SUN ; Zhenwei SUN ; Haiping TANG ; Xiaofeng TANG ; Changjiu TANG ; Cuihua TAO ; Zhibin TIAN ; Juan WANG ; Baoyan WANG ; Chunyan WANG ; Gefei WANG ; Haiyan WANG ; Hongjie WANG ; Peng WANG ; Pengli WANG ; Qiushi WANG ; Xiaoning WANG ; Xinhua WANG ; Xuefeng WANG ; Yong WANG ; Yongjun WANG ; Yuanjie WANG ; Zhihua WANG ; Shaojun WEI ; Yaming WEI ; Jianbo WEN ; Jun WEN ; Jiang WU ; Jufeng WU ; Aijun XIA ; Fei XIA ; Rong XIA ; Jue XIE ; Yanchao XING ; Yan XIONG ; Feng XU ; Yongzhu XU ; Yongan XU ; Yonghe YAN ; Beizhan YAN ; Jiang YANG ; Jiangcun YANG ; Jun YANG ; Xinwen YANG ; Yongyi YANG ; Chunyan YAO ; Mingliang YE ; Changlin YIN ; Ming YIN ; Wen YIN ; Lianling YU ; Shuhong YU ; Zebo YU ; Yigang YU ; Anyong YU ; Hong YUAN ; Yi YUAN ; Chan ZHANG ; Jinjun ZHANG ; Jun ZHANG ; Kai ZHANG ; Leibing ZHANG ; Quan ZHANG ; Rongjiang ZHANG ; Sanming ZHANG ; Shengji ZHANG ; Shuo ZHANG ; Wei ZHANG ; Weidong ZHANG ; Xi ZHANG ; Xingwen ZHANG ; Guixi ZHANG ; Xiaojun ZHANG ; Guoqing ZHAO ; Jianpeng ZHAO ; Shuming ZHAO ; Beibei ZHENG ; Shangen ZHENG ; Huayou ZHOU ; Jicheng ZHOU ; Lihong ZHOU ; Mou ZHOU ; Xiaoyu ZHOU ; Xuelian ZHOU ; Yuan ZHOU ; Zheng ZHOU ; Zuhuang ZHOU ; Haiyan ZHU ; Peiyuan ZHU ; Changju ZHU ; Lili ZHU ; Zhengguo WANG ; Jianxin JIANG ; Deqing WANG ; Jiongcai LAN ; Quanli WANG ; Yang YU ; Lianyang ZHANG ; Aiqing WEN
Chinese Journal of Trauma 2024;40(10):865-881
Patients with severe trauma require an extremely timely treatment and transfusion plays an irreplaceable role in the emergency treatment of such patients. An increasing number of evidence-based medicinal evidences and clinical practices suggest that patients with severe traumatic bleeding benefit from early transfusion of low-titer group O whole blood or hemostatic resuscitation with red blood cells, plasma and platelet of a balanced ratio. However, the current domestic mode of blood supply cannot fully meet the requirements of timely and effective blood transfusion for emergency treatment of patients with severe trauma in clinical practice. In order to solve the key problems in blood supply and blood transfusion strategies for emergency treatment of severe trauma, Branch of Clinical Transfusion Medicine of Chinese Medical Association, Group for Trauma Emergency Care and Multiple Injuries of Trauma Branch of Chinese Medical Association, Young Scholar Group of Disaster Medicine Branch of Chinese Medical Association organized domestic experts of blood transfusion medicine and trauma treatment to jointly formulate Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients ( version 2024). Based on the evidence-based medical evidence and Delphi method of expert consultation and voting, 10 recommendations were put forward from two aspects of blood support mode and transfusion strategies, aiming to provide a reference for transfusion resuscitation in the emergency treatment of severe trauma and further improve the success rate of treatment of patients with severe trauma.
7.A case of low-grade fibromyxoid sarcoma of the temporal bone.
Ming Yang MAO ; Guo Dong FENG ; Yu CHEN ; Xiao Hua SHI ; Xu TIAN ; Tong SU ; Hui Ying SUN ; Zhen Tan XU ; Wen Sheng REN ; Zhu Hua ZHANG ; Zhi Qiang GAO ; Zheng Yu JIN
Chinese Journal of Otorhinolaryngology Head and Neck Surgery 2023;58(1):64-67
8.BRICS report of 2021: The distribution and antimicrobial resistance profile of clinical bacterial isolates from blood stream infections in China
Yunbo CHEN ; Jinru JI ; Zhiying LIU ; Chaoqun YING ; Qing YANG ; Haishen KONG ; Jiliang WANG ; Hui DING ; Haifeng MAO ; Yizheng ZHOU ; Yan JIN ; Yongyun LIU ; Yan GENG ; Yuanyuan DAI ; Hong LU ; Peng ZHANG ; Ying HUANG ; Donghong HUANG ; Xinhua QIANG ; Jilu SHEN ; Hongyun XU ; Fenghong CHEN ; Guolin LIAO ; Dan LIU ; Haixin DONG ; Jiangqin SONG ; Lu WANG ; Junmin CAO ; Lixia ZHANG ; Yanhong LI ; Dijing SONG ; Zhuo LI ; Youdong YIN ; Donghua LIU ; Liang GUO ; Qiang LIU ; Baohua ZHANG ; Rong XU ; Yinqiao DONG ; Shuyan HU ; Kunpeng LIANG ; Bo QUAN ; Lin ZHENG ; Ling MENG ; Liang LUAN ; Jinhua LIANG ; Weiping LIU ; Xuefei HU ; Pengpeng TIAN ; Xiaoping YAN ; Aiyun LI ; Jian LI ; Xiusan XIA ; Xiaoyan QI ; Dengyan QIAO ; Yonghong XIAO
Chinese Journal of Clinical Infectious Diseases 2023;16(1):33-47
Objective:To report the results of national surveillance on the distribution and antimicrobial resistance profile of clinical bacterial isolates from bloodstream infections in China in 2021.Methods:The clinical bacterial strains isolated from blood culture from member hospitals of Blood Bacterial Resistant Investigation Collaborative System (BRICS) were collected during January 2021 to December 2021. Antibiotic susceptibility tests were conducted by agar dilution or broth dilution methods recommended by Clinical Laboratory Standards Institute (CLSI). WHONET 5.6 was used to analyze data.Results:During the study period, 11 013 bacterial strains were collected from 51 hospitals, of which 2 782 (25.3%) were Gram-positive bacteria and 8 231 (74.7%) were Gram-negative bacteria. The top 10 bacterial species were Escherichia coli (37.6%), Klebsiella pneumoniae (18.9%), Staphylococcus aureus (9.8%), coagulase-negative Staphylococci (6.3%), Pseudomonas aeruginosa (3.6%), Enterococcus faecium (3.6%), Acinetobacter baumannii (2.8%), Enterococcus faecalis (2.7%), Enterobacter cloacae (2.5%) and Klebsiella spp (2.1%). The prevalence of methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-resistant coagulase-negative Staphylococcus aureus were 25.3% and 76.8%, respectively. No glycopeptide- and daptomycin-resistant Staphylococci was detected; more than 95.0% of Staphylococcus aureus were sensitive to ceftobiprole. No vancomycin-resistant Enterococci strains were detected. The rates of extended spectrum B-lactamase (ESBL)-producing isolated in Escherichia coli, Klebsiella pneumoniae and Proteus mirabilis were 49.6%, 25.5% and 39.0%, respectively. The prevalence rates of carbapenem-resistance in Escherichia coli and Klebsiella pneumoniae were 2.2% and 15.8%, respectively; 7.9% of carbapenem-resistant Klebsiella pneumoniae was resistant to ceftazidime/avibactam combination. Ceftobiprole demonstrated excellent activity against non-ESBL-producing Escherichia coli and Klebsiella pneumoniae. Aztreonam/avibactam was highly active against carbapenem-resistant Escherichia coli and Klebsiella pneumoniae. The prevalence rate of carbapenem-resistance in Acinetobacter baumannii was 60.0%, while polymyxin and tigecycline showed good activity against Acinetobacter baumannii (5.5% and 4.5%). The prevalence of carbapenem-resistance in Pseudomonas aeruginosa was 18.9%. Conclusions:The BRICS surveillance results in 2021 shows that the main pathogens of blood stream infection in China are gram-negative bacteria, in which Escherichia coli is the most common. The MRSA incidence shows a further decreasing trend in China and the overall prevalence of vancomycin-resistant Enterococci is low. The prevalence of Carbapenem-resistant Klebsiella pneumoniae is still on a high level, but the trend is downwards.
9.Comparison of CT Values between Thrombus and Postmortem Clot Based on Cadaveric Pulmonary Angiography.
Zhi-Ling TIAN ; Ruo-Lin WANG ; Jian-Hua ZHANG ; Ping HUANG ; Zhi-Qiang QIN ; Zheng-Dong LI ; He-Wen DONG ; Dong-Hua ZOU ; Mao-Wen WANG ; Zhuo LI ; Lei WAN ; Xiao-Tian YU ; Ning-Guo LIU
Journal of Forensic Medicine 2023;39(1):7-12
OBJECTIVES:
To explore the difference in CT values between pulmonary thromboembolism and postmortem clot in postmortem CT pulmonary angiography (CTPA) to further improve the application value of virtual autopsy.
METHODS:
Postmortem CTPA data with the definite cause of death from 2016 to 2019 were collected and divided into pulmonary thromboembolism group (n=4), postmortem clot group (n=5), and control group (n=5). CT values of pulmonary trunk and left and right pulmonary artery contents in each group were measured and analyzed statistically.
RESULTS:
The average CT value in the pulmonary thromboembolism group and postmortem clot group were (168.4±53.8) Hu and (282.7±78.0) Hu, respectively, which were lower than those of the control group (1 193.0±82.9) Hu (P<0.05). The average CT value of the postmortem clot group was higher than that of the pulmonary thromboembolism group (P<0.05).
CONCLUSIONS
CT value is reliable and feasible as a relatively objective quantitative index to distinguish pulmonary thromboembolism and postmortem clot in postmortem CTPA. At the same time, it can provide a scientific basis to a certain extent for ruling out pulmonary thromboembolism deaths.
Humans
;
Autopsy
;
Thrombosis
;
Pulmonary Embolism/diagnostic imaging*
;
Tomography, X-Ray Computed
;
Angiography
;
Cadaver
10.Implication practice of “Internet Plus” new technology in chronic diseases management in community
Zheng-chao FANG ; Chi HU ; Pei ZHANG ; Jia-juan YANG ; Guo-qiang MAO ; Ping-ping PENG
Journal of Public Health and Preventive Medicine 2023;34(1):59-61
Objective To introduce and evaluate the practice of “Internet Plus” new technology for health management of chronic diseases in community in Yichang, and to provide reference for chronic disease patients' health management in community. Methods Data of hypertensive patients were collected from the national basic public health service system, the big data intelligent sorting system for chronic disease patients in Yichang City, and the basic public health service system in urban areas in Yichang from 2016 to 2020. Data on the discovery, sorting and filing, standardized management rate and blood pressure control of urban hypertension patients were analyzed. The application effect of “Internet Plus” new technology in chronic disease community health management was evaluated. Results From 2016 to 2020, 15 934 patients with hypertension were found and their health records were established through big and intelligent data in Yichang City, accounting for 93.54% (15 934 / 17 035) of the total. The rate of standardized management in each district increased year by year, with an increase of 8.71% in 2020 compared with 2016, and the difference was statistically significant (χ2=1273.30, P<0.001). The blood pressure control rate of hypertensive patients increased year by year, with the control rate being 11.64% higher in 2020 than that in 2016, and the difference was statistically significant (χ2=867.14, P<0.001). Conclusion Data exchange and sharing among medical institutions at all levels can strengthen the health management of chronic diseases in the community. The “Internet Plus” new technology, integrating the Internet, big data, cloud computing and intelligent terminal technology, can effectively improve the detection, management and treatment rate of chronic diseases, and provide a new direction for the health management of chronic diseases.


Result Analysis
Print
Save
E-mail