1.Mechanism of Chaijin JieYu Anshen formula regulating synaptic plasticity of hippocampal neurons in insomnia-concomitant depression rats based on HDAC5/MEF2C pathway
Ting-Ting REN ; Yu-Hong WANG ; Ying-Juan TANG ; Song YANG ; Hai-Peng GUO ; Ting-Ting WANG ; Ying HE ; Ping LI ; Hong-Qing ZHAO ; Zi-Yang ZHOU ; Man-Shu ZOU
Chinese Pharmacological Bulletin 2024;40(7):1248-1257
Aim To investigate the mechanisms of Chaijin JieYu Anshen formula modulating the depres-sive behaviors and the synaptic plasticity of hippocam-pal neurons in insomnia-concomitant depression rats based on the histone deacetylase 5(HDAC5)/myocyte enhancer factor 2C(MEF2C)pathway.Methods A rat model of insomnia-concomitant depression was es-tablished by PCPA injection combined with chronic un-predictable mild stress(CUMS),and the experiment was divided into the control group,the model group,the high,medium and low dose group of Chaijin JieYu Anshen formula,and the positive drug group.The de-pression of rats was evaluated by sugar-water prefer-ence test,open field test and morris water maze.The levels of 5-hydroxytryptamine(5-HT)and dopamine(DA)in serum were measured by enzyme linked im-munosorbent assay(ELISA).The pathological damage of hippocampal neurons was observed by HE staining and Nissl staining.The damage of dendritic spines of hippocampal neurons was observed by Golgi staining,and the levels of HDAC5,MEF2C,postsynaptic densi-ty-95(PSD-95)and synaptophysin 1(SYN1)in hip-pocampus were measured by Western blot,immunohis-tochemistry and immunofluorescence.Results Com-pared with the model group,the Chaijin JieYu Anshen formula could increase the sugar-water preference rate of the model rats,reduce the immobility time in the open field experiment,increase the total activity dis-tance,shorten the evasion latency in the localization navigation experiment,and prolong the residence time in the quadrant where the platform was located in the space exploration experiment(P<0.05,P<0.01).Moreover,the Chaijin JieYu Anshen formula improved the hippocampal neuron and dendritic spine damage and increase the dendritic branch length and dendritic spine density of hippocampal neurons(P<0.01,P<0.01),restore the serum levels of 5-HT and DA in insomnia-concomitant depression rats(P<0.05,P<0.01),down-regulate the HDAC5 protein,and up-regulate the expression of MEF2C,PSD-95,and SYN1 protein(P<0.05,P<0.01 or P<0.001).Conclusions Chaijin JieYu Anshen formula may alle-viate the depression-like behavior of model rats by re-ducing the expression of HDAC5 protein,thus deregu-lating the inhibition of transcription factor MEF2C,promoting the expression of PSD-95 and SNY1 protein,and exerting a protective effect on hippocampal neurons and synapses.
2.Surveillance of bacterial resistance in tertiary hospitals across China:results of CHINET Antimicrobial Resistance Surveillance Program in 2022
Yan GUO ; Fupin HU ; Demei ZHU ; Fu WANG ; Xiaofei JIANG ; Yingchun XU ; Xiaojiang ZHANG ; Fengbo ZHANG ; Ping JI ; Yi XIE ; Yuling XIAO ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Jingyong SUN ; Qing CHEN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yunmin XU ; Sufang GUO ; Yanyan WANG ; Lianhua WEI ; Keke LI ; Hong ZHANG ; Fen PAN ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Wei LI ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Qian SUN ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanqing ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Wenhui HUANG ; Juan LI ; Quangui SHI ; Juan YANG ; Abulimiti REZIWAGULI ; Lili HUANG ; Xuejun SHAO ; Xiaoyan REN ; Dong LI ; Qun ZHANG ; Xue CHEN ; Rihai LI ; Jieli XU ; Kaijie GAO ; Lu XU ; Lin LIN ; Zhuo ZHANG ; Jianlong LIU ; Min FU ; Yinghui GUO ; Wenchao ZHANG ; Zengguo WANG ; Kai JIA ; Yun XIA ; Shan SUN ; Huimin YANG ; Yan MIAO ; Mingming ZHOU ; Shihai ZHANG ; Hongjuan LIU ; Nan CHEN ; Chan LI ; Jilu SHEN ; Wanqi MEN ; Peng WANG ; Xiaowei ZHANG ; Yanyan LIU ; Yong AN
Chinese Journal of Infection and Chemotherapy 2024;24(3):277-286
Objective To monitor the susceptibility of clinical isolates to antimicrobial agents in tertiary hospitals in major regions of China in 2022.Methods Clinical isolates from 58 hospitals in China were tested for antimicrobial susceptibility using a unified protocol based on disc diffusion method or automated testing systems.Results were interpreted using the 2022 Clinical &Laboratory Standards Institute(CLSI)breakpoints.Results A total of 318 013 clinical isolates were collected from January 1,2022 to December 31,2022,of which 29.5%were gram-positive and 70.5%were gram-negative.The prevalence of methicillin-resistant strains in Staphylococcus aureus,Staphylococcus epidermidis and other coagulase-negative Staphylococcus species(excluding Staphylococcus pseudintermedius and Staphylococcus schleiferi)was 28.3%,76.7%and 77.9%,respectively.Overall,94.0%of MRSA strains were susceptible to trimethoprim-sulfamethoxazole and 90.8%of MRSE strains were susceptible to rifampicin.No vancomycin-resistant strains were found.Enterococcus faecalis showed significantly lower resistance rates to most antimicrobial agents tested than Enterococcus faecium.A few vancomycin-resistant strains were identified in both E.faecalis and E.faecium.The prevalence of penicillin-susceptible Streptococcus pneumoniae was 94.2%in the isolates from children and 95.7%in the isolates from adults.The resistance rate to carbapenems was lower than 13.1%in most Enterobacterales species except for Klebsiella,21.7%-23.1%of which were resistant to carbapenems.Most Enterobacterales isolates were highly susceptible to tigecycline,colistin and polymyxin B,with resistance rates ranging from 0.1%to 13.3%.The prevalence of meropenem-resistant strains decreased from 23.5%in 2019 to 18.0%in 2022 in Pseudomonas aeruginosa,and decreased from 79.0%in 2019 to 72.5%in 2022 in Acinetobacter baumannii.Conclusions The resistance of clinical isolates to the commonly used antimicrobial agents is still increasing in tertiary hospitals.However,the prevalence of important carbapenem-resistant organisms such as carbapenem-resistant K.pneumoniae,P.aeruginosa,and A.baumannii showed a downward trend in recent years.This finding suggests that the strategy of combining antimicrobial resistance surveillance with multidisciplinary concerted action works well in curbing the spread of resistant bacteria.
3.Myeloid-derived suppressor cells participate in regulation of development of autoimmune diseases
Piaotao CHENG ; Shouhang GONG ; Ping KONG ; Chencheng LI ; Caopei GUO ; Jiachen PENG
Chinese Journal of Immunology 2024;40(12):2666-2675
Myeloid-derived suppressor cells(MDSCs)are heterogeneous immature bone marrow cells with immunosuppres-sive effects.In recent years,with the in-depth study of the immunosuppressive activity of MDSCs,MDSCs have attracted much atten-tion in autoimmune diseases autoimmune disease(AD).In AD,MDSCs are significantly activated and amplified and regulate the im-mune response of the body through different mechanisms,thus promoting or inhibiting the development of the disease.Therefore,only by deepening the research on the specific role and mechanism of MDSCs in autoimmune diseases can we better clarify MDSCs and provide a positive role for the clinical transformation of the treatment of AD.This paper reviews the immunosuppressive mechanism of MDSCs and their roles in different AD.
4.National bloodstream infection bacterial resistance surveillance report(2022): Gram-positive bacteria
Chaoqun YING ; Yunbo CHEN ; Jinru JI ; Zhiying LIU ; Qing YANG ; Haishen KONG ; Haifeng MAO ; Hui DING ; Pengpeng TIAN ; Jiangqin SONG ; Yongyun LIU ; Jiliang WANG ; Yan JIN ; Yuanyuan DAI ; Yizheng ZHOU ; Yan GENG ; Fenghong CHEN ; Lu WANG ; Yanyan LI ; Dan LIU ; Peng ZHANG ; Junmin CAO ; Xiaoyan LI ; Dijing SONG ; Xinhua QIANG ; Yanhong LI ; Qiuying ZHANG ; Guolin LIAO ; Ying HUANG ; Baohua ZHANG ; Liang GUO ; Aiyun LI ; Haiquan KANG ; Donghong HUANG ; Sijin MAN ; Zhuo LI ; Youdong YIN ; Kunpeng LIANG ; Haixin DONG ; Donghua LIU ; Hongyun XU ; Yinqiao DONG ; Rong XU ; Lin ZHENG ; Shuyan HU ; Jian LI ; Qiang LIU ; Liang LUAN ; Jilu SHEN ; Lixia ZHANG ; Bo QUAN ; Xiaoping YAN ; Xiaoyan QI ; Dengyan QIAO ; Weiping LIU ; Xiusan XIA ; Ling MENG ; Jinhua LIANG ; Ping SHEN ; Yonghong XIAO
Chinese Journal of Clinical Infectious Diseases 2024;17(2):99-112
Objective:To report the results of national surveillance on the distribution and antimicrobial resistance profile of clinical Gram-positive bacteria isolates from bloodstream infections in China in 2022.Methods:The clinical isolates of Gram-positive bacteria from blood cultures in member hospitals of National Bloodstream Infection Bacterial Resistant Investigation Collaborative System(BRICS)were collected during January 2022 to December 2022. Antibiotic susceptibility tests were conducted by agar dilution or broth dilution methods recommended by Clinical and Laboratory Standards Institute(CLSI). WHONET 5.6 and SPSS 25.0 software were used to analyze the data.Results:A total of 3 163 strains of Gram-positive pathogens were collected from 51 member units,and the top five bacteria were Staphylococcus aureus( n=1 147,36.3%),coagulase-negative Staphylococci( n=928,29.3%), Enterococcus faecalis( n=369,11.7%), Enterococcus faecium( n=296,9.4%)and alpha-hemolyticus Streptococci( n=192,6.1%). The detection rates of methicillin-resistant Staphylococcus aureus(MRSA)and methicillin-resistant coagulase-negative Staphylococci(MRCNS)were 26.4%(303/1 147)and 66.7%(619/928),respectively. No glycopeptide and daptomycin-resistant Staphylococci were detected. The sensitivity rates of Staphylococcus aureus to cefpirome,rifampin,compound sulfamethoxazole,linezolid,minocycline and tigecycline were all >95.0%. Enterococcus faecium was more prevalent than Enterococcus faecalis. The resistance rates of Enterococcus faecium to vancomycin and teicoplanin were both 0.5%(2/369),and no vancomycin-resistant Enterococcus faecium was detected. The detection rate of MRSA in southern China was significantly lower than that in other regions( χ2=14.578, P=0.002),while the detection rate of MRCNS in northern China was significantly higher than that in other regions( χ2=15.195, P=0.002). The detection rates of MRSA and MRCNS in provincial hospitals were higher than those in municipal hospitals( χ2=13.519 and 12.136, P<0.001). The detection rates of MRSA and MRCNS in economically more advanced regions(per capita GDP≥92 059 Yuan in 2022)were higher than those in economically less advanced regions(per capita GDP<92 059 Yuan)( χ2=9.969 and 7.606, P=0.002和0.006). Conclusions:Among the Gram-positive pathogens causing bloodstream infections in China, Staphylococci is the most common while the MRSA incidence decreases continuously with time;the detection rate of Enterococcus faecium exceeds that of Enterococcus faecalis. The overall prevalence of vancomycin-resistant Enterococci is still at a low level. The composition ratio of Gram-positive pathogens and resistant profiles varies slightly across regions of China,with the prevalence of MRSA and MRCNS being more pronounced in provincial hospitals and areas with a per capita GDP≥92 059 yuan.
5.Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients (version 2024)
Yao LU ; Yang LI ; Leiying ZHANG ; Hao TANG ; Huidan JING ; Yaoli WANG ; Xiangzhi JIA ; Li BA ; Maohong BIAN ; Dan CAI ; Hui CAI ; Xiaohong CAI ; Zhanshan ZHA ; Bingyu CHEN ; Daqing CHEN ; Feng CHEN ; Guoan CHEN ; Haiming CHEN ; Jing CHEN ; Min CHEN ; Qing CHEN ; Shu CHEN ; Xi CHEN ; Jinfeng CHENG ; Xiaoling CHU ; Hongwang CUI ; Xin CUI ; Zhen DA ; Ying DAI ; Surong DENG ; Weiqun DONG ; Weimin FAN ; Ke FENG ; Danhui FU ; Yongshui FU ; Qi FU ; Xuemei FU ; Jia GAN ; Xinyu GAN ; Wei GAO ; Huaizheng GONG ; Rong GUI ; Geng GUO ; Ning HAN ; Yiwen HAO ; Wubing HE ; Qiang HONG ; Ruiqin HOU ; Wei HOU ; Jie HU ; Peiyang HU ; Xi HU ; Xiaoyu HU ; Guangbin HUANG ; Jie HUANG ; Xiangyan HUANG ; Yuanshuai HUANG ; Shouyong HUN ; Xuebing JIANG ; Ping JIN ; Dong LAI ; Aiping LE ; Hongmei LI ; Bijuan LI ; Cuiying LI ; Daihong LI ; Haihong LI ; He LI ; Hui LI ; Jianping LI ; Ning LI ; Xiying LI ; Xiangmin LI ; Xiaofei LI ; Xiaojuan LI ; Zhiqiang LI ; Zhongjun LI ; Zunyan LI ; Huaqin LIANG ; Xiaohua LIANG ; Dongfa LIAO ; Qun LIAO ; Yan LIAO ; Jiajin LIN ; Chunxia LIU ; Fenghua LIU ; Peixian LIU ; Tiemei LIU ; Xiaoxin LIU ; Zhiwei LIU ; Zhongdi LIU ; Hua LU ; Jianfeng LUAN ; Jianjun LUO ; Qun LUO ; Dingfeng LYU ; Qi LYU ; Xianping LYU ; Aijun MA ; Liqiang MA ; Shuxuan MA ; Xainjun MA ; Xiaogang MA ; Xiaoli MA ; Guoqing MAO ; Shijie MU ; Shaolin NIE ; Shujuan OUYANG ; Xilin OUYANG ; Chunqiu PAN ; Jian PAN ; Xiaohua PAN ; Lei PENG ; Tao PENG ; Baohua QIAN ; Shu QIAO ; Li QIN ; Ying REN ; Zhaoqi REN ; Ruiming RONG ; Changshan SU ; Mingwei SUN ; Wenwu SUN ; Zhenwei SUN ; Haiping TANG ; Xiaofeng TANG ; Changjiu TANG ; Cuihua TAO ; Zhibin TIAN ; Juan WANG ; Baoyan WANG ; Chunyan WANG ; Gefei WANG ; Haiyan WANG ; Hongjie WANG ; Peng WANG ; Pengli WANG ; Qiushi WANG ; Xiaoning WANG ; Xinhua WANG ; Xuefeng WANG ; Yong WANG ; Yongjun WANG ; Yuanjie WANG ; Zhihua WANG ; Shaojun WEI ; Yaming WEI ; Jianbo WEN ; Jun WEN ; Jiang WU ; Jufeng WU ; Aijun XIA ; Fei XIA ; Rong XIA ; Jue XIE ; Yanchao XING ; Yan XIONG ; Feng XU ; Yongzhu XU ; Yongan XU ; Yonghe YAN ; Beizhan YAN ; Jiang YANG ; Jiangcun YANG ; Jun YANG ; Xinwen YANG ; Yongyi YANG ; Chunyan YAO ; Mingliang YE ; Changlin YIN ; Ming YIN ; Wen YIN ; Lianling YU ; Shuhong YU ; Zebo YU ; Yigang YU ; Anyong YU ; Hong YUAN ; Yi YUAN ; Chan ZHANG ; Jinjun ZHANG ; Jun ZHANG ; Kai ZHANG ; Leibing ZHANG ; Quan ZHANG ; Rongjiang ZHANG ; Sanming ZHANG ; Shengji ZHANG ; Shuo ZHANG ; Wei ZHANG ; Weidong ZHANG ; Xi ZHANG ; Xingwen ZHANG ; Guixi ZHANG ; Xiaojun ZHANG ; Guoqing ZHAO ; Jianpeng ZHAO ; Shuming ZHAO ; Beibei ZHENG ; Shangen ZHENG ; Huayou ZHOU ; Jicheng ZHOU ; Lihong ZHOU ; Mou ZHOU ; Xiaoyu ZHOU ; Xuelian ZHOU ; Yuan ZHOU ; Zheng ZHOU ; Zuhuang ZHOU ; Haiyan ZHU ; Peiyuan ZHU ; Changju ZHU ; Lili ZHU ; Zhengguo WANG ; Jianxin JIANG ; Deqing WANG ; Jiongcai LAN ; Quanli WANG ; Yang YU ; Lianyang ZHANG ; Aiqing WEN
Chinese Journal of Trauma 2024;40(10):865-881
Patients with severe trauma require an extremely timely treatment and transfusion plays an irreplaceable role in the emergency treatment of such patients. An increasing number of evidence-based medicinal evidences and clinical practices suggest that patients with severe traumatic bleeding benefit from early transfusion of low-titer group O whole blood or hemostatic resuscitation with red blood cells, plasma and platelet of a balanced ratio. However, the current domestic mode of blood supply cannot fully meet the requirements of timely and effective blood transfusion for emergency treatment of patients with severe trauma in clinical practice. In order to solve the key problems in blood supply and blood transfusion strategies for emergency treatment of severe trauma, Branch of Clinical Transfusion Medicine of Chinese Medical Association, Group for Trauma Emergency Care and Multiple Injuries of Trauma Branch of Chinese Medical Association, Young Scholar Group of Disaster Medicine Branch of Chinese Medical Association organized domestic experts of blood transfusion medicine and trauma treatment to jointly formulate Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients ( version 2024). Based on the evidence-based medical evidence and Delphi method of expert consultation and voting, 10 recommendations were put forward from two aspects of blood support mode and transfusion strategies, aiming to provide a reference for transfusion resuscitation in the emergency treatment of severe trauma and further improve the success rate of treatment of patients with severe trauma.
7.Environmental contamination related to the first patient with carbapenem-resistant Acinetobacter baumannii infection and the infection status of pa-tients in the intensive care unit in Tibetan areas
Cuo-Ta QIE ; Ding-Ying HE ; Fu-Yan LONG ; Xiao-Hua ZHANG ; Chun-Hua PENG ; Xiang-Xiang JIANG ; Ming-Lei DENG ; Cong FU ; Guo-Ping ZUO
Chinese Journal of Infection Control 2024;23(2):220-224
Objective To investigate the environmental contamination related to first patient with carbapenem-re-sistant Acinetobacter baumannii(CRAB)infection and the infection status of relevant patients in a newly established intensive care unit(ICU)of a hospital in Tibetan area,and analyze the transmission risk.Methods From the ad-mission in ICU of a patients who was first detected CRAB on November 15,2021 to the 60th day of hospitalization,all patients who stayed in ICU for>48 hours were performed active screening on CRAB.On the 30th day and 60th day of the admission to the ICU of the first CRAB-infected patient,environment specimens were taken respectively 2 hours after high-frequency diagnostic and therapeutic activities but before disinfection,and after disinfection but before medical activities.CRAB was cultured with chromogenic culture medium.Results Among the 13 patients who were actively screened,1 case was CRAB positive,he was transferred from the ICU of a tertiary hospital to the ICU of this hospital on November 19th.On the 40th day of admission to the ICU,he had fever,increased frequency for sputum suction,and CRAB was detected.The drug sensitivity spectrum was similar to that of the first case,and he also stayed in the adjacent bed of the first case.64 environmental specimens were taken,and 9 were positive for CRAB,with a positive rate of 14.06%,8 sampling points such as the washbasin,door handle and bed rail were positive for CRAB after high-frequency diagnostic and therapeutic activities.After routine disinfection,CRAB was detected from the sink of the washbasin.Conclusion For the prevention and control of CRAB in the basic-level ICU in ethnic areas,it is feasible to conduct risk assessment on admitted patients and adopt bundled prevention and con-trol measures for high-risk patients upon admission.Attention should be paid to the contaminated areas(such as washbasin,door handle,and bed rail)as well as the effectiveness of disinfection of sink of washbasin.
8.National bloodstream infection bacterial resistance surveillance report (2022) : Gram-negative bacteria
Zhiying LIU ; Yunbo CHEN ; Jinru JI ; Chaoqun YING ; Qing YANG ; Haishen KONG ; Haifeng MAO ; Hui DING ; Pengpeng TIAN ; Jiangqin SONG ; Yongyun LIU ; Jiliang WANG ; Yan JIN ; Yuanyuan DAI ; Yizheng ZHOU ; Yan GENG ; Fenghong CHEN ; Lu WANG ; Yanyan LI ; Dan LIU ; Peng ZHANG ; Junmin CAO ; Xiaoyan LI ; Dijing SONG ; Xinhua QIANG ; Yanhong LI ; Qiuying ZHANG ; Guolin LIAO ; Ying HUANG ; Baohua ZHANG ; Liang GUO ; Aiyun LI ; Haiquan KANG ; Donghong HUANG ; Sijin MAN ; Zhuo LI ; Youdong YIN ; Kunpeng LIANG ; Haixin DONG ; Donghua LIU ; Hongyun XU ; Yinqiao DONG ; Rong XU ; Lin ZHENG ; Shuyan HU ; Jian LI ; Qiang LIU ; Liang LUAN ; Jilu SHEN ; Lixia ZHANG ; Bo QUAN ; Xiaoping YAN ; Xiaoyan QI ; Dengyan QIAO ; Weiping LIU ; Xiusan XIA ; Ling MENG ; Jinhua LIANG ; Ping SHEN ; Yonghong XIAO
Chinese Journal of Clinical Infectious Diseases 2024;17(1):42-57
Objective:To report the results of national surveillance on the distribution and antimicrobial resistance profile of clinical Gram-negative bacteria isolates from bloodstream infections in China in 2022.Methods:The clinical isolates of Gram-negative bacteria from blood cultures in member hospitals of national bloodstream infection Bacterial Resistant Investigation Collaborative System(BRICS)were collected during January 2022 to December 2022. Antibiotic susceptibility tests were conducted by agar dilution or broth dilution methods recommended by Clinical and Laboratory Standards Institute(CLSI). WHONET 5.6 and SPSS 25.0 software were used to analyze the data.Results:During the study period,9 035 strains of Gram-negative bacteria were collected from 51 hospitals,of which 7 895(87.4%)were Enterobacteriaceae and 1 140(12.6%)were non-fermenting bacteria. The top 5 bacterial species were Escherichia coli( n=4 510,49.9%), Klebsiella pneumoniae( n=2 340,25.9%), Pseudomonas aeruginosa( n=534,5.9%), Acinetobacter baumannii complex( n=405,4.5%)and Enterobacter cloacae( n=327,3.6%). The ESBLs-producing rates in Escherichia coli, Klebsiella pneumoniae and Proteus spp. were 47.1%(2 095/4 452),21.0%(427/2 033)and 41.1%(58/141),respectively. The prevalence of carbapenem-resistant Escherichia coli(CREC)and carbapenem-resistant Klebsiella pneumoniae(CRKP)were 1.3%(58/4 510)and 13.1%(307/2 340);62.1%(36/58)and 9.8%(30/307)of CREC and CRKP were resistant to ceftazidime/avibactam combination,respectively. The prevalence of carbapenem-resistant Acinetobacter baumannii(CRAB)complex was 59.5%(241/405),while less than 5% of Acinetobacter baumannii complex was resistant to tigecycline and polymyxin B. The prevalence of carbapenem-resistant Pseudomonas aeruginosa(CRPA)was 18.4%(98/534). There were differences in the composition ratio of Gram-negative bacteria in bloodstream infections and the prevalence of main Gram-negative bacteria resistance among different regions,with statistically significant differences in the prevalence of CRKP and CRPA( χ2=20.489 and 20.252, P<0.001). The prevalence of CREC,CRKP,CRPA,CRAB,ESBLs-producing Escherichia coli and Klebsiella pneumoniae were higher in provinicial hospitals than those in municipal hospitals( χ2=11.953,81.183,10.404,5.915,12.415 and 6.459, P<0.01 or <0.05),while the prevalence of CRPA was higher in economically developed regions(per capita GDP ≥ 92 059 Yuan)than that in economically less-developed regions(per capita GDP <92 059 Yuan)( χ2=6.240, P=0.012). Conclusions:The proportion of Gram-negative bacteria in bloodstream infections shows an increasing trend,and Escherichia coli is ranked in the top,while the trend of CRKP decreases continuously with time. Decreasing trends are noted in ESBLs-producing Escherichia coli and Klebsiella pneumoniae. Low prevalence of carbapenem resistance in Escherichia coli and high prevalence in CRAB complex have been observed. The composition ratio and antibacterial spectrum of bloodstream infections in different regions of China are slightly different,and the proportion of main drug resistant bacteria in provincial hospitals is higher than those in municipal hospitals.
9.Research status of the pathological mechanisms of immune regulation in tumors and the intervention of traditional Chinese medicine
Xue-Peng WANG ; Hao-Ming GUO ; Liang-Liang SHI ; Shuai-Zhe WANG ; Ya-Ping CHEN ; Ben-Jun WEI
The Chinese Journal of Clinical Pharmacology 2024;40(20):3051-3055
The occurrence and development of tumors are closely related to the body's immune function.It has been confirmed that immunotherapy plays a role in the treatment of various cancers.Some traditional Chinese medicines can control the growth and metastasis of tumors by enhancing anti-tumor immunity.Even in the immunosuppressive tumor microenvironment,traditional Chinese medicine can exert anti-tumor effects by upregulating immune responses.Further research on the regulation of the immune mechanisms by traditional Chinese medicine will provide new insights into how traditional Chinese medicine controls tumor growth and metastasis and help improve its effectiveness in the clinical treatment of various cancers.This article aims to provide a theoretical reference for the role of immunoregulation in tumors,summarize its mechanisms in tumors,and traditional Chinese medicine intervention research in tumors for the prevention and treatment of tumors with traditional Chinese medicine.
10.Development and Application of Portable Multi-wavelength Spectroscopic Rapid Detector for Organic Pollutants
Yu-Ping CHEN ; Jia-Chuan PAN ; Yong-Qian LEI ; Chang-Yu LIU ; Jian-Bo JIA ; Peng-Ran GUO
Chinese Journal of Analytical Chemistry 2024;52(5):653-663,中插1-中插9
A portable multi-wavelength spectral detector was developed for on-site,rapid and accurate detection of organic pollutants in surface water using ultraviolet light-emitting diodes(UV-LEDs)and the corresponding spectral detection method was built.By measuring the fluorescence spectrum and absorption light intensity and combining with the multi-wavelength spectral correlation calculation method to analyze the target,the developed detector was able to qualitatively and quantitatively detect organic pollutants that responded in the UV-light range of 260-370 nm.The proposed detector was used to detect polycyclic aromatic hydrocarbons(PAHs)and Rhodamine B.The linear ranges of anthracene and Rhodamine B in absorption mode were 10-100 and 8.5-100 mg/L,respectively.In fluorescence mode,the linear ranges for anthracene and Rhodamine B were 0.006-50 and 0.02-0.781 mg/L,correspondingly.The absorption/fluorescence concurrent mode could extend the detection ranges of anthracene and Rhodamine B to 0.006-100 and 0.02-100 mg/L,respectively.The recoveries of PAHs in surface water ranged from 97.4%to 105.1%for anthracene and 84.5%to 91.2%for anthracene,naphthalene,and pyrene in absorption and fluorescence modes,respectively.The method was accurate in both modes.The mixtures containing PAHs were identified by the proposed method under the optimized multi-wavelength spectral correlation calculation.The results demonstrated that the method could achieve a similarity of 75%or more when identifying two different concentrations of solutions containing a single or a mixture of targets within the linear concentration range of the targets.However,the similarity dropped to less than 25%when identifying two solutions of different substances.The proposed method had excellent recognition abilityof targets.The proposed detector and method combined fluorescence and absorption spectroscopy,which could expand the application of spectroscopy in the in situ rapid identification and detection of pollutants such as PAHs in surface water.

Result Analysis
Print
Save
E-mail