1.Effect of Yuxuebi Tablets on mice with inflammatory pain based on GPR37-mediated inflammation resolution.
Ying LIU ; Guo-Xin ZHANG ; Xue-Min YAO ; Wen-Li WANG ; Ao-Qing HUANG ; Hai-Ping WANG ; Chun-Yan ZHU ; Na LIN
China Journal of Chinese Materia Medica 2025;50(1):178-186
In order to investigate whether the effect of Yuxuebi Tablets on the peripheral and central inflammation resolution of mice with inflammatory pain is related to their regulation of G protein-coupled receptor 37(GPR37), an inflammatory pain model was established by injecting complete Freund's adjuvant(CFA) into the paws of mice, with a sham-operated group receiving a similar volume of normal saline. The mice were assigned randomly to the sham-operated group, model group, ibuprofen group(91 mg·kg~(-1)), and low-, medium-, and high-dose groups of Yuxuebi Tablets(60, 120, and 240 mg·kg~(-1)). The drug was administered orally from days 1 to 19 after modeling. Von Frey method and the hot plate test were used to detect mechanical pain thresholds and heat hyperalgesia. The levels of interleukin-10(IL-10) and transforming growth factor-beta(TGF-β) in the spinal cord were quantified using enzyme-linked immunosorbent assay(ELISA), and the mRNA and protein expression of GPR37 in the spinal cord was measured by real-time quantitative reverse transcription PCR(qRT-PCR) and Western blot. Additionally, immunofluorescence was used to detect the expression of macrosialin antigen(CD68), mannose receptor(MRC1 or CD206), and GPR37 in dorsal root ganglia, as well as the expression of calcium-binding adapter molecule 1(IBA1), CD206, and GPR37 in the dorsal horn of the spinal cord. The results showed that compared with those of the sham-operated group, the mechanical pain thresholds and hot withdrawal latency of the model group significantly declined, and the expression of CD68 in the dorsal root ganglia and the expression of IBA1 in the dorsal horn of the spinal cord significantly increased. The expression of CD206 and GPR37 significantly decreased in the dorsal root ganglion and dorsal horn of the spinal cord, and IL-10 and TGF-β levels in the spinal cord were significantly decreased. Compared with those of the model group, the mechanical pain thresholds and hot withdrawal latency of the high-dose group of Yuxuebi Tablets significantly increased, and the expression of CD68 in the dorsal root ganglion and IBA1 in the dorsal horn of the spinal cord significantly decreased. The expression of CD206 and GPR37 in the dorsal root ganglion and dorsal horn of the spinal cord significantly increased, as well as IL-10 and TGF-β levels in the spinal cord. These findings indicated that Yuxuebi Tablets may reduce macrophage(microglial) infiltration and foster M2 macrophage polarization by enhancing GPR37 expression in the dorsal root ganglia and dorsal horn of the spinal cord of CFA-induced mice, so as to improve IL-10 and TGF-β levels, promote resolution of both peripheral and central inflammation, and play analgesic effects.
Inflammation/genetics*
;
Pain/genetics*
;
Drugs, Chinese Herbal/administration & dosage*
;
Animals
;
Mice
;
Freund's Adjuvant/pharmacology*
;
Ibuprofen
;
Pain Threshold/drug effects*
;
Hyperalgesia/genetics*
;
Ganglia, Spinal
;
Interleukin-10/genetics*
;
Transforming Growth Factor beta/genetics*
;
Reverse Transcriptase Polymerase Chain Reaction
;
Tablets
;
Receptors, G-Protein-Coupled
2.Construction of Saccharomyces cerevisiae cell factory for efficient biosynthesis of ferruginol.
Mei-Ling JIANG ; Zhen-Jiang TIAN ; Hao TANG ; Xin-Qi SONG ; Jian WANG ; Ying MA ; Ping SU ; Guo-Wei JIA ; Ya-Ting HU ; Lu-Qi HUANG
China Journal of Chinese Materia Medica 2025;50(4):1031-1042
Diterpenoid ferruginol is a key intermediate in biosynthesis of active ingredients such as tanshinone and carnosic acid.However, the traditional process of obtaining ferruginol from plants is often cumbersome and inefficient. In recent years, the increasingly developing gene editing technology has been gradually applied to the heterologous production of natural products, but the production of ferruginol in microbe is still very low, which has become an obstacle to the efficient biosynthesis of downstream chemicals, such as tanshinone. In this study, miltiradiene was produced by integrating the shortened diterpene synthase fusion protein,and the key genes in the MVA pathway were overexpressed to improve the yield of miltiradiene. Under the shake flask fermentation condition, the yield of miltiradiene reached about(113. 12±17. 4)mg·L~(-1). Subsequently, this study integrated the ferruginol synthase Sm CYP76AH1 and Sm CPR1 to reconstruct the ferruginol pathway and thereby realized the heterologous synthesis of ferruginol in Saccharomyces cerevisiae. The study selected the best ferruginol synthase(Il CYP76AH46) from different plants and optimized the expression of pathway genes through redox partner engineering to increase the yield of ferruginol. By increasing the copy number of diterpene synthase, CYP450, and CPR, the yield of ferruginol reached(370. 39± 21. 65) mg·L~(-1) in the shake flask, which was increased by 21. 57-fold compared with that when the initial ferruginol strain JMLT05 was used. Finally, 1 083. 51 mg·L~(-1) ferruginol was obtained by fed-batch fermentation, which is the highest yield of ferruginol from biosynthesis so far. This study provides not only research ideas for other metabolic engineering but also a platform for the construction of cell factories for downstream products.
Saccharomyces cerevisiae/genetics*
;
Diterpenes/metabolism*
;
Metabolic Engineering
;
Fermentation
;
Abietanes
3.Functional characterization of flavonoid glycosyltransferase AmGT90 in Astragalus membranaceus.
Guo-Qing PENG ; Bing-Yan XU ; Jian-Ping HUANG ; Zhi-Yin YU ; Sheng-Xiong HUANG
China Journal of Chinese Materia Medica 2025;50(6):1534-1543
Astragalus membranaceus(A. membranaceus), a traditional tonic, contains flavonoids as one of its main bioactive components and key indicators for quality standard detection. These compounds predominantly exist in glycosylated forms after glycosylation modification within the plant. The catalytic products of flavonoid glycosyltransferases in A. membranaceus have been reported to be mostly monoglycosides, and only AmUGT28 catalyzes luteolin to form diglycosides. In this study, we cloned a glycosyltransferase gene, AmGT90, from A. membranaceus, with an ORF length of 1 335 bp, encoding 444 amino acids, and the protein had a relative molecular mass of 50.5 kDa. Phylogenetic tree analysis indicated that AmGT90 belongs to the UGT74 family. In vitro enzymatic reaction showed that AmGT90 had broad substrate specificity and could catalyze the glycosylation of various flavonoids, including isoflavones, flavones, flavanones, and chalcones. AmGT90 not only catalyzed the formation of monoglycosides but also diglycosides. In addition, the mechanism of AmGT90 catalyzing the formation of diglycosides from luteolin was preliminarily explored. The experimental results showed that AmGT90 may preferentially recognize C4'-OH of luteolin and then recognize C7-OH to form diglycosides. This study reported a glycosyltransferase from A. membranaceus capable of converting flavonoids into monoglycosides and diglycosides. This finding not only enhances our understanding of the biosynthetic pathways of flavonoid glycosides in A. membranaceus but also introduces a new component for glycoside production through synthetic biology.
Glycosyltransferases/chemistry*
;
Flavonoids/chemistry*
;
Astragalus propinquus/classification*
;
Phylogeny
;
Glycosylation
;
Plant Proteins/chemistry*
;
Substrate Specificity
;
Cloning, Molecular
;
Amino Acid Sequence
4.Application scenarios of rare and endangered Chinese medicinal materials and their substitutes.
Wen-Ting HU ; Xiao-Bo ZHANG ; Yi-Jing ZHANG ; Zhi-Yong LI ; Lan-Ping GUO ; Lu-Qi HUANG
China Journal of Chinese Materia Medica 2025;50(10):2640-2647
Traditional Chinese medicine(TCM) resources are an important foundation for the theory and practice of TCM. Rare and endangered TCM, as a significant component of these resources, plays an essential role. Conducting research on substitutes for rare and endangered TCM resources is of great significance for alleviating resource shortages, promoting the sustainable utilization of TCM, and advancing TCM modernization. This paper reviews the conservation achievements of rare and endangered Chinese medicinal materials in China and organizes the substitution methods for these materials. Currently, the main substitution approaches include introduction and domestication, tissue culture, varietal replacement, and artificial synthesis. Furthermore, this paper proposes the following approaches for researching the application scenarios of rare and endangered medicinal materials, i.e., tracing the historical context of their use to clarify foundational principles; verifying disease classifications to strengthen the clinical application scenarios of these materials; analyzing the evolution patterns of prescription formulations to strengthen the mining of the compatibility application scenarios of rare and endangered medicinal materials; scientifically evaluating to strengthen the application scenario research and development of endangered Chinese patent medicine industry. These efforts aim to promote the scientific substitution and sustainable utilization of rare and endangered medicinal materials and their substitutes.
Drugs, Chinese Herbal/chemistry*
;
Humans
;
Medicine, Chinese Traditional
;
China
;
Plants, Medicinal/growth & development*
;
Endangered Species
;
Conservation of Natural Resources
;
Animals
5.Potential mechanism of Yueju Pills in improving depressive symptoms of psychocardiac diseases based on metabolomics and network pharmacology.
Cheng-Yu DU ; Xue-Feng GUO ; Han-Wen ZHANG ; Jian LIANG ; Huan ZHANG ; Guo-Wei HUANG ; Ping NI ; Hai-Jun MA ; You YU ; Rui YU
China Journal of Chinese Materia Medica 2025;50(16):4564-4573
The therapeutic effects of Yueju Pills on depression and cardiovascular diseases have been widely recognized. Previous studies have shown that the drug can significantly improve depressive-like behaviors induced by chronic unpredictable mild stress(CUMS) combined with atherosclerosis(AS). Given the complex pathogenesis of psychocardiac diseases, this study integrated metabolomics and network pharmacology to systematically elucidate the mechanism of Yueju Pills in alleviating depressive symptoms in psychocardiac diseases. The results demonstrate that, after Yueju Pill intervention, the levels of 9 abnormal metabolites in the hippocampus restore to normal ranges, primarily involving key pathways or signaling pathways, including the cyclic adenosine monophosphate(cAMP), mammalian target of rapamycin(mTOR), glycine/serine/threonine metabolism, and aminoacyl-tRNA biosynthesis. In a high-fat diet-induced CUMS ApoE~(-/-) mouse model, Yueju Pills significantly increases adenosine monophosphate(AMP) levels and decreases L-alanine and D-glyceric acid levels in the hippocampus. In conclusion, Yueju Pills exert antidepressant effects by regulating multiple metabolic axes, including glycine/serine/threonine metabolism and the cAMP, mTOR signaling pathways. Network pharmacology predictions reveal that the treatment of CUMS combined with AS by its core active components may be realized through modulating pathways concerning neuroinflammation and synaptic plasticity, including serine/threonine-protein kinase 1(AKT1), mitogen-activated protein kinase 1(MAPK1), and prostaglandin-endoperoxide synthase 2(PTGS2). This study provides a theoretical reference for the clinical application of Yueju Pills in alleviating the depressive symptoms of psychocardiac diseases.
Animals
;
Network Pharmacology
;
Mice
;
Drugs, Chinese Herbal/administration & dosage*
;
Metabolomics
;
Male
;
Depression/genetics*
;
Humans
;
Hippocampus/drug effects*
;
Mice, Inbred C57BL
;
Signal Transduction/drug effects*
6.Explanation and interpretation of blood transfusion provisions for children with hematological diseases in the national health standard "Guideline for pediatric transfusion".
Ming-Yi ZHAO ; Rong HUANG ; Rong GUI ; Qing-Nan HE ; Ming-Yan HEI ; Xiao-Fan ZHU ; Jun LU ; Xiao-Jun XU ; Tian-Ming YUAN ; Rong ZHANG ; Xu WANG ; Jin-Ping LIU ; Jing WANG ; Zhi-Li SHAO ; Yong-Jian GUO ; Xin-Yin WU ; Jia-Rui CHEN ; Qi-Rong CHEN ; Jia GUO ; Ming-Hua YANG
Chinese Journal of Contemporary Pediatrics 2025;27(1):18-25
To guide clinical blood transfusion practices for pediatric patients, the National Health Commission has issued the health standard "Guideline for pediatric transfusion" (WS/T 795-2022). Blood transfusion is one of the most commonly used supportive treatments for children with hematological diseases. This guideline provides guidance and recommendations for blood transfusions in children with aplastic anemia, thalassemia, autoimmune hemolytic anemia, glucose-6-phosphate dehydrogenase deficiency, acute leukemia, myelodysplastic syndromes, immune thrombocytopenic purpura, and thrombotic thrombocytopenic purpura. This article presents the evidence and interpretation of the blood transfusion provisions for children with hematological diseases in the "Guideline for pediatric transfusion", aiming to assist in the understanding and implementing the blood transfusion section of this guideline.
Humans
;
Child
;
Hematologic Diseases/therapy*
;
Blood Transfusion/standards*
;
Practice Guidelines as Topic
7.Explanation and interpretation of the compilation of blood transfusion provisions for children undergoing hematopoietic stem cell transplantation in the national health standard "Guideline for pediatric transfusion".
Rong HUANG ; Qing-Nan HE ; Ming-Yan HEI ; Xiao-Fan ZHU ; Jun LU ; Xiao-Jun XU ; Tian-Ming YUAN ; Rong ZHANG ; Xu WANG ; Jin-Ping LIU ; Jing WANG ; Zhi-Li SHAO ; Ming-Yi ZHAO ; Yong-Jian GUO ; Xin-Yin WU ; Jia-Rui CHEN ; Qi-Rong CHEN ; Jia GUO ; Rong GUI ; Ming-Hua YANG
Chinese Journal of Contemporary Pediatrics 2025;27(2):139-143
To guide clinical blood transfusion practices for pediatric patients, the National Health Commission has issued the health standard "Guideline for pediatric transfusion" (WS/T 795-2022). Blood transfusion for children undergoing hematopoietic stem cell transplantation is highly complex and challenging. This guideline provides recommendations on transfusion thresholds and the selection of blood components for these children. This article presents the evidence and interpretation of the transfusion provisions for children undergoing hematopoietic stem cell transplantation, with the aim of enhancing the understanding and implementation of the "Guideline for pediatric transfusion".
Humans
;
Hematopoietic Stem Cell Transplantation
;
Child
;
Blood Transfusion/standards*
;
Practice Guidelines as Topic
8.Explanation and interpretation of blood transfusion provisions for critically ill and severely bleeding pediatric patients in the national health standard "Guideline for pediatric transfusion".
Rong HUANG ; Qing-Nan HE ; Ming-Yan HEI ; Ming-Hua YANG ; Xiao-Fan ZHU ; Jun LU ; Xiao-Jun XU ; Tian-Ming YUAN ; Rong ZHANG ; Xu WANG ; Jin-Ping LIU ; Jing WANG ; Zhi-Li SHAO ; Ming-Yi ZHAO ; Yong-Jian GUO ; Xin-Yin WU ; Jia-Rui CHEN ; Qi-Rong CHEN ; Jia GUO ; Rong GUI
Chinese Journal of Contemporary Pediatrics 2025;27(4):395-403
To guide clinical blood transfusion practices for pediatric patients, the National Health Commission has issued the health standard "Guideline for pediatric transfusion" (WS/T 795-2022). Critically ill children often present with anemia and have a higher demand for transfusions compared to other pediatric patients. This guideline provides guidance and recommendations for blood transfusions in cases of general critical illness, septic shock, acute brain injury, extracorporeal membrane oxygenation, non-life-threatening bleeding, and hemorrhagic shock. This article interprets the background and evidence of the blood transfusion provisions for critically ill and severely bleeding children in the "Guideline for pediatric transfusion", aiming to enhance understanding and implementation of this aspect of the guidelines. Citation:Chinese Journal of Contemporary Pediatrics, 2025, 27(4): 395-403.
Humans
;
Critical Illness
;
Blood Transfusion/standards*
;
Child
;
Hemorrhage/therapy*
;
Practice Guidelines as Topic
9.Explanation and interpretation of blood transfusion provisions for children undergoing cardiac surgery in the national health standard "Guideline for pediatric transfusion".
Rong HUANG ; Qing-Nan HE ; Ming-Yan HEI ; Ming-Hua YANG ; Xiao-Fan ZHU ; Jun LU ; Xiao-Jun XU ; Tian-Ming YUAN ; Rong ZHANG ; Xu WANG ; Jing WANG ; Zhi-Li SHAO ; Ming-Yi ZHAO ; Yong-Jian GUO ; Xin-Yin WU ; Jia-Rui CHEN ; Qi-Rong CHEN ; Jia GUO ; Rong GUI ; Jin-Ping LIU
Chinese Journal of Contemporary Pediatrics 2025;27(7):778-785
To guide clinical blood transfusion practices in pediatric patients, the National Health Commission has issued the health standard "Guideline for pediatric transfusion" (WS/T 795-2022). Children undergoing cardiac surgery are at high risk of bleeding, and the causes of perioperative anemia and coagulation disorders in neonates and children are complex and varied, often necessitating the transfusion of allogeneic blood components. This guideline provides direction and recommendations for specific measures in blood management for children undergoing cardiac surgery before, during, and after surgery. This article interprets the background and evidence for the formulation of the blood transfusion provisions for children undergoing cardiac surgery, hoping to facilitate the understanding and implementation of this guideline.
Humans
;
Cardiac Surgical Procedures
;
Blood Transfusion/standards*
;
Child
;
Practice Guidelines as Topic
10.Engineering cellular dephosphorylation boosts (+)-borneol production in yeast.
Haiyan ZHANG ; Peng CAI ; Juan GUO ; Jiaoqi GAO ; Linfeng XIE ; Ping SU ; Xiaoxin ZHAI ; Baolong JIN ; Guanghong CUI ; Yongjin J ZHOU ; Luqi HUANG
Acta Pharmaceutica Sinica B 2025;15(2):1171-1182
(+)-Borneol, the main component of "Natural Borneol" in the Chinese Pharmacopoeia, is a high-end spice and precious medicine. Plant extraction cannot meet the increasing demand for (+)-borneol, while microbial biosynthesis offers a sustainable supply route. However, its production was extremely low compared with other monoterpenes, even with extensively optimizing the mevalonate pathway. We found that the key challenge is the complex and unusual dephosphorylation reaction of bornyl diphosphate (BPP), which suffers the side-reaction and the competition from the cellular dephosphorylation process, especially lipid metabolism, thus limiting (+)-borneol synthesis. Here, we systematically optimized the dephosphorylation process by identifying, characterizing phosphatases, and balancing cellular dephosphorylation metabolism. For the first time, we identified two endogenous phosphatases and seven heterologous phosphatases, which significantly increased (+)-borneol production by up to 152%. By engineering BPP dephosphorylation and optimizing the MVA pathway, the production of (+)-borneol was increased by 33.8-fold, which enabled the production of 753 mg/L under fed-batch fermentation in shake flasks, so far the highest reported in the literature. This study showed that rewiring dephosphorylation metabolism was essential for high-level production of (+)-borneol in Saccharomyces cerevisiae, and balancing cellular dephosphorylation is also helpful for efficient biosynthesis of other terpenoids since all whose biosynthesis involves the dephosphorylation procedure.

Result Analysis
Print
Save
E-mail