1.Heterogeneity of Adipose Tissue From a Single-cell Transcriptomics Perspective
Yong-Lang WANG ; Si-Si CHEN ; Qi-Long LI ; Yu GONG ; Xin-Yue DUAN ; Ye-Hui DUAN ; Qiu-Ping GUO ; Feng-Na LI
Progress in Biochemistry and Biophysics 2025;52(4):820-835
Adipose tissue is a critical energy reservoir in animals and humans, with multifaceted roles in endocrine regulation, immune response, and providing mechanical protection. Based on anatomical location and functional characteristics, adipose tissue can be categorized into distinct types, including white adipose tissue (WAT), brown adipose tissue (BAT), beige adipose tissue, and pink adipose tissue. Traditionally, adipose tissue research has centered on its morphological and functional properties as a whole. However, with the advent of single-cell transcriptomics, a new level of complexity in adipose tissue has been unveiled, showing that even under identical conditions, cells of the same type may exhibit significant variation in morphology, structure, function, and gene expression——phenomena collectively referred to as cellular heterogeneity. Single-cell transcriptomics, including techniques like single-cell RNA sequencing (scRNA-seq) and single-nucleus RNA sequencing (snRNA-seq), enables in-depth analysis of the diversity and heterogeneity of adipocytes at the single-cell level. This high-resolution approach has not only deepened our understanding of adipocyte functionality but also facilitated the discovery of previously unidentified cell types and gene expression patterns that may play key roles in adipose tissue function. This review delves into the latest advances in the application of single-cell transcriptomics in elucidating the heterogeneity and diversity within adipose tissue, highlighting how these findings have redefined the understanding of cell subpopulations within different adipose depots. Moreover, the review explores how single-cell transcriptomic technologies have enabled the study of cellular communication pathways and differentiation trajectories among adipose cell subgroups. By mapping these interactions and differentiation processes, researchers gain insights into how distinct cellular subpopulations coordinate within adipose tissues, which is crucial for maintaining tissue homeostasis and function. Understanding these mechanisms is essential, as dysregulation in adipose cell interactions and differentiation underlies a range of metabolic disorders, including obesity and diabetes mellitus type 2. Furthermore, single-cell transcriptomics holds promising implications for identifying therapeutic targets; by pinpointing specific cell types and gene pathways involved in adipose tissue dysfunction, these technologies pave the way for developing targeted interventions aimed at modulating specific adipose subpopulations. In summary, this review provides a comprehensive analysis of the role of single-cell transcriptomic technologies in uncovering the heterogeneity and functional diversity of adipose tissues.
2.RNF115 deficiency upregulates autophagy and inhibits hepatocellular carcinoma growth.
Zhaohui GU ; Jinqiu FENG ; Shufang YE ; Tao LI ; Yaxin LOU ; Pengli GUO ; Ping LV ; Zongming ZHANG ; Bin ZHU ; Yingyu CHEN
Chinese Medical Journal 2025;138(6):754-756
3.Development and validation of a prediction score for subtype diagnosis of primary aldosteronism.
Ping LIU ; Wei ZHANG ; Jiao WANG ; Hongfei JI ; Haibin WANG ; Lin ZHAO ; Jinbo HU ; Hang SHEN ; Yi LI ; Chunhua SONG ; Feng GUO ; Xiaojun MA ; Qingzhu WANG ; Zhankui JIA ; Xuepei ZHANG ; Mingwei SHAO ; Yi SONG ; Xunjie FAN ; Yuanyuan LUO ; Fangyi WEI ; Xiaotong WANG ; Yanyan ZHAO ; Guijun QIN
Chinese Medical Journal 2025;138(23):3206-3208
4.Potential mechanism of Yueju Pills in improving depressive symptoms of psychocardiac diseases based on metabolomics and network pharmacology.
Cheng-Yu DU ; Xue-Feng GUO ; Han-Wen ZHANG ; Jian LIANG ; Huan ZHANG ; Guo-Wei HUANG ; Ping NI ; Hai-Jun MA ; You YU ; Rui YU
China Journal of Chinese Materia Medica 2025;50(16):4564-4573
The therapeutic effects of Yueju Pills on depression and cardiovascular diseases have been widely recognized. Previous studies have shown that the drug can significantly improve depressive-like behaviors induced by chronic unpredictable mild stress(CUMS) combined with atherosclerosis(AS). Given the complex pathogenesis of psychocardiac diseases, this study integrated metabolomics and network pharmacology to systematically elucidate the mechanism of Yueju Pills in alleviating depressive symptoms in psychocardiac diseases. The results demonstrate that, after Yueju Pill intervention, the levels of 9 abnormal metabolites in the hippocampus restore to normal ranges, primarily involving key pathways or signaling pathways, including the cyclic adenosine monophosphate(cAMP), mammalian target of rapamycin(mTOR), glycine/serine/threonine metabolism, and aminoacyl-tRNA biosynthesis. In a high-fat diet-induced CUMS ApoE~(-/-) mouse model, Yueju Pills significantly increases adenosine monophosphate(AMP) levels and decreases L-alanine and D-glyceric acid levels in the hippocampus. In conclusion, Yueju Pills exert antidepressant effects by regulating multiple metabolic axes, including glycine/serine/threonine metabolism and the cAMP, mTOR signaling pathways. Network pharmacology predictions reveal that the treatment of CUMS combined with AS by its core active components may be realized through modulating pathways concerning neuroinflammation and synaptic plasticity, including serine/threonine-protein kinase 1(AKT1), mitogen-activated protein kinase 1(MAPK1), and prostaglandin-endoperoxide synthase 2(PTGS2). This study provides a theoretical reference for the clinical application of Yueju Pills in alleviating the depressive symptoms of psychocardiac diseases.
Animals
;
Network Pharmacology
;
Mice
;
Drugs, Chinese Herbal/administration & dosage*
;
Metabolomics
;
Male
;
Depression/genetics*
;
Humans
;
Hippocampus/drug effects*
;
Mice, Inbred C57BL
;
Signal Transduction/drug effects*
5.Progress in investigating astrocyte heterogeneity after spinal cord injury based on single-cell sequencing technology.
Lei DU ; Yan-Jun ZHANG ; Tie-Feng GUO ; Lin-Zhao LUO ; Ping-Yi MA ; Jia-Ming LI ; Sheng TAN
China Journal of Orthopaedics and Traumatology 2025;38(5):544-548
In recent years, the study of single-cell transcriptome sequencing technology in the heterogeneity of astrocytes (astrocytes) after spinal cord injury (SCI) has provided new perspectives on post-traumatic nerve regeneration and repair. To provide a review on the research progress of single-cell sequencing technology in astrocytes after spinal cord injury (SCI), and to more comprehensively and deeply elaborate the application of single-cell sequencing technology in the field of astrocytes after SCI. Single-cell sequencing technology can analyse the transcriptomes of individual cells in a high-throughput manner, thus revealing fine differences in cell types and states. By using single-cell sequencing technology, the heterogeneity of astrocytes after SCI and their association with nerve regeneration and repair were revealed. In conclusion, the application of single-cell sequencing technology provides an important tool to reveal the heterogeneity of astrocytes after SCI, to further explore the mechanisms of astrocytes in SCI, and to develop intervention strategies targeting their regulatory mechanisms in order to improve the therapeutic efficacy of SCI. The discovery of changes in astrocyte transcriptome dynamics has improved researchers' understanding of spinal cord injury lesion progression and provided new insights into the treatment of spinal cord injury at different time points. To date, all of these findings need to be validated by more basic research and sufficient clinical trials. In the future, single-cell sequencing technology, through interdisciplinary collaboration with bioinformatics, computer science, tissue engineering, and clinical medicine, is expected to open a new window for the treatment of spinal cord injury.
Spinal Cord Injuries/metabolism*
;
Astrocytes/cytology*
;
Single-Cell Analysis/methods*
;
Humans
;
Animals
;
Transcriptome
;
Nerve Regeneration
6.Clinical sub-phenotypes of acute kidney injury in children and their association with prognosis.
Lian FENG ; Min LI ; Zhen JIANG ; Jiao CHEN ; Zhen-Jiang BAI ; Xiao-Zhong LI ; Guo-Ping LU ; Yan-Hong LI
Chinese Journal of Contemporary Pediatrics 2025;27(1):47-54
OBJECTIVES:
To investigate the clinical sub-phenotype (SP) of pediatric acute kidney injury (AKI) and their association with clinical outcomes.
METHODS:
General status and initial values of laboratory markers within 24 hours after admission to the pediatric intensive care unit (PICU) were recorded for children with AKI in the derivation cohort (n=650) and the validation cohort (n=177). In the derivation cohort, a least absolute shrinkage and selection operator (LASSO) regression analysis was used to identify death-related indicators, and a two-step cluster analysis was employed to obtain the clinical SP of AKI. A logistic regression analysis was used to develop a parsimonious classifier model with simplified metrics, and the area under the curve (AUC) was used to assess the value of this model. This model was then applied to the validation cohort and the combined derivation and validation cohort. The association between SPs and clinical outcomes was analyzed with all children with AKI as subjects.
RESULTS:
In the derivation cohort, two clinical SPs of AKI (SP1 and SP2) were identified by the two-step cluster analysis using the 20 variables screened by LASSO regression, namely SPd1 group (n=536) and SPd2 group (n=114). The simplified classifier model containing eight variables (P<0.05) had an AUC of 0.965 in identifying the two clinical SPs of AKI (P<0.001). The validation cohort was clustered into SPv1 group (n=156) and SPv2 group (n=21), and the combined derivation and validation cohort was clustered into SP1 group (n=694) and SP2 group (n=133). After adjustment for confounding factors, compared with the SP1 group, the SP2 group had significantly higher incidence rates of multiple organ dysfunction syndrome and death during the PICU stay (P<0.001), and SP2 was significantly associated with the risk of death within 28 days after admission to the PICU (P<0.001).
CONCLUSIONS
This study establishes a parsimonious classifier model and identifies two clinical SPs of AKI with different clinical features and outcomes.The SP2 group has more severe disease and worse clinical prognosis.
Humans
;
Acute Kidney Injury/diagnosis*
;
Prognosis
;
Male
;
Female
;
Child
;
Child, Preschool
;
Phenotype
;
Infant
;
Logistic Models
;
Adolescent
7.Psychological stress-activated NR3C1/NUPR1 axis promotes ovarian tumor metastasis.
Bin LIU ; Wen-Zhe DENG ; Wen-Hua HU ; Rong-Xi LU ; Qing-Yu ZHANG ; Chen-Feng GAO ; Xiao-Jie HUANG ; Wei-Guo LIAO ; Jin GAO ; Yang LIU ; Hiroshi KURIHARA ; Yi-Fang LI ; Xu-Hui ZHANG ; Yan-Ping WU ; Lei LIANG ; Rong-Rong HE
Acta Pharmaceutica Sinica B 2025;15(6):3149-3162
Ovarian tumor (OT) is the most lethal form of gynecologic malignancy, with minimal improvements in patient outcomes over the past several decades. Metastasis is the leading cause of ovarian cancer-related deaths, yet the underlying mechanisms remain poorly understood. Psychological stress is known to activate the glucocorticoid receptor (NR3C1), a factor associated with poor prognosis in OT patients. However, the precise mechanisms linking NR3C1 signaling and metastasis have yet to be fully elucidated. In this study, we demonstrate that chronic restraint stress accelerates epithelial-mesenchymal transition (EMT) and metastasis in OT through an NR3C1-dependent mechanism involving nuclear protein 1 (NUPR1). Mechanistically, NR3C1 directly regulates the transcription of NUPR1, which in turn increases the expression of snail family transcriptional repressor 2 (SNAI2), a key driver of EMT. Clinically, elevated NR3C1 positively correlates with NUPR1 expression in OT patients, and both are positively associated with poorer prognosis. Overall, our study identified the NR3C1/NUPR1 axis as a critical regulatory pathway in psychological stress-induced OT metastasis, suggesting a potential therapeutic target for intervention in OT metastasis.
8.Sinisan, a compound Chinese herbal medicine, alleviates acute colitis by facilitating colonic secretory cell lineage commitment and mucin production.
Ya-Jie CAI ; Jian-Hang LAN ; Shuo LI ; Yue-Ning FENG ; Fang-Hong LI ; Meng-Yu GUO ; Run-Ping LIU
Journal of Integrative Medicine 2025;23(4):429-444
OBJECTIVE:
Ulcerative colitis is closely associated with intestinal stem cell (ISC) loss and impaired intestinal mucus barrier. Sinisan (SNS), a compound Chinese herbal medicine, has a long history in the treatment of intestinal dysfunction, yet whether SNS can relieve acute experimental colitis by modulating ISC proliferation and secretory cell differentiation has not been studied. Our study tested the effect of SNS against acute colitis and focused on the mechanisms involving intestinal barrier recovery.
METHODS:
Network pharmacology analysis and blood entry component analysis of SNS were used to explore the underlying mechanism by which SNS affects the acute dextran sulfate sodium (DSS)-induced murine colitis model. RNA-sequencing was used to demonstrate the mechanism. Further, reverse transcription-quantitative polymerase chain reaction, immunofluorescence staining, and alcian blue and periodic acid-Schiff staining were performed in vivo and in the colonic organoids to investigate the cell lineage differentiation-related mechanism of SNS. Furthermore, potential active ingredients from SNS were predicted by network pharmacology analysis.
RESULTS:
SNS dramatically suppressed DSS-induced acute colonic inflammation in mice. RNA-sequencing analysis revealed downregulation of inflammation and apoptosis-related genes, and upregulation of lipid metabolism and proliferation-related genes, such as Irf7, Pparα, Clspn and Hspa5. Additionally, ISC renewal and intestinal secretory cell lineage commitment were significantly promoted by SNS both in vivo and in vitro in colonic organoids, leading to enhanced mucin expression. Furthermore, potential active ingredients from SNS that mediated inflammation, lipid metabolism, proliferation, apoptosis, stem cells and secretory cells were predicted using a network pharmacology approach.
CONCLUSION
Our study shed light on the underlying mechanism of SNS in attenuating acute colitis from the perspective of ISC renewal and secretory lineage cell differentiation, suggesting a of novel therapeutic strategy against colitis. Please cite this article as: Cai YJ, Lan JH, Li S, Feng YN, Li FH, Guo MY, et al. Sinisan, a compound Chinese herbal medicine, alleviates acute colitis by facilitating colonic secretory cell lineage commitment and mucin production. J Integr Med. 2025; 23(4): 429-444.
Animals
;
Drugs, Chinese Herbal/therapeutic use*
;
Mice
;
Colon/pathology*
;
Mucins/metabolism*
;
Mice, Inbred C57BL
;
Cell Differentiation/drug effects*
;
Male
;
Colitis/metabolism*
;
Cell Lineage/drug effects*
;
Dextran Sulfate
;
Stem Cells/drug effects*
;
Disease Models, Animal
9. A network pharmacology-based approach to explore mechanism of kaempferol-7 -O -neohesperidoside against prostate cancer
Qiu-Ping ZHANG ; Zhi-Ping CHENG ; Wei XUE ; Qiao-Feng LI ; Hong-Wei GUO ; Qiu-Ping ZHANG ; Jie-Jun FU ; Hong-Wei GUO
Chinese Pharmacological Bulletin 2024;40(1):146-154
Aim To explore the effect of kaempferol-7- 0-neohesperidoside (K70N) against prostate cancer (PCa) and the underlying mechanism. Methods The effect of K70N on the proliferation of PCa cell lines PC3, DU145, C4-2 and LNCaP was detected using CCK8 assay. The effect of K70N on migration ability of DU145 cells was determined by wound healing assay. The targets of K70N and PCa were screened from SuperPred and other databases. The common targets both related to K70N and PCa were obtained from the Venny online platform, a protein-protein interaction network (PPI) was constructed by the String and Cyto- scape. Meanwhile, the GO and KEGG functional enrichment were analyzed by David database. Then, a "drug-target-disease-pathway" network model was constructed. Cell cycle of PCa cells treated with K70N was analyzed by flow cytometry. The expressions of cycle-associated proteins including Skp2, p27 and p21 protein were detected by Western blot. Molecular docking between Skp2 and K70N was conducted by Sybyl X2. 0. Results K70N significantly inhibited the proliferation and migration of PCa cells. A total number of 34 drug-disease intersection targets were screened. The String results showed that Skp2 and p27, among the common targets, were the key targets of K70N for PCa treatment. Furthermore, GO and KEGG functional en-richment indicated that the mechanism was mainly related to the cell cycle. Flow cytometry showed that K70N treatment induced cell cycle arrest at the S phase. Compared with the control group, the protein expression level of Skp2 was significantly down-regulated, while the protein expression levels of p27 and p21 were up-regulated. The network molecular docking indicated that the ligand K70N had a good binding ability with the receptor Skp2. Conclusions K70N could inhibit the proliferation and migration of PCa cells, block the cell cycle in the S phase, which may be related to the regulation of cell cycle through the Skp2- p27/p21 signaling pathway.
10.Application of the OmniLogTM microbial identification system in the detection of the host spectrum for wild-type plague phage in Qinghai Plateau
Cun-Xiang LI ; Zhi-Zhen QI ; Qing-Wen ZHANG ; Hai-Hong ZHAO ; Long MA ; Pei-Song YOU ; Jian-Guo YANG ; Hai-Sheng WU ; Jian-Ping FENG
Chinese Journal of Zoonoses 2024;40(1):21-25
The growth of three plague phages from Qinghai Plateau in two Yersinia pestis strains(plague vaccine strains EV76 and 614F)and four non-Yersinia pestis strains(Yersinia pseudotuberculosis PTB3,PTB5,Escherichia coli V517,and Yersinia enterocolitica 52302-2)were detected through a micromethod based on the OmniLogTM microbial identification system and by the drop method,to provide a scientific basis for future ecological studies and classification based on the host range.For plague vaccine strains EV76 and 614F,successful phage infection and subsequent phage growth were observed in the host bacte-rium.Diminished bacterial growth and respiration and a concomitant decrease in color were observed with the OmniLogTM mi-crobial identification system at 33 ℃ for 48 h.Yersinia pseudotuberculosis PTB5 was sensitive to Yersinia pestis phage 476,but Yersinia pseudotuberculosis PST5 was insensitive to phage 087 and 072204.Three strains of non-Yersinia pestis(Yersinia pseudotuberculosis PTB3,Escherichia coli V517,and Yersinia enterocolitica 52302-2)were insensitive to Yersinia pestis pha-ges 087,072204,and 476 showed similar growth curves.The growth of phages 476 and 087,as determined with the drop method,in two Yersinia pestis strains(plague vaccine strains EV76 and 614F)and four non-Yersinia pestis strains(Yersinia pseudotuberculosis PTB3,Escherichia coli V517,and Yersin-ia enterocolitica 52302-2)showed the same results at 37 ℃,on the basis of comparisons with the OmniLogTM microbial i-dentification system;in contrast,phages 072204 did not show plaques on solid medium at 37 ℃ with plague vaccine strains EV76 and 614F.Determination based on the OmniLogTM detection system can be used as an alternative to the traditional determination of the host range,thus providing favorable application val-ue for determining the interaction between the phage and host bacteria.

Result Analysis
Print
Save
E-mail