1.Associations between statins and all-cause mortality and cardiovascular events among peritoneal dialysis patients: A multi-center large-scale cohort study.
Shuang GAO ; Lei NAN ; Xinqiu LI ; Shaomei LI ; Huaying PEI ; Jinghong ZHAO ; Ying ZHANG ; Zibo XIONG ; Yumei LIAO ; Ying LI ; Qiongzhen LIN ; Wenbo HU ; Yulin LI ; Liping DUAN ; Zhaoxia ZHENG ; Gang FU ; Shanshan GUO ; Beiru ZHANG ; Rui YU ; Fuyun SUN ; Xiaoying MA ; Li HAO ; Guiling LIU ; Zhanzheng ZHAO ; Jing XIAO ; Yulan SHEN ; Yong ZHANG ; Xuanyi DU ; Tianrong JI ; Yingli YUE ; Shanshan CHEN ; Zhigang MA ; Yingping LI ; Li ZUO ; Huiping ZHAO ; Xianchao ZHANG ; Xuejian WANG ; Yirong LIU ; Xinying GAO ; Xiaoli CHEN ; Hongyi LI ; Shutong DU ; Cui ZHAO ; Zhonggao XU ; Li ZHANG ; Hongyu CHEN ; Li LI ; Lihua WANG ; Yan YAN ; Yingchun MA ; Yuanyuan WEI ; Jingwei ZHOU ; Yan LI ; Caili WANG ; Jie DONG
Chinese Medical Journal 2025;138(21):2856-2858
2.Role of Total Vitamin D, Total Procollagen Type I Amino-Terminal Propeptide and β-CrossLaps in Multiple Myeloma.
Mei-E WANG ; Ting SU ; Xi-Zhe GUO ; Rong-Fu HUANG ; Yu-Yu ZHENG ; Gen-Wang CHEN ; Chun-Mei FAN
Journal of Experimental Hematology 2025;33(1):163-167
OBJECTIVE:
To analyze the significance of total vitamin D (tVD), total procollagen type I amino-terminal propeptide (tPINP) and β-CrossLaps (β-CTx) in the staging and prognosis of patients with multiple myeloma (MM).
METHODS:
A total of 54 patients with newly diagnosed MM admitted to the Second Affiliated Hospital of Fujian Medical University from 2020 to 2022 were selected as the observation group (MM group), and 50 healthy persons who underwent physical examinations in our hospital were selected as the control group. The expression levels of tVD, tPINP and β-CTx in the two groups were detected by chemiluminescence method. The differences in the expression levels of tVD, tPINP and β-CTx among MM patients at different ISS stages were analyzed. The expression levels of tVD, tPINP and β-CTx in MM patients with different levels of hemoglobin (Hb), serum calcium (Ca), creatinine (Crea), albumin (ALB), β2-microglobulin (β2-MG) and lactate dehydrogenase (LDH) were compared. The correlations between the expression levels of tVD, tPINP, β-CTx and the aforementioned clinical parameters were analyzed, respectively. The relationship between the expression levels of tVD, tPINP, β-CTx and the progression-free survival (PFS) of MM patients was analyzed.
RESULTS:
The expression level of tVD in the MM group was significantly lower than that in the control group (21.73±14.45 ng/ml vs 30.78±9.94 ng/ml, P =0.022). The expression level of β-CTx in the MM group was significantly higher than that in the control group (1.43±0.99 ng/ml vs 0.53±0.29 ng/ml, P =0.013). The tVD level in MM patients with ISS stage I-II was significantly higher than that of MM patients with ISS stage III (29.50±14.59 ng/ml vs 12.62±7.73 ng/ml, P =0.028), indicating that the higher the ISS stage, the lower the tVD level. The tPINP and β-CTx levels in MM patients with high Ca levels (>2.65 mmol/L) were significantly higher than those in patients with low Ca levels (≤2.65 mmol/L) (P =0.016, P =0.021). The tVD level of MM patients was positively correlated with the ALB level (r =0.570), tPINP was positively correlated with Ca and β2-MG levels (r =0.791,r =0.673), and β-CTx was positively correlated with tPINP level (r =0.616). The PFS of the low tVD expression group was significantly lower than that of the high tVD expression group (P =0.041).
CONCLUSION
The expression level of tVD is decreased in MM patients, which can be used as an indicator to evaluate the disease stage and prognosis of the patients. The β-CTx expression level is increased in MM patients. tPINP and β-CTx may be correlated with clinical symptoms such as osteolytic lesions and renal function changes in MM patients.
Humans
;
Multiple Myeloma/pathology*
;
Procollagen/blood*
;
Vitamin D/blood*
;
Prognosis
;
Peptide Fragments/blood*
;
Collagen Type I/blood*
;
Female
;
Male
;
Middle Aged
;
Aged
;
Neoplasm Staging
3.Lymph node metastasis in the prostatic anterior fat pad and prognosis after robot-assisted radical prostatectomy.
Zhou-Jie YE ; Yong SONG ; Jin-Peng SHAO ; Wen-Zheng CHEN ; Guo-Qiang YANG ; Qing-Shan DU ; Kan LIU ; Jie ZHU ; Bao-Jun WANG ; Jiang-Ping GAO ; Wei-Jun FU
National Journal of Andrology 2025;31(3):216-221
OBJECTIVE:
To investigate lymph node metastasis (LNM) in the prostatic anterior fat pad (PAFP) of PCa patients after robot-assisted radical prostatectomy (RARP), and analyze the clinicopathological features and prognosis of LNM in the PAFP.
METHODS:
We retrospectively analyzed the clinicopathological data on 1 003 cases of PCa treated by RARP in the Department of Urology of PLA General Hospital from January 2017 to December 2022. All the patients underwent routine removal of the PAFP during RARP and pathological examination, with the results of all the specimens examined and reported by pathologists. Based on the presence and locations of LNM, we grouped the patients for statistical analysis, compared the clinicopathological features between different groups using the Student's t, Mann-Whitney U and Chi-square tests, and conducted survival analyses using the Kaplan-Meier and Log-rank methods and survival curves generated by Rstudio.
RESULTS:
Lymph nodes were detected in 77 (7.7%) of the 1 003 PAFP samples, and LNM in 11 (14.3%) of the 77 cases, with a positive rate of 1.1% (11/1 003). Of the 11 positive cases, 9 were found in the upgraded pathological N stage, and the other 2 complicated by pelvic LNM. The patients with postoperative pathological stage≥T3 constituted a significantly higher proportion in the PAFP LNM than in the non-PAFP LNM group (81.8% [9/11] vs 36.2% [359/992], P = 0.005), and so did the cases with Gleason score ≥8 (87.5% [7/8] vs 35.5% [279/786], P = 0.009). No statistically significant differences were observed in the clinicopathological features and biochemical recurrence-free survival between the patients with PAFP LNM only and those with pelvic LNM only.
CONCLUSION
The PAFP is a potential route to LNM, and patients with LNM in the PAFP are characterized by poor pathological features. There is no statistically significant difference in biochemical recurrence-free survival between the patients with PAFP LNM only and those with pelvic LNM only. Routine removal of the PAFP and independent pathological examination of the specimen during RARP is of great clinical significance.
Humans
;
Male
;
Prostatectomy/methods*
;
Robotic Surgical Procedures
;
Lymphatic Metastasis
;
Retrospective Studies
;
Prognosis
;
Prostatic Neoplasms/pathology*
;
Adipose Tissue/pathology*
;
Prostate/pathology*
;
Lymph Nodes/pathology*
;
Middle Aged
;
Aged
4.The protein arginine methyltransferase PRMT1 ameliorates cerebral ischemia-reperfusion injury by suppressing RIPK1-mediated necroptosis and apoptosis.
Tengfei LIU ; Gan HUANG ; Xin GUO ; Qiuran JI ; Lu YU ; Runzhe ZONG ; Yiquan LI ; Xiaomeng SONG ; Qingyi FU ; Qidi XUE ; Yi ZHENG ; Fanshuo ZENG ; Ru SUN ; Lin CHEN ; Chengjiang GAO ; Huiqing LIU
Acta Pharmaceutica Sinica B 2025;15(8):4014-4029
Receptor-interacting protein kinase 1 (RIPK1) plays an essential role in regulating the necroptosis and apoptosis in cerebral ischemia-reperfusion (I/R) injury. However, the regulation of RIPK1 kinase activity after cerebral I/R injury remains largely unknown. In this study, we found the downregulation of protein arginine methyltransferase 1 (PRMT1) was induced by cerebral I/R injury, which negatively correlated with the activation of RIPK1. Mechanistically, we proved that PRMT1 directly interacted with RIPK1 and catalyzed its asymmetric dimethylarginine, which then blocked RIPK1 homodimerization and suppressed its kinase activity. Moreover, pharmacological inhibition or genetic ablation of PRMT1 aggravated I/R injury by promoting RIPK1-mediated necroptosis and apoptosis, while PRMT1 overexpression protected against I/R injury by suppressing RIPK1 activation. Our findings revealed the molecular regulation of RIPK1 activation and demonstrated PRMT1 would be a potential therapeutic target for the treatment of ischemic stroke.
5.Glutamine signaling specifically activates c-Myc and Mcl-1 to facilitate cancer cell proliferation and survival.
Meng WANG ; Fu-Shen GUO ; Dai-Sen HOU ; Hui-Lu ZHANG ; Xiang-Tian CHEN ; Yan-Xin SHEN ; Zi-Fan GUO ; Zhi-Fang ZHENG ; Yu-Peng HU ; Pei-Zhun DU ; Chen-Ji WANG ; Yan LIN ; Yi-Yuan YUAN ; Shi-Min ZHAO ; Wei XU
Protein & Cell 2025;16(11):968-984
Glutamine provides carbon and nitrogen to support the proliferation of cancer cells. However, the precise reason why cancer cells are particularly dependent on glutamine remains unclear. In this study, we report that glutamine modulates the tumor suppressor F-box and WD repeat domain-containing 7 (FBW7) to promote cancer cell proliferation and survival. Specifically, lysine 604 (K604) in the sixth of the 7 substrate-recruiting WD repeats of FBW7 undergoes glutaminylation (Gln-K604) by glutaminyl tRNA synthetase. Gln-K604 inhibits SCFFBW7-mediated degradation of c-Myc and Mcl-1, enhances glutamine utilization, and stimulates nucleotide and DNA biosynthesis through the activation of c-Myc. Additionally, Gln-K604 promotes resistance to apoptosis by activating Mcl-1. In contrast, SIRT1 deglutaminylates Gln-K604, thereby reversing its effects. Cancer cells lacking Gln-K604 exhibit overexpression of c-Myc and Mcl-1 and display resistance to chemotherapy-induced apoptosis. Silencing both c-MYC and MCL-1 in these cells sensitizes them to chemotherapy. These findings indicate that the glutamine-mediated signal via Gln-K604 is a key driver of cancer progression and suggest potential strategies for targeted cancer therapies based on varying Gln-K604 status.
Glutamine/metabolism*
;
Myeloid Cell Leukemia Sequence 1 Protein/genetics*
;
Humans
;
Proto-Oncogene Proteins c-myc/genetics*
;
Cell Proliferation
;
Signal Transduction
;
Neoplasms/pathology*
;
F-Box-WD Repeat-Containing Protein 7/genetics*
;
Cell Survival
;
Cell Line, Tumor
;
Apoptosis
6.A Prognostic Model Based on Colony Stimulating Factors-related Genes in Triple-negative Breast Cancer
Yu-Xuan GUO ; Zhi-Yu WANG ; Pei-Yao XIAO ; Chan-Juan ZHENG ; Shu-Jun FU ; Guang-Chun HE ; Jun LONG ; Jie WANG ; Xi-Yun DENG ; Yi-An WANG
Progress in Biochemistry and Biophysics 2024;51(10):2741-2756
ObjectiveTriple-negative breast cancer (TNBC) is the breast cancer subtype with the worst prognosis, and lacks effective therapeutic targets. Colony stimulating factors (CSFs) are cytokines that can regulate the production of blood cells and stimulate the growth and development of immune cells, playing an important role in the malignant progression of TNBC. This article aims to construct a novel prognostic model based on the expression of colony stimulating factors-related genes (CRGs), and analyze the sensitivity of TNBC patients to immunotherapy and drug therapy. MethodsWe downloaded CRGs from public databases and screened for differentially expressed CRGs between normal and TNBC tissues in the TCGA-BRCA database. Through LASSO Cox regression analysis, we constructed a prognostic model and stratified TNBC patients into high-risk and low-risk groups based on the colony stimulating factors-related genes risk score (CRRS). We further analyzed the correlation between CRRS and patient prognosis, clinical features, tumor microenvironment (TME) in both high-risk and low-risk groups, and evaluated the relationship between CRRS and sensitivity to immunotherapy and drug therapy. ResultsWe identified 842 differentially expressed CRGs in breast cancer tissues of TNBC patients and selected 13 CRGs for constructing the prognostic model. Kaplan-Meier survival curves, time-dependent receiver operating characteristic curves, and other analyses confirmed that TNBC patients with high CRRS had shorter overall survival, and the predictive ability of CRRS prognostic model was further validated using the GEO dataset. Nomogram combining clinical features confirmed that CRRS was an independent factor for the prognosis of TNBC patients. Moreover, patients in the high-risk group had lower levels of immune infiltration in the TME and were sensitive to chemotherapeutic drugs such as 5-fluorouracil, ipatasertib, and paclitaxel. ConclusionWe have developed a CRRS-based prognostic model composed of 13 differentially expressed CRGs, which may serve as a useful tool for predicting the prognosis of TNBC patients and guiding clinical treatment. Moreover, the key genes within this model may represent potential molecular targets for future therapies of TNBC.
7.Preparation and characterization of methacryloylated hyaluronic acid/acellular Wharton's jelly composite hydrogel scaffold
Xun YUAN ; Zhengang DING ; Liwei FU ; Jiang WU ; Yazhe ZHENG ; Zhichao ZHANG ; Guangzhao TIAN ; Xiang SUI ; Shuyun LIU ; Quanyi GUO
Chinese Journal of Tissue Engineering Research 2024;28(22):3517-3523
BACKGROUND:As tissue engineering brings new hope to the worldwide problem of articular cartilage repair,the construction of light-curing 3D printed hydrogel scaffolds with biomimetic composition is of great significance for cartilage tissue engineering. OBJECTIVE:To construct a biomimetic methacryloylated hyaluronic acid/acellular Wharton's jelly composite hydrogel scaffold by digital light processing 3D printing technology,and to evaluate its biocompatibility. METHODS:Wharton's jelly was isolated and extracted from human umbilical cord,then decellulated,freeze-dried,ground into powder,and dissolved in PBS to prepare 50 g/L acellular Wharton's jelly solution.Methylallylated hyaluronic acid was prepared,lyophilized and dissolved in PBS to prepare 50 g/L methylallylated hyaluronic acid solution.Acellular Wharton's jelly solution was mixed with methacrylyacylated hyaluronic acid solution at a volume ratio of 1:1,and was used as bio-ink after adding photoinitiator.Methylacrylylated hyaluronic acid hydrogel scaffolds(labeled as HAMA hydrogel scaffolds)and methylacrylylated hyaluronic acid/acellular Wharton's jelly gel scaffolds(labeled as HAMA/WJ hydrogel scaffolds)were prepared by digital light processing 3D printing technology,and the microstructure,swelling performance,biocompatibility,and cartilage differentiation performance of the scaffolds were characterized. RESULTS AND CONCLUSION:(1)Under scanning electron microscope,the two groups of scaffolds showed a three-dimensional network structure,and the fiber connection of HAMA/WJ hydrogel scaffold was more uniform.Both groups achieved swelling equilibrium within 10 hours,and the equilibrium swelling ratio of HAMA/WJ hydrogel scaffold was lower than that of HAMA hydrogel scaffold(P<0.05).(2)CCK-8 assay showed that HAMA/WJ hydrogel scaffold could promote the proliferation of bone marrow mesenchymal stem cells compared with HAMA hydrogel scaffold.Dead/live staining showed that bone marrow mesenchymal stem cells grew well on the two groups of scaffolds,and the cells on the HAMA/WJ hydrogel scaffolds were evenly distributed and more cells were found.Phalloidine staining showed better adhesion and spread of bone marrow mesenchymal stem cells in HAMA/WJ hydrogel scaffold than in HAMA.(3)Bone marrow mesenchymal stem cells were inoculated into the two groups for chondrogenic induction culture.The results of qRT-PCR showed that the mRNA expressions of agglutinoglycan,SOX9 and type Ⅱ collagen in the HAMA/WJ hydrogel scaffold group were higher than those in the HAMA hydrogel scaffold group(P<0.05,P<0.01).(4)These findings indicate that the digital light processing 3D bioprinting HAMA/WJ hydrogel scaffold can promote the proliferation,adhesion,and chondrogenic differentiation of bone marrow mesenchymal stem cells.
8.Hemodialysis bilayer bionic blood vessels developed by the mechanical stimulation of hepatitis B viral X(HBX)gene-transfected hepatic stellate cells
LIU HONGYI ; ZHOU YUANYUAN ; GUO PENG ; ZHENG XIONGWEI ; CHEN WEIBIN ; ZHANG SHICHAO ; FU YU ; ZHOU XU ; WAN ZHENG ; ZHAO BIN ; ZHAO YILIN
Journal of Zhejiang University. Science. B 2024;25(6):499-512
Artificial vascular graft(AVG)fistula is widely used for hemodialysis treatment in patients with renal failure.However,it has poor elasticity and compliance,leading to stenosis and thrombosis.The ideal artificial blood vessel for dialysis should replicate the structure and components of a real artery,which is primarily maintained by collagen in the extracellular matrix(ECM)of arterial cells.Studies have revealed that in hepatitis B virus(HBV)-induced liver fibrosis,hepatic stellate cells(HSCs)become hyperactive and produce excessive ECM fibers.Furthermore,mechanical stimulation can encourage ECM secretion and remodeling of a fiber structure.Based on the above factors,we transfected HSCs with the hepatitis B viral X(HBX)gene for simulating the process of HBV infection.Subsequently,these HBX-HSCs were implanted into a polycaprolactone-polyurethane(PCL-PU)bilayer scaffold in which the inner layer is dense and the outer layer consists of pores,which was mechanically stimulated to promote the secretion of collagen nanofiber from the HBX-HSCs and to facilitate crosslinking with the scaffold.We obtained an ECM-PCL-PU composite bionic blood vessel that could act as access for dialysis after decellularization.Then,the vessel scaffold was implanted into a rabbit's neck arteriovenous fistula model.It exhibited strong tensile strength and smooth blood flow and formed autologous blood vessels in the rabbit's body.Our study demonstrates the use of human cells to create biomimetic dialysis blood vessels,providing a novel approach for creating clinical vascular access for dialysis.
9.Differential expression and clinical significance of miR-124-3p in β-thalassemia
Luoyuan CAO ; Wenxu DONG ; Jing YANG ; Liwen GUO ; Jiaojiao LU ; Xian ZHENG ; Xianguo FU
Basic & Clinical Medicine 2024;44(12):1633-1637
Objective To investigate the differential expression of miR-124-3p in peripheral blood and clinical sig-nificance of patients with β-thalassemia.Methods Peripheral blood samples were collected from 33 patients with β-thalassemia and 30 healthy controls in Ningde Municipal Hospital Affiliated to Ningde Normal University from June 2021 to August 2022.The expression level of miR-124-3p was detected.Luciferase reporter gene was used to verify the interaction between miR-124-3p and ERF 3'UTR.The correlation between differential expression of miR-124-3p and β-thalassemia was analyzed and the clinical diagnostic value of miR-124-3p for β-thalassemia was eval-uated.Results Compared with healthy control individuals,the expression of miR-124-3p was significantly up-reg-ulated in patients with β-thalassemia(P<0.001).The genotype of miR-124-3p high expression group was 84.2%β0(16/19),the genotype of low expression group was 55.6%β+(10/18).ROC curve analysis showed that miR-124-3p had predictive efficacy for β-thalassemia(AUC:0.842).Luciferase reporter gene analysis showed that ERF gene was the regulatory target of miR-124-3p.Conclusions The differential expression of miR-124-3p in patients with β-thalassemia is closely related to the genotype and clinical severity of thalassemia,and ERF is negatively reg-ulated by miR-124-3p.miR-124-3p may be an effective diagnostic biomarker for β-thalassemia.
10.The role and mechanism of miR-34a/SIRT1 in intensive care unit acquired weakness
Zheng-Xiao LIN ; Zhao-Xia XU ; Juan CHEN ; Jian HU ; Guo-Yun ZHU ; Zhong-Li ZHU ; Jian FENG ; Fu-Xiang LI
Medical Journal of Chinese People's Liberation Army 2024;49(7):796-803
Objective To investigate the role and underlying mechanisms of miR-34a/SIRT1 in intensive care unit acquired weakness(ICU-AW).Methods(1)C2C12 mouse skeletal muscle cells were induced to differentiate into myotubes,and were divided into two groups:model group[ICU-AW group,treated with lipopolysaccharides(LPS)for 12 hours]and normal control group(treated with the same amount of sterile water for 12 hours).Western blotting was used to detect the protein expression level of Muscle ring finger 1(MuRF-1),atrophy gene 1(Atrogin-1)and Sirtuin-1(SIRT1).RT-qPCR was used to assess the mRNA expression level of microRNA-34a(miR-34a),MuRF-1,Atrogin-1 and SIRT1,and light microscope was used to observe the growth and differentiation of C2C12 skeletal muscle cells in each group.(2)ICU-AW cells were further subdivided into control group(treated with siRNA transfection agent intervention),Scra siRNA group(treated with transfection agent and non-specific siRNA),miR-34a siRNA group(treated with transfection agent and specific siRNA intervention),vehicle group(treated with agonist solvent dimethyl sulfoxide)and SRT1720 group(treated with SIRT1 agonist SRT1720).Western blotting was used to detect the protein expression level of SIRT1,Atrogin-1 and MuRF-1 in each group.RT-qPCR was used to detect the miR-34a and the mRNA expression level of SIRT1,Atrogin-1 and MuRF-1 in each group.(3)In addition,another group of ICU-AW cells were divided into control group(treated with siRNA transfection),miR-34a siRNA group(treated with transfection agent and specific siRNA intervention),miR-34a siRNA+vehicle group(treated with transfection agent,specific siRNA and Dimethyl sulfoxide intervention)and miR-34a siRNA+EX-527 group(treated with transfection agent,specific siRNA and SIRT1 inhibitor EX-527).Western blotting was used to detect the protein expression level of Atrogin-1 and MuRF-1.RT-qPCR was used to assess the mRNA expression level of Atrogin-1 and MuRF-1.Results Myotube differentiation was observed on the 4th day.Compared with control group,myotube atrophy was obvious in ICU-AW group.RT-qPCR and Western blotting results revealed that,compared with normal control group,in ICU-AW group,the mRNA and protein expression levels of Atrogin-1 and MuRF-1 significantly increased(P<0.05),and the expression level of miR-34a significantly increased(P<0.05),while the mRNA and protein expression levels of SIRT1 significantly decreased(P<0.05).RT-qPCR results showed that,compared with control group(treated with siRNA transfection agent intervention)and Scra siRNA group,the expression of miR-34a and mRNA expression of Atrogin-1 and MuRF-1 in miR-34a siRNA group significantly decreased(P<0.05),while the mRNA expression of SIRT1 significantly increased(P<0.05),meanwhile the protein expression of Atrogin-1 and MuRF-1 decreased significantly(P<0.01),and the protein expression of SIRT1 significantly increased(P<0.05).RT-qPCR results also showed that,compared with vehicle group,the mRNA expression of Atrogin-1 and MuRF-1 in SRT1720 group decreased significantly(P<0.05),while SIRT1 increased significantly(P<0.05).Western blotting results demonstrated that,compared with control group and Scra siRNA group,the protein expression of Atrogin-1 and MuRF-1 in miR-34a siRNA group decreased significantly(P<0.05),while SIRT1 increased significantly(P<0.05).RT-qPCR and Western blotting results indicated that,compared with miR-34a siRNA+vehicle group,the mRNA and protein expression of Atrogin-1 and MuRF-1 in miR-34a siRNA+EX-527 group increased significantly(P<0.05).Conclusion Overactivation of miR-34a in ICU-AW contributes to skeletal muscle atrophy by inhibiting the expression of SIRT1,which may play an important role in the pathogenesis of ICU-AW.

Result Analysis
Print
Save
E-mail