1.Gradient artificial bone repair scaffold regulates skeletal system tissue repair and regeneration
Yu ZHANG ; Ruian XU ; Lei FANG ; Longfei LI ; Shuyan LIU ; Lingxue DING ; Yuexi WANG ; Ziyan GUO ; Feng TIAN ; Jiajia XUE
Chinese Journal of Tissue Engineering Research 2025;29(4):846-855
BACKGROUND:Gradient artificial bone repair scaffolds can mimic unique anatomical features in musculoskeletal tissues,showing great potential for repairing injured musculoskeletal tissues. OBJECTIVE:To review the latest research advances in gradient artificial bone repair scaffolds for tissue engineering in the musculoskeletal system and describe their advantages and fabrication strategies. METHODS:The first author of the article searched the Web of Science and PubMed databases for articles published from 2000 to 2023 with search terms"gradient,bone regeneration,scaffold".Finally,76 papers were analyzed and summarized after the screening. RESULTS AND CONCLUSION:(1)As an important means of efficient and high-quality repair of skeletal system tissues,gradient artificial bone repair scaffolds are currently designed bionically for the natural gradient characteristics of bone tissue,bone-cartilage,and tendon-bone tissue.These scaffolds can mimic the extracellular matrix of native tissues to a certain extent in terms of structure and composition,thus promoting cell adhesion,migration,proliferation,differentiation,and regenerative recovery of damaged tissues to their native state.(2)Advanced manufacturing technology provides more possibilities for gradient artificial bone repair scaffold preparation:Gradient electrospun fiber scaffolds constructed by spatially differentiated fiber arrangement and loading of biologically active substances have been developed;gradient 3D printed scaffolds fabricated by layered stacking,graded porosity,and bio-3D printing technology;gradient hydrogel scaffolds fabricated by in-situ layered injections,simple layer-by-layer stacking,and freeze-drying method;and in addition,there are also scaffolds made by other modalities or multi-method coupling.These scaffolds have demonstrated good biocompatibility in vitro experiments,were able to accelerate tissue regeneration in small animal tests,and were observed to have significantly improved histological structure.(3)The currently developed gradient artificial bone repair scaffolds have problems such as mismatch of gradient scales,unclear material-tissue interactions,and side effects caused by degradation products,which need to be further optimized by combining the strengths of related disciplines and clinical needs in the future.
2.Effects of total flavonoids of Dracocephalum moldavica on apoptosis of H9c2 cells induced by OGD/R injury and endoplasmic reticulum stress.
Tian WANG ; Di-Wei LIU ; Tong-Ye WANG ; Xing-Yu ZHANG ; Jian-Guo XING ; Rui-Fang ZHENG
China Journal of Chinese Materia Medica 2025;50(5):1321-1330
This study investigated the effects of total flavonoids of Dracocephalum moldavica(TFDM) on apoptosis in rat H9c2 cells induced by endoplasmic reticulum stress(ERS) established by oxygen-glucose deprivation and reoxygenation(OGD/R) injury and tunicamycin(TM), and explored the potential mechanisms. After successful modeling, the following groups were set in this experiment: control group, model(OGD/R or TM) group, and TFDM low-, medium-, and high-dose groups(12.5, 25, and 50 μg·mL~(-1)). The OGD/R injury model was constructed in vitro. Cell proliferation was assessed using the cell counting kit-8(CCK-8) method. The levels of lactate dehydrogenase(LDH) and creatine kinase MB isoenzyme(CKMB) in the cell supernatant were detected. Western blot was used to assess the expression of ERS-related proteins, including glucose regulatory protein 78(GRP78), C/EBP homologous protein(CHOP), activating transcription factor 6(ATF6), and apoptotic proteins B-cell lymphoma 2(Bcl-2) and Bcl-2-associated X protein(Bax). Apoptosis was detected using the terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling(TUNEL) method. In the TM-induced ERS model, Western blot was used to measure the expression of ERS pathway-related proteins GRP78, CHOP, inositol-requiring enzyme 1(IRE1), X-box binding protein 1(XBP1), protein kinase RNA-like endoplasmic reticulum kinase(PERK), eukaryotic initiation factor 2α(eIF2α), ATF6, p-ATF6, and apoptotic proteins Bcl-2, Bax, cysteinyl aspartate specific proteinase-12(caspase-12), and cleaved caspase-12. Gene expression of GRP78, CHOP, PERK, and ATF6 was detected by real-time fluorescence quantitative PCR(RT-qPCR). Apoptosis was again detected using the TUNEL method. The results showed that in the OGD/R model, compared with the control group, the levels of LDH and CKMB in the cell supernatant were significantly increased in the OGD/R group. Compared with the OGD/R group, the levels of LDH and CKMB in the TFDM group were significantly reduced. Western blot results revealed that compared with the control group, the expression of ERS-related proteins and Bax in the OGD/R group was significantly increased, while the expression of Bcl-2 was significantly decreased. Compared with the OGD/R group, the expression of ERS-related proteins and Bax in the TFDM groups was significantly reduced, and the expression of Bcl-2 was significantly increased. TUNEL assay showed that apoptosis was significantly decreased after TFDM treatment. In the TM-induced ERS experiment, compared with the control group, the expression of ERS-related genes, ERS-related proteins, and apoptotic proteins in the TM group was significantly increased, while the expression of Bcl-2 was significantly decreased. Compared with the TM group, the expression of ERS-related genes, ERS-related proteins, and apoptotic proteins in the TFDM group was significantly reduced, and the expression of Bcl-2 was significantly increased. These results suggest that ERS exists in the OGD/R-injured H9c2 cell model, and TFDM can effectively inhibit ERS-induced apoptosis. The mechanism may be related to the downregulation of ERS pathway-related proteins and apoptotic proteins.
Animals
;
Endoplasmic Reticulum Stress/drug effects*
;
Apoptosis/drug effects*
;
Rats
;
Flavonoids/pharmacology*
;
Glucose/metabolism*
;
Cell Line
;
Lamiaceae/chemistry*
;
Drugs, Chinese Herbal/pharmacology*
;
Oxygen/metabolism*
;
Reperfusion Injury/physiopathology*
;
Myocytes, Cardiac/cytology*
3.Integration and innovation of wet granulation and continuous manufacturing technology: a review of on-line detection, modeling, and process scale-up.
Guang-di YANG ; Ge AO ; Yang CHEN ; Yu-Fang HUANG ; Shu CHEN ; Dong-Xun LI ; Wen-Liu ZHANG ; Tian-Tian WANG ; Guo-Song ZHANG
China Journal of Chinese Materia Medica 2025;50(6):1484-1495
Continuous manufacturing, as an innovative pharmaceutical production model, offers advantages such as high production efficiency and ease of control compared to traditional batch production, aligning with the future trend of drug production moving toward greater efficiency and intelligence. However, the development of continuous manufacturing technology in wet granulation has been slow. On one hand, this is closely related to its high technical complexity, substantial equipment investment costs, and stringent process control requirements. On the other hand, the long-term use of the traditional batch production model has created strong path dependence, and the lack of mature standardized processes further increases the difficulty of technological transformation. To promote the deep integration of wet granulation technology with continuous manufacturing, this review systematically outlines the current application of wet granulation in continuous manufacturing. It focuses on the development of key technologies such as online detection, process modeling, and process scale-up, with the aim of providing a reference for process innovation and application in wet granulation.
Drug Compounding/instrumentation*
;
Technology, Pharmaceutical/methods*
;
Drugs, Chinese Herbal/chemistry*
;
Models, Theoretical
4.Risk factors for cutout failure in geriatric intertrochanteric fracture patients after cephalomedullary nail fixation.
You-Liang HAO ; Fang ZHOU ; Hong-Quan JI ; Yun TIAN ; Zhi-Shan ZHANG ; Yan GUO ; Yang LYU ; Zhong-Wei YANG ; Guo-Jin HOU
China Journal of Orthopaedics and Traumatology 2025;38(2):141-147
OBJECTIVE:
To determine risk factors for cutout failure in geriatric intertrochanteric fracture patients after cephalomedullary nail fixation.
METHODS:
A retrospective review of 518 elderly patients who underwent cephalomedullary nail fixation for intertrochanteric fractures between January 2008 and August 2018 was conducted, including 167 males and 351 females, age from 65 to 97 years old. All patients were followed up for at least one year after surgery and divided into a healed group and a cutout group based on whether the hip screw cutout occurred. Among all patients, 10 cases experienced hip screw cutout. The general information, surgical data, and radiological data of the two groups were compared, and risk factors influencing hip screw cutout were analyzed. Propensity score matching was then performed on the cutout group based on gender, age, body mass index(BMI), and American Society of Anesthesiologists(ASA), and 40 patients from the healed group were matched at a ratio of 1∶4. Key risk factors affecting hip screw cutout were further analyzed. Multivariable logistic regression analysis was conducted to evaluate associations between variables and cutout failure.
RESULTS:
There were no statistically significant differences between the healed group and the cutout group in terms of age, gender, BMI, ASA, and AO classification. However, statistically significant differences were observed between the two groups in terms of reduction quality(P=0.003) and tip-apex distance(TAD), P<0.001. Multivariate analysis identified poor reduction quality OR=23.138, 95%CI(2.163, 247.551), P=0.009 and TAD≥25 mm OR=30.538, 95%CI(2.935, 317.770), P=0.004 as independent risk factors for cutout failure.
CONCLUSION
The present study identified poor reduction quality and TAD≥25 mm as factors for cutout failure in geriatric intertrochanteric fractures treated with cephalomedullary nails. Further studies are needed to calculate the optimal TAD for cephalomedullary nails.
Humans
;
Male
;
Female
;
Hip Fractures/surgery*
;
Aged, 80 and over
;
Aged
;
Risk Factors
;
Retrospective Studies
;
Fracture Fixation, Intramedullary/adverse effects*
;
Bone Nails
;
Bone Screws
5.Genetic and clinical characteristics of children with RAS-mutated juvenile myelomonocytic leukemia.
Yun-Long CHEN ; Xing-Chen WANG ; Chen-Meng LIU ; Tian-Yuan HU ; Jing-Liao ZHANG ; Fang LIU ; Li ZHANG ; Xiao-Juan CHEN ; Ye GUO ; Yao ZOU ; Yu-Mei CHEN ; Ying-Chi ZHANG ; Xiao-Fan ZHU ; Wen-Yu YANG
Chinese Journal of Contemporary Pediatrics 2025;27(5):548-554
OBJECTIVES:
To investigate the genomic characteristics and prognostic factors of juvenile myelomonocytic leukemia (JMML) with RAS mutations.
METHODS:
A retrospective analysis was conducted on the clinical data of JMML children with RAS mutations treated at the Hematology Hospital of Chinese Academy of Medical Sciences, from January 2008 to November 2022.
RESULTS:
A total of 34 children were included, with 17 cases (50%) having isolated NRAS mutations, 9 cases (27%) having isolated KRAS mutations, and 8 cases (24%) having compound mutations. Compared to children with isolated NRAS mutations, those with NRAS compound mutations showed statistically significant differences in age at onset, platelet count, and fetal hemoglobin proportion (P<0.05). Cox proportional hazards regression model analysis revealed that hematopoietic stem cell transplantation (HSCT) and hepatomegaly (≥2 cm below the costal margin) were factors affecting the survival rate of JMML children with RAS mutations (P<0.05); hepatomegaly was a factor affecting survival in the non-HSCT group (P<0.05).
CONCLUSIONS
Children with NRAS compound mutations have a later onset age compared to those with isolated NRAS mutations. At initial diagnosis, children with NRAS compound mutations have poorer peripheral platelet and fetal hemoglobin levels than those with isolated NRAS mutations. Liver size at initial diagnosis is related to the prognosis of JMML children with RAS mutations. HSCT can improve the prognosis of JMML children with RAS mutations.
Humans
;
Leukemia, Myelomonocytic, Juvenile/therapy*
;
Mutation
;
Male
;
Female
;
Child, Preschool
;
Retrospective Studies
;
Child
;
Infant
;
GTP Phosphohydrolases/genetics*
;
Membrane Proteins/genetics*
;
Adolescent
;
Hematopoietic Stem Cell Transplantation
;
Proportional Hazards Models
;
Proto-Oncogene Proteins p21(ras)/genetics*
;
Prognosis
6.PROTAC-loaded nanocapsules degrading BRD4 for radio-chemotherapy sensitization in glioblastoma.
Yun GUO ; Mingzhu FANG ; Shilin ZHANG ; Zheng ZHOU ; Zonghua TIAN ; Haoyu YOU ; Yun CHEN ; Jingyi ZHOU ; Xiaobao YANG ; Yunke BI ; Chen JIANG ; Tao SUN
Acta Pharmaceutica Sinica B 2025;15(10):5050-5070
Glioblastoma (GBM) is a highly aggressive primary brain tumor characterized by poor prognosis. Conventional chemo-radiotherapy demonstrates limited therapeutic efficacy and is often accompanied by significant side effects, largely due to factors such as drug resistance, radiation resistance, the presence of the blood-brain barrier (BBB), and the activation of DNA damage repair mechanisms. There is a pressing need to enhance treatment efficacy, with BRD4 identified as a promising target for increasing GBM sensitivity to therapy. Lacking small molecule inhibitors, BRD4 can be degraded using PROteolysis Targeting Chimera (PROTAC), thereby inhibiting DNA damage repair. To deliver PROTAC, SIAIS171142 (SIS) effectively, we designed a responsive nanocapsule, MPL(SS)P@SIS, featuring GBM-targeting and GSH-responsive drug release. Modified with 1-methyl-l-tryptophan (MLT), nanocapsules facilitate targeted delivery of SIS, downregulating BRD4 and sensitizing GBM cells to radiotherapy and chemotherapy. After intravenous administration, MPL(SS)P@SIS selectively accumulates in tumor tissue, enhancing the effects of radiotherapy and temozolomide (TMZ) by increasing DNA damage and oxidative stress. GSH activates the nanocapsules, triggering BRD4 degradation and hindering DNA repair. In mouse models, the nanosensitizer, combined with TMZ and X-ray irradiation, efficiently inhibited the growth of GBM. These findings demonstrate a novel PROTAC-based sensitization strategy targeting BRD4, offering a promising approach for effective GBM therapy.
7.Glutamine signaling specifically activates c-Myc and Mcl-1 to facilitate cancer cell proliferation and survival.
Meng WANG ; Fu-Shen GUO ; Dai-Sen HOU ; Hui-Lu ZHANG ; Xiang-Tian CHEN ; Yan-Xin SHEN ; Zi-Fan GUO ; Zhi-Fang ZHENG ; Yu-Peng HU ; Pei-Zhun DU ; Chen-Ji WANG ; Yan LIN ; Yi-Yuan YUAN ; Shi-Min ZHAO ; Wei XU
Protein & Cell 2025;16(11):968-984
Glutamine provides carbon and nitrogen to support the proliferation of cancer cells. However, the precise reason why cancer cells are particularly dependent on glutamine remains unclear. In this study, we report that glutamine modulates the tumor suppressor F-box and WD repeat domain-containing 7 (FBW7) to promote cancer cell proliferation and survival. Specifically, lysine 604 (K604) in the sixth of the 7 substrate-recruiting WD repeats of FBW7 undergoes glutaminylation (Gln-K604) by glutaminyl tRNA synthetase. Gln-K604 inhibits SCFFBW7-mediated degradation of c-Myc and Mcl-1, enhances glutamine utilization, and stimulates nucleotide and DNA biosynthesis through the activation of c-Myc. Additionally, Gln-K604 promotes resistance to apoptosis by activating Mcl-1. In contrast, SIRT1 deglutaminylates Gln-K604, thereby reversing its effects. Cancer cells lacking Gln-K604 exhibit overexpression of c-Myc and Mcl-1 and display resistance to chemotherapy-induced apoptosis. Silencing both c-MYC and MCL-1 in these cells sensitizes them to chemotherapy. These findings indicate that the glutamine-mediated signal via Gln-K604 is a key driver of cancer progression and suggest potential strategies for targeted cancer therapies based on varying Gln-K604 status.
Glutamine/metabolism*
;
Myeloid Cell Leukemia Sequence 1 Protein/genetics*
;
Humans
;
Proto-Oncogene Proteins c-myc/genetics*
;
Cell Proliferation
;
Signal Transduction
;
Neoplasms/pathology*
;
F-Box-WD Repeat-Containing Protein 7/genetics*
;
Cell Survival
;
Cell Line, Tumor
;
Apoptosis
8.Associations of Exposure to Typical Environmental Organic Pollutants with Cardiopulmonary Health and the Mediating Role of Oxidative Stress: A Randomized Crossover Study.
Ning GAO ; Bin WANG ; Ran ZHAO ; Han ZHANG ; Xiao Qian JIA ; Tian Xiang WU ; Meng Yuan REN ; Lu ZHAO ; Jia Zhang SHI ; Jing HUANG ; Shao Wei WU ; Guo Feng SHEN ; Bo PAN ; Ming Liang FANG
Biomedical and Environmental Sciences 2025;38(11):1388-1403
OBJECTIVE:
The study aim was to investigate the effects of exposure to multiple environmental organic pollutants on cardiopulmonary health with a focus on the potential mediating role of oxidative stress.
METHODS:
A repeated-measures randomized crossover study involving healthy college students in Beijing was conducted. Biological samples, including morning urine and venous blood, were collected to measure concentrations of 29 typical organic pollutants, including hydroxy polycyclic aromatic hydrocarbons (OH-PAHs), bisphenol A and its substitutes, phthalates and their metabolites, parabens, and five biomarkers of oxidative stress. Health assessments included blood pressure measurements and lung function indicators.
RESULTS:
Urinary concentrations of 2-hydroxyphenanthrene (2-OH-PHE) ( β = 4.35% [95% confidence interval ( CI): 0.85%, 7.97%]), 3-hydroxyphenanthrene ( β = 3.44% [95% CI: 0.19%, 6.79%]), and 4-hydroxyphenanthrene (4-OH-PHE) ( β = 5.78% [95% CI: 1.27%, 10.5%]) were significantly and positively associated with systolic blood pressure. Exposures to 1-hydroxypyrene (1-OH-PYR) ( β = 3.05% [95% CI: -4.66%, -1.41%]), 2-OH-PHE ( β = 2.68% [95% CI: -4%, -1.34%]), and 4-OH-PHE ( β = 3% [95% CI: -4.68%, -1.29%]) were negatively associated with the ratio of forced expiratory volume in the first second to forced vital capacity. These findings highlight the adverse effects of exposure to multiple pollutants on cardiopulmonary health. Biomarkers of oxidative stress, including 8-hydroxy-2'-deoxyguanosine and extracellular superoxide dismutase, mediated the effects of multiple OH-PAHs on blood pressure and lung function.
CONCLUSION
Exposure to multiple organic pollutants can adversely affect cardiopulmonary health. Oxidative stress is a key mediator of the effects of OH-PAHs on blood pressure and lung function.
Humans
;
Oxidative Stress/drug effects*
;
Male
;
Cross-Over Studies
;
Female
;
Young Adult
;
Environmental Pollutants/toxicity*
;
Environmental Exposure/adverse effects*
;
Biomarkers/blood*
;
Adult
;
Blood Pressure/drug effects*
;
Polycyclic Aromatic Hydrocarbons/urine*
;
Beijing
9.Research on species identification of commercial medicinal and food homology scented herbal tea
Jing SUN ; Zi-yi HUANG ; Si-qi LI ; Yu-fang LI ; Yan HU ; Shi-wen GUO ; Ge HU ; Chuan-pu SHEN ; Fu-rong YANG ; Yu-lin LIN ; Tian-yi XIN ; Xiang-dong PU
Acta Pharmaceutica Sinica 2024;59(9):2612-2624
The adulteration and counterfeiting of herbal ingredients in medicinal and food homology (MFH) have a serious impact on the quality of herbal materials, thereby endangering human health. Compared to pharmaceutical drugs, health products derived from traditional Chinese medicine (TCM) are more easily accessible and closely integrated into consumers' daily life. However, the authentication of the authenticity of TCM ingredients in MFH has not received sufficient attention. The lack of clear standards emphasizes the necessity of conducting systematic research in this area. This study utilized DNA barcoding technology, combining ITS2,
10.Differences in gut microbiota among primary school students with different levels of sugar sweetened beverage consumption
Chinese Journal of School Health 2024;45(3):335-340
Objective:
To explore the differences in the gut microbiota of primary school students with different levels of sugar sweetened beverage intake, so as to provide scientific evidence for better identification of health risks in children and the development of targeted health policies.
Methods:
In June 2022, a total of 192 healthy primary school students from Chengdu were selected using a stratified cluster random sampling method. The sugar sweetened beverage intake was assessed through a dietary frequency questionnaire. Based on the median daily sugar sweetened beverage intake, primary school students were categorized into a low intake group ( n =96) and a high intake group ( n =96). The gut microbiota in fresh fecal samples from the two groups of primary school students was analyzed using 16S rRNA high throughput sequencing, and the diversity and community structure differences in the gut microbiota were compared.
Results:
Children in the low intake group had a sugar sweetened beverage intake of (21.3±1.6) mL/d, while the high intake group had an intake of (269.6±37.3) mL/d. Diversity analysis results showed that there were no statistically significant differences between the low intake and the high intake group in terms of α diversity metrics: Observed_otus index [298.50 (259.75, 342.25), 305.50 (244.25, 367.75)], Goods_coverage index [1.00 (1.00, 1.00), 1.00 (1.00, 1.00)], Chao index [304.18 (260.75, 348.78), 305.88 (245.68, 370.88)], Shannon index [5.88 (5.29, 6.45), 5.71 (4.89, 6.28)] and Simpson index [0.95 (0.91, 0.97), 0.94 (0.88, 0.97)] ( Z =-0.64, -0.76, -0.54, -1.76, -1.67, P >0.05). Furthermore, no statistically significant difference was observed in β diversity between the two groups ( R 2=0.006, P >0.05). At the genus level, the abundance of Blautia [0.033 (0.018, 0.055)] and Fusicatenibacter [0.009 (0.005, 0.015)] were higher in the low intake group compared to the high intake group [0.024 (0.013, 0.041),0.006 (0.003, 0.011)]and differences were statistically significant ( Z =-2.52, -2.81, P <0.05). LEfSe analysis highlighted intergroup differences primarily in Blautia, Fusicatenibacter and Sarcina( LDA= 3.56,3.12,3.53, P <0.05).
Conclusions
There is no significant difference in the diversity and overall structure of the gut microbiota in primary school students with different levels of sugar sweetened beverage intake. However, there are species variations at the genus level. The information can serve as a scientific basis for identifying health risks in primary school students and formulating targeted health strategies.


Result Analysis
Print
Save
E-mail