1.Associations between statins and all-cause mortality and cardiovascular events among peritoneal dialysis patients: A multi-center large-scale cohort study.
Shuang GAO ; Lei NAN ; Xinqiu LI ; Shaomei LI ; Huaying PEI ; Jinghong ZHAO ; Ying ZHANG ; Zibo XIONG ; Yumei LIAO ; Ying LI ; Qiongzhen LIN ; Wenbo HU ; Yulin LI ; Liping DUAN ; Zhaoxia ZHENG ; Gang FU ; Shanshan GUO ; Beiru ZHANG ; Rui YU ; Fuyun SUN ; Xiaoying MA ; Li HAO ; Guiling LIU ; Zhanzheng ZHAO ; Jing XIAO ; Yulan SHEN ; Yong ZHANG ; Xuanyi DU ; Tianrong JI ; Yingli YUE ; Shanshan CHEN ; Zhigang MA ; Yingping LI ; Li ZUO ; Huiping ZHAO ; Xianchao ZHANG ; Xuejian WANG ; Yirong LIU ; Xinying GAO ; Xiaoli CHEN ; Hongyi LI ; Shutong DU ; Cui ZHAO ; Zhonggao XU ; Li ZHANG ; Hongyu CHEN ; Li LI ; Lihua WANG ; Yan YAN ; Yingchun MA ; Yuanyuan WEI ; Jingwei ZHOU ; Yan LI ; Caili WANG ; Jie DONG
Chinese Medical Journal 2025;138(21):2856-2858
2.Research progress on ferroptosis mediated by microglia in hypoxic-ischemic brain damage.
Tao GUO ; Hanjun ZUO ; Xianfeng KUANG ; Shukun ZHANG ; Bolin CHEN ; Lixing LUO ; Xiao YANG ; Zhao WANG ; Juanjuan LI
Chinese Journal of Cellular and Molecular Immunology 2025;41(6):552-558
In hypoxic-ischemic brain damage (HIBD), the programmed cell death known as ferroptosis is significantly activated. Microglial cells demonstrate a high level of sensitivity to iron accumulation. Understanding how to regulate the dual role of microglia and transforming the microglial ferroptosis to a moderate and controllable process has considerable implications for the targeted treatment in HIBD. This paper serves as an overview of microglia-mediated ferroptosis in HIBD as a disease model. We discuss various aspects centered around microglia, including pathophysiological mechanisms, polarization and functions of microglia, molecular mechanisms of ferroptosis, signaling pathways, and therapeutic strategies. The review aims to provide a reference for studies of ferroptosis in microglia.
Microglia/physiology*
;
Ferroptosis/physiology*
;
Humans
;
Animals
;
Hypoxia-Ischemia, Brain/pathology*
;
Signal Transduction
3.Canagliflozin ameliorates ferritinophagy in HFpEF rats.
Sai MA ; Qing-Juan ZUO ; Li-Li HE ; Guo-Rui ZHANG ; Ting-Ting ZHANG ; Zhong-Li WANG ; Jian-Long ZHAI ; Yi-Fang GUO
Journal of Geriatric Cardiology 2025;22(1):178-189
BACKGROUND:
Recent studies have shown that sodium-glucose cotransporters-2 (SGLT2) inhibitors significantly improve major adverse cardiovascular events in heart failure with preserved ejection fraction (HFpEF) patients, but the exact mechanism is unknown. Ferritinophagy is a special form of selective autophagy that participates in ferroptosis. In this study, we aimed to investigate whether ferritinophagy was activated during the occurrence of HFpEF, and whether canagliflozin (CANA) could inhibite ferritinophagy.
METHODS:
We reared Dahl salt-sensitive (DSS) rats on a high-salt diet to construct a hypertensive HFpEF model, and simultaneously administered CANA intervention. Then we detected indicators related to ferritinophagy.
RESULTS:
The expression of nuclear receptor coactivator 4 (NCOA4), as well as microtubule-associated proteins light chain 3 (LC3), Bcl-2 interacting protein 1 (Beclin-1) and p62, were upregulated in HFpEF rats, accompanied by the downregulation of ferritin heavy chain 1 (FTH1), upregulation of mitochondrial iron transporter sideroflexin1 (SFXN1) and increased reactive oxygen species (ROS) production. Above changes were diminished by CANA.
CONCLUSION
Ferritinophagy is activated in HFpEF rats and then inhibited by CANA, leading to HFpEF benefits. The inhibition of ferritinophagy could provide new prospective targets for the prevention and treatment of HFpEF, and provide new ideas for investigating the mechanism of cardiovascular benefit of SGLT2 inhibitors.
4.Expert consensus on prognostic evaluation of cochlear implantation in hereditary hearing loss.
Xinyu SHI ; Xianbao CAO ; Renjie CHAI ; Suijun CHEN ; Juan FENG ; Ningyu FENG ; Xia GAO ; Lulu GUO ; Yuhe LIU ; Ling LU ; Lingyun MEI ; Xiaoyun QIAN ; Dongdong REN ; Haibo SHI ; Duoduo TAO ; Qin WANG ; Zhaoyan WANG ; Shuo WANG ; Wei WANG ; Ming XIA ; Hao XIONG ; Baicheng XU ; Kai XU ; Lei XU ; Hua YANG ; Jun YANG ; Pingli YANG ; Wei YUAN ; Dingjun ZHA ; Chunming ZHANG ; Hongzheng ZHANG ; Juan ZHANG ; Tianhong ZHANG ; Wenqi ZUO ; Wenyan LI ; Yongyi YUAN ; Jie ZHANG ; Yu ZHAO ; Fang ZHENG ; Yu SUN
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2025;39(9):798-808
Hearing loss is the most prevalent disabling disease. Cochlear implantation(CI) serves as the primary intervention for severe to profound hearing loss. This consensus systematically explores the value of genetic diagnosis in the pre-operative assessment and efficacy prognosis for CI. Drawing upon domestic and international research and clinical experience, it proposes an evidence-based medicine three-tiered prognostic classification system(Favorable, Marginal, Poor). The consensus focuses on common hereditary non-syndromic hearing loss(such as that caused by mutations in genes like GJB2, SLC26A4, OTOF, LOXHD1) and syndromic hereditary hearing loss(such as Jervell & Lange-Nielsen syndrome and Waardenburg syndrome), which are closely associated with congenital hearing loss, analyzing the impact of their pathological mechanisms on CI outcomes. The consensus provides recommendations based on multiple round of expert discussion and voting. It emphasizes that genetic diagnosis can optimize patient selection, predict prognosis, guide post-operative rehabilitation, offer stratified management strategies for patients with different genotypes, and advance the application of precision medicine in the field of CI.
Humans
;
Cochlear Implantation
;
Prognosis
;
Hearing Loss/surgery*
;
Consensus
;
Connexin 26
;
Mutation
;
Sulfate Transporters
;
Connexins/genetics*
5.USP51/GRP78/ABCB1 axis confers chemoresistance through decreasing doxorubicin accumulation in triple-negative breast cancer cells.
Yang OU ; Kun ZHANG ; Qiuying SHUAI ; Chenyang WANG ; Huayu HU ; Lixia CAO ; Chunchun QI ; Min GUO ; Zhaoxian LI ; Jie SHI ; Yuxin LIU ; Siyu ZUO ; Xiao CHEN ; Yanjing WANG ; Mengdan FENG ; Hang WANG ; Peiqing SUN ; Yi SHI ; Guang YANG ; Shuang YANG
Acta Pharmaceutica Sinica B 2025;15(5):2593-2611
Recent studies have indicated that the expression of ubiquitin-specific protease 51 (USP51), a novel deubiquitinating enzyme (DUB) that mediates protein degradation as part of the ubiquitin‒proteasome system (UPS), is associated with tumor progression and therapeutic resistance in multiple malignancies. However, the underlying mechanisms and signaling networks involved in USP51-mediated regulation of malignant phenotypes remain largely unknown. The present study provides evidence of USP51's functions as the prominent DUB in chemoresistant triple-negative breast cancer (TNBC) cells. At the molecular level, ectopic expression of USP51 stabilized the 78 kDa Glucose-Regulated Protein (GRP78) protein through deubiquitination, thereby increasing its expression and localization on the cell surface. Furthermore, the upregulation of cell surface GRP78 increased the activity of ATP binding cassette subfamily B member 1 (ABCB1), the main efflux pump of doxorubicin (DOX), ultimately decreasing its accumulation in TNBC cells and promoting the development of drug resistance both in vitro and in vivo. Clinically, we found significant correlations among USP51, GRP78, and ABCB1 expression in TNBC patients with chemoresistance. Elevated USP51, GRP78, and ABCB1 levels were also strongly associated with a poor patient prognosis. Importantly, we revealed an alternative intervention for specific pharmacological targeting of USP51 for TNBC cell chemosensitization. In conclusion, these findings collectively indicate that the USP51/GRP78/ABCB1 network is a key contributor to the malignant progression and chemotherapeutic resistance of TNBC cells, underscoring the pivotal role of USP51 as a novel therapeutic target for cancer management.
6.A novel feedback loop: CELF1/circ-CELF1/BRPF3/KAT7 in cardiac fibrosis.
Yuan JIANG ; Bowen ZHANG ; Bo ZHANG ; Xinhua SONG ; Xiangyu WANG ; Wei ZENG ; Liyang ZUO ; Xinqi LIU ; Zheng DONG ; Wenzheng CHENG ; Yang QIAO ; Saidi JIN ; Dongni JI ; Xiaofei GUO ; Rong ZHANG ; Xieyang GONG ; Lihua SUN ; Lina XUAN ; Berezhnova Tatjana ALEXANDROVNA ; Xiaoxiang GUAN ; Mingyu ZHANG ; Baofeng YANG ; Chaoqian XU
Acta Pharmaceutica Sinica B 2025;15(10):5192-5211
Cardiac fibrosis is characterized by an elevated amount of extracellular matrix (ECM) within the heart. However, the persistence of cardiac fibrosis ultimately diminishes contractility and precipitates cardiac dysfunction. Circular RNAs (circRNAs) are emerging as important regulators of cardiac fibrosis. Here, we elucidate the functional role of a specific circular RNA CELF1 in cardiac fibrosis and delineate a novel feedback loop mechanism. Functionally, circ-CELF1 was involved in enhancing fibrosis-related markers' expression and promoting the proliferation of cardiac fibroblasts (CFs), thereby exacerbating cardiac fibrosis. Mechanistically, circ-CELF1 reduced the ubiquitination-degradation rate of BRPF3, leading to an elevation of BRPF3 protein levels. Additionally, BRPF3 acted as a modular scaffold for the recruitment of histone acetyltransferase KAT7 to facilitate the induction of H3K14 acetylation within the promoters of the Celf1 gene. Thus, the transcription of Celf1 was dramatically activated, thereby inhibiting the subsequent response of their downstream target gene Smad7 expression to promote cardiac fibrosis. Moreover, Celf1 further promoted Celf1 pre-mRNA transcription and back-splicing, thereby establishing a feedback loop for circ-CELF1 production. Consequently, a novel feedback loop involving CELF1/circ-CELF1/BRPF3/KAT7 was established, suggesting that circ-CELF1 may serve as a potential novel therapeutic target for cardiac fibrosis.
7.Intratumoral injection of two dosage forms of paclitaxel nanoparticles combined with photothermal therapy for breast cancer.
Lina SUN ; Cuiling ZUO ; Baonan MA ; Xinxin LIU ; Yifei GUO ; Xiangtao WANG ; Meihua HAN
Chinese Herbal Medicines 2025;17(1):156-165
OBJECTIVE:
In order to enhance the efficacy of anti-breast cancer, paclitaxel nanoparticles (PTX NPs) and polypyrrole nanoparticles (PPy NPs) were combined with photothermal therapy and chemotherapy. At the same time, the two dosage forms of PTX NPs and PTX NPs gel were compared.
METHODS:
PTX NPs were prepared by self-assembly method, and then the cytotoxicity in vitro was investigated by Methyl thiazolyl tetrazolium (MTT) and other methods, and the efficacy and side effects in vivo were further investigated.
RESULTS:
The average hydrated diameter, PDI and electric potential of PTX NPs were (210.20 ± 1.57) nm, (0.081 ± 0.003) mV and (15.80 ± 0.35) mV, respectively. MTT results showed that the IC50 value of PTX NPs on 4 T1 cells was 0.490 μg/mL, while that of PTX injection was 1.737 μg/mL. The cell inhibitory effect of PTX NPs was about 3.5 times higher than that of PTX injection. The tumor inhibition rates of PTX NPs and gel were 48.64% and 56.79%, respectively. Together with local photothermal stimulation, the tumor inhibition rate of the PTX NPs reached 91.05%, surpassing that of the gel under the same conditions (48.98%), moreover, the organ index and H&E staining results of PTX NPs showed a decrease in toxicity.
CONCLUSION
This combination therapy can significantly enhance the effect of anti-breast cancer, and the synergistic effect of chemotherapy and light and heat provides a feasible and effective strategy for the treatment of tumor.
8. Effect Xuefu Zhuyu decoction on endothelial-to-mesenchymal transition of pulmonary artery endothelial cells and its mechanism
Zuo-Mei ZENG ; Xin-Yue WANG ; Lei-Yu TIAN ; Li-Dan CUI ; Jian GUO ; Yu-Cai CHEN
Chinese Pharmacological Bulletin 2024;40(1):155-161
Aim To investigate the effect of Xuefu Zhuyu decoction on transforming growth factor-β1(TGF-β1 ) -induced endothelial-to-mesenchymal transition (EndMT) of pulmonary microvascular endothelial cells ( PMVEC), and further analyze the mechanism related to the TGF-β1/Smad signaling pathway. Method To construct an EndMT cell model, PMVEC was treated with TGF-β1 (5 μg · L
9.Circular RNAs Involved in The Development of Nasopharyngeal Carcinoma
Si-Cheng ZUO ; Dan WANG ; Yong-Zhen MO ; Yu-Hang LIU ; Jiao-Di CAI ; Can GUO ; Fang XIONG ; Guo-Qun CHEN
Progress in Biochemistry and Biophysics 2024;51(4):809-821
Circular RNAs (circRNAs) are a kind of non-coding RNA (ncRNA) with covalent closed-loop structure. They have attracted more and more attention because of their high stability, evolutionary conservatism, and tissue expression specificity. It has shown that circRNAs are involved in the development of a variety of diseases including malignant tumors recently. Nasopharyngeal carcinoma (NPC) is a malignant tumor that occurs in the nasopharynx and has a unique ethnic and geographical distribution in South China and Southeast Asia. Epstein-Barr virus (EBV) infection is closely related to the development of NPC. Radiotherapy and chemotherapy are the mainstays of treatment for NPC. But tumor recurrence or distant metastasis is the leading cause of death in patients with NPC. Several studies have shown that circRNAs, as gene expression regulators, play an important role in NPC and affect the progression of NPC. This review mainly summarized the research status of abnormally expressed circRNAs in NPC and EBV-encoded circRNAs. We also discussed the possibility of circRNAs as a therapeutic target, diagnostic and prognostic marker for NPC.
10.Canagliflozin can improve cardiac function in HFpEF rats partly by regulating ferroptosis
Sai MA ; Qingjuan ZUO ; Lili HE ; Guorui ZHANG ; Jianlong ZHAI ; Tingting ZHANG ; Zhongli WANG ; Yifang GUO
Chinese Journal of Cardiology 2024;52(9):1090-1100
Objective:To explore the effects of canagliflozin on cardiac function and its regulation of ferroptosis in rats with heart failure with preserved ejection fraction (HFpEF).Methods:Thirty-two 7-week-old Dahl salt-sensitive rats were selected and randomly divided into four groups: the control group (fed with low-salt diet), the HFpEF group (fed with high-salt diet), the canagliflozin 20 group (fed with high-salt diet and 20 mg·kg -1·d -1 canagliflozin), and the canagliflozin 30 group (fed with high-salt diet and 30 mg·kg -1·day -1 canagliflozin). Body weight and blood pressure of the rats in each group were monitored. Metabolic cage tests were conducted at the10 th week of the experiment, and echocardiography was performed at the 12 th week, after which the rats were killed. Blood and left ventricular samples were collected. HE staining, Masson staining, Prussian blue iron staining, and reactive oxygen species staining were performed to observe the cardiomyocyte size and shape, degree of interstitial fibrosis, iron staining, reactive oxygen species production under optical microscope. The ultrastructure of cardiomyocytes was observed under electron microscope. Western blotting and real-time fluorescent quantitative reverse transcription polymerase chain reaction (RT-qPCR) were used to detect the expression levels of proteins and mRNA related to ferroptosis in left ventricular myocardial tissue of rats in each group. Results:After 1 week of adaptive feeding, all rats survived. Metabolic cage results showed that compared with control group, rats in the HFpEF group, canagliflozin 20 group and canagliflozin 30 group had more food intake, water intake and urine output, and lower body weight (all P<0.05). These changes were more pronounced in canagliflozin 20 group and canagliflozin 30 group than in HFPEF group, and only the body weight at the 12 th week showed a statistically significant difference between canagliflozin 20 group and canagliflozin 30 group ( P<0.05). The blood pressure of 6 th week and 12 th week, heart weight and left ventricular corrected mass of 12 th week of rats in HFpEF group were higher than those in control group, canagliflozin 20 group and canagliflozin 30 group, while the ratio of early mitral valve peak velocity to late mitral valve peak velocity of 12 th week was lower (all P<0.05). HE and Masson staining showed that compared to control group, the myocardial fibers in the left ventricular myocardial tissue of rats in HFpEF group were disordered, with larger cell diameter ((0.032±0.004) mm vs. (0.023±0.003) mm, P<0.05), irregular shape, obvious proliferation of interstitial collagen fibers, and higher collagen volume fraction (0.168±0.028 vs. 0.118±0.013, P<0.05). Compared with HFpEF group, rats in the canagliflozin 20 group and canagliflozin 30 had more orderly arranged myocardial fibers, more regular cardiomyocyte shape, smaller cell diameter, and lower collagen volume fraction ( P<0.05). It was observed under electron microscopy that, compared to control group, most of the striated muscles in myocardial tissue of HFpEF group were broken, and the Z line and M line could not be clearly distinguished, some changes such as mitochondrial swelling, membrane thickening, cristae reduction or even disappearance occurred. In the canagliflozin 20 group and canagliflozin 30 group, the arrangement of striated muscles in the myocardial tissue of rats tended to be more regular, and the morphological changes of mitochondria were milder. Prussian blue iron staining results showed that the iron content in myocardial tissue of rats in HFpEF group was higher than that in control group, canagliflozin 20 group and canagliflozin 30 group. Reactive oxygen species staining results showed that the reactive oxygen species content in the myocardial tissue of rats in HFpEF group was higher than that of control group, canagliflozin 20 group and canagliflozin 30 group. Biochemical analysis of myocardial tissue showed that Fe 2+ and malondialdehyde content in myocardial tissue of rats in HFpEF group were higher than those in control group, canagliflozin 20 group and canagliflozin 30 group, while glutathione content was lower (all P<0.05). Western blot and RT-qPCR detection results showed that compared to control group, rats in HFpEF group had higher expression levels of transferrin receptor 1 (protein relative expression level: 1.37±0.16 vs. 0.31±0.12), acyl-CoA synthetase long-chain family member 4 (protein relative expression level: 1.31±0.15 vs. 0.63±0.09) protein and mRNA, and lower expression levels of ferritin heavy chain 1 (protein relative expression level: 0.45±0.08 vs. 1.41±0.15) protein and mRNA (all P<0.05). There was no statistically significant difference in these indicators between canagliflozin 20 group and the canagliflozin 30 group (all P>0.05). There was no significant difference in levels of glutathione peroxidase 4 protein and mRNA expression in myocardial tissue of rats in four groups( P>0.05). Conclusion:Canagliflozin improves cardiac function in HFpEF rats by regulating the ferroptosis mechanism.

Result Analysis
Print
Save
E-mail