1.Criteria for pancreas donor selection in islet transplantation and the experience of Changzheng hospital
Hanxiang ZHONG ; Junfeng DONG ; Wenyuan GUO ; Shengxian LI ; Hao YIN ; Yuanyu ZHAO ; Junsong JI
Organ Transplantation 2026;17(1):164-169
Diabetes mellitus, characterized by glucose metabolism disorders and marked by insulin deficiency or insulin resistance, has seen a continuous rise in prevalence. In recent years, islet transplantation has matured as a therapeutic approach for diabetes, becoming an important method for glycemic control and the reduction of diabetes-related complications. Donor selection directly influences transplant outcomes, and various research institutions worldwide have proposed multiple scoring systems to optimize donor assessment, such as the University of Alberta scoring system and the North American Islet Donor Score. This article explores the impact of key factors such as donor age, body mass index and ischemia time on islet transplantation. Combining practical experience in pancreatic donor selection from Shanghai Changzheng Hospital, it proposes screening criteria for pancreatic donors suitable for China, aiming to provide new evidence for improving the success rate of islet transplantation.
2.Myocardial Metabolomics Reveals Mechanism of Shenfu Injection in Ameliorating Energy Metabolism Remodeling in Rat Model of Chronic Heart Failure
Xinyue NING ; Zhenyu ZHAO ; Mengna ZHANG ; Yang GUO ; Zhijia XIANG ; Kun LIAN ; Zhixi HU ; Lin LI
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(5):178-186
ObjectiveTo examine the influences of Shenfu injection on the endogenous metabolic byproducts in the myocardium of the rat model exhibiting chronic heart failure, thus deciphering the therapeutic mechanism of the Qi-reinforcing and Yang-warming method. MethodsSD rats were randomly allocated into a control group and a modeling group. Chronic heart failure with heart-Yang deficiency syndrome in rats was modeled by multi-point subcutaneous injection of isoproterenol, and the rats were fed for 14 days after modeling. The successfully modeled rats were randomized into model, Shenfu injection (6.0 mL·kg-1), and trimetazidine (10 mg·kg-1) groups and treated with corresponding agents for 15 days. The control group and the model group were injected with equal doses of normal saline, and the samples were collected after the intervention was completed. Cardiac color ultrasound was performed. Hematoxylin-eosin (HE) staining was used to observe histopathological morphology, and the serum level of N-terminal pro-brain natriuretic peptide (NT-proBNP) was assessed by enzyme-linked immunosorbent assay (ELISA). The mitochondrial morphological and structural changes of cardiomyocytes were observed by transmission electron microscopy, and the metabolic profiling was carried out by ultra high performance liquid chromatography-quantitative exactive-mass spectrometry (UHPLC-QE-MS). Differential metabolites were screened and identified by orthogonal partial least squares-discriminant analysis (OPLS-DA) and other methods, and then the MetaboAnalyst database was used for further screening. The relevant biological pathways were obtained through pathway enrichment analysis. The receiver operating characteristic (ROC) curve was established to evaluate the diagnostic value of each potential biomarker for myocardial injury and the evaluation value for drug efficacy. ResultsThe results of color ultrasound showed that Shenfu Injection improved the cardiac function indexes of model rats (P<0.05). The results of HE staining showed that Shenfu injection effectively alleviated the pathological phenomena such as myocardial tissue structure disorder and inflammatory cell infiltration in model rats. The results of ELISA showed that Shenfu injection effectively regulated the serum NT-proBNP level in the model rats. Transmission electron microscopy (TEM) showed that Shenfu injection effectively restored the mitochondrial morphological structure. The results of metabolomics showed that the metabolic phenotypes of myocardial samples presented markedly differences between groups. Nine differential metabolites could be significantly reversed in the Shenfu injection group, involving three metabolic pathways: pyruvate metabolism, histidine metabolism, and citric acid cycle (TCA cycle). The results of ROC analysis showed that the area under the curve (AUC) values of all metabolites were between 0.75 and 1.0, indicating that the differential metabolites had high diagnostic accuracy for myocardial injury, and the changes in their expression levels could be used as potential markers for efficacy evaluation. ConclusionShenfu injection significantly alleviated the damage of cardiac function, myocardium, and mitochondrial structure in the rat model of chronic heart failure with heart-Yang deficiency syndrome by ameliorating energy metabolism remodeling. Reinforcing Qi and warming Yang is a key method for treating chronic heart failure with heart-Yang deficiency syndrome.
3.Research and Application of Scalp Surface Laplacian Technique
Rui-Xin LUO ; Si-Ying GUO ; Xin-Yi LI ; Yu-He ZHAO ; Chun-Hou ZHENG ; Min-Peng XU ; Dong MING
Progress in Biochemistry and Biophysics 2025;52(2):425-438
Electroencephalogram (EEG) is a non-invasive, high temporal-resolution technique for monitoring brain activity. However, affected by the volume conduction effect, EEG has a low spatial resolution and is difficult to locate brain neuronal activity precisely. The surface Laplacian (SL) technique obtains the Laplacian EEG (LEEG) by estimating the second-order spatial derivative of the scalp potential. LEEG can reflect the radial current activity under the scalp, with positive values indicating current flow from the brain to the scalp (“source”) and negative values indicating current flow from the scalp to the brain (“sink”). It attenuates signals from volume conduction, effectively improving the spatial resolution of EEG, and is expected to contribute to breakthroughs in neural engineering. This paper provides a systematic overview of the principles and development of SL technology. Currently, there are two implementation paths for SL technology: current source density algorithms (CSD) and concentric ring electrodes (CRE). CSD performs the Laplace transform of the EEG signals acquired by conventional disc electrodes to indirectly estimate the LEEG. It can be mainly classified into local methods, global methods, and realistic Laplacian methods. The global method is the most commonly used approach in CSD, which can achieve more accurate estimation compared with the local method, and it does not require additional imaging equipment compared with the realistic Laplacian method. CRE employs new concentric ring electrodes instead of the traditional disc electrodes, and measures the LEEG directly by differential acquisition of the multi-ring signals. Depending on the structure, it can be divided into bipolar CRE, quasi-bipolar CRE, tripolar CRE, and multi-pole CRE. The tripolar CRE is widely used due to its optimal detection performance. While ensuring the quality of signal acquisition, the complexity of its preamplifier is relatively acceptable. Here, this paper introduces the study of the SL technique in resting rhythms, visual-related potentials, movement-related potentials, and sensorimotor rhythms. These studies demonstrate that SL technology can improve signal quality and enhance signal characteristics, confirming its potential applications in neuroscientific research, disease diagnosis, visual pathway detection, and brain-computer interfaces. CSD is frequently utilized in applications such as neuroscientific research and disease detection, where high-precision estimation of LEEG is required. And CRE tends to be used in brain-computer interfaces, that have stringent requirements for real-time data processing. Finally, this paper summarizes the strengths and weaknesses of SL technology and envisages its future development. SL technology boasts advantages such as reference independence, high spatial resolution, high temporal resolution, enhanced source connectivity analysis, and noise suppression. However, it also has shortcomings that can be further improved. Theoretically, simulation experiments should be conducted to investigate the theoretical characteristics of SL technology. For CSD methods, the algorithm needs to be optimized to improve the precision of LEEG estimation, reduce dependence on the number of channels, and decrease computational complexity and time consumption. For CRE methods, the electrodes need to be designed with appropriate structures and sizes, and the low-noise, high common-mode rejection ratio preamplifier should be developed. We hope that this paper can promote the in-depth research and wide application of SL technology.
4.Deep learning for accurate lung artery segmentation with shape-position priors
Chao GUO ; Xuehan GAO ; Qidi HU ; Jian LI ; Haixing ZHU ; Ke ZHAO ; Weipeng LIU ; Shanqing LI
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(03):332-338
Objective To propose a lung artery segmentation method that integrates shape and position prior knowledge, aiming to solve the issues of inaccurate segmentation caused by the high similarity and small size differences between the lung arteries and surrounding tissues in CT images. Methods Based on the three-dimensional U-Net network architecture and relying on the PARSE 2022 database image data, shape and position prior knowledge was introduced to design feature extraction and fusion strategies to enhance the ability of lung artery segmentation. The data of the patients were divided into three groups: a training set, a validation set, and a test set. The performance metrics for evaluating the model included Dice Similarity Coefficient (DSC), sensitivity, accuracy, and Hausdorff distance (HD95). Results The study included lung artery imaging data from 203 patients, including 100 patients in the training set, 30 patients in the validation set, and 73 patients in the test set. Through the backbone network, a rough segmentation of the lung arteries was performed to obtain a complete vascular structure; the branch network integrating shape and position information was used to extract features of small pulmonary arteries, reducing interference from the pulmonary artery trunk and left and right pulmonary arteries. Experimental results showed that the segmentation model based on shape and position prior knowledge had a higher DSC (82.81%±3.20% vs. 80.47%±3.17% vs. 80.36%±3.43%), sensitivity (85.30%±8.04% vs. 80.95%±6.89% vs. 82.82%±7.29%), and accuracy (81.63%±7.53% vs. 81.19%±8.35% vs. 79.36%±8.98%) compared to traditional three-dimensional U-Net and V-Net methods. HD95 could reach (9.52±4.29) mm, which was 6.05 mm shorter than traditional methods, showing excellent performance in segmentation boundaries. Conclusion The lung artery segmentation method based on shape and position prior knowledge can achieve precise segmentation of lung artery vessels and has potential application value in tasks such as bronchoscopy or percutaneous puncture surgery navigation.
5.Characteristic Analysis of Effective Components and Compounds of TCM for Prevention and Treatment of Breast Cancer Based on Wnt/β-catenin Signaling Pathway Targeting
Haoyang WANG ; Lin GUO ; Hui ZHAO ; Lihua CAO ; Na LI ; Mingsan MIAO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(5):282-290
Breast cancer is a kind of malignant tumor with a complex mechanism, and its morbidity and mortality are increasing year by year, which seriously threatens women's health. At present, the main clinical treatments are surgical resection, radiotherapy, chemotherapy, and drug therapy, but they are often accompanied by side effects and adverse reactions, which affect the therapeutic effect. Traditional Chinese medicine (TCM) has the advantages of multi-component and multi-target treatment in the fight against breast cancer. The wnt/β-catenin signaling pathway is one of the classic pathways in cancer research. Abnormally activated Wnt/β-catenin signaling pathway inhibits β-catenin degradation by blocking the formation of Axin/glycogen synthase kinase 3β/adenomatous polyposis coli complex, thus promoting β-catenin nuclear metastasis, and it binds to T cell transcription factor/lymphoenhancer factor-1 to initiate downstream target genes and further interfere with the proliferation, migration, and invasion of tumor cells to affect the tumor process. Previous studies have shown that TCM monomers and compounds can mediate the Wnt/β-catenin signaling pathway to inhibit the malignant phenotype of breast cancer cells, thus playing an anti-breast cancer role, and the biochemical process involved in the regulation of therapeutic drugs has not been systematically combed. By analyzing and collating Chinese and foreign literature at the present stage, this paper discussed the association mechanism between Wnt/β-catenin signaling pathway and breast cancer and analyzed the internal mechanism of TCM monomers and compounds in mediating Wnt/β-catenin signaling pathway to exert anti-breast cancer effect. The statistical results showed that the flavonoids, alkaloids, and terpenoids in TCM monomers could target the Wnt/β-catenin signaling pathway and block the further development of malignant phenotype of breast cancer cells. TCM compounds with functions of clearing heat and detoxifying, promoting blood circulation and removing blood stasis, and tonifying kidney and liver were commonly used to intervene in the Wnt/β-catenin signaling pathway to prevent breast cancer. Compared with the current inhibitors of Wnt/β-catenin signaling pathway, the application of TCM monomers and compounds is expected to bring low-toxicity and high-efficiency breast cancer treatment drugs to the clinical practice, and the existing results provide a reference for the subsequent screening, research, and development of TCM small-molecule compounds and TCM compounds against breast cancer.
6.Material basis and action mechanism of drug-containing serum of Modified Erxian Pill inhibiting macrophage pyroptosis
Siyuan LI ; Yuru WANG ; Ye XU ; Di GUO ; Nan NAN ; Yang LIU ; Jie ZHAO ; Huiqin HAO
Chinese Journal of Tissue Engineering Research 2025;29(19):4029-4037
BACKGROUND:Our previous study found that Modified Erxian Pill could alleviate inflammation in collagen-induced arthritis rats,but its mechanism needs to be further verified. OBJECTIVE:To analyze the components absorbed in the blood of Modified Erxian Pill,and observe the effect of the drug-containing serum of Modified Erxian Pill on pyroptosis of J774A.1 macrophages. METHODS:(1)Analysis of components absorbed in the blood of Modified Erxian Pill:Ultra-high performance liquid chromatography-high resolution mass spectrometry was used to detect and identify Modified Erxian Pill and its components absorbed in the blood.(2)Effect of the drug-containing serum of Modified Erxian Pill on pyroptosis of J774A.1 macrophages:Molecular docking technology was used to initially verify the sesquiterpenoids and NLRP3 in components absorbed in the blood of Modified Erxian Pill.J774A.1 macrophages were randomly divided into blank control group,lipopolysaccharide+adenosine triphosphate group,and lipopolysaccharide+adenosine triphosphate+Modified Erxian Pill with low(2.5%),medium(5%),and high(10%)dose groups.The release of lactate dehydrogenase in the cell supernatant of each group was detected according to the kit instructions.The levels of interleukin-1β and interleukin-18 in cell supernatant were detected in each group by ELISA.The cell membrane damage was detected by Hoechst/PI staining.The expression levels of NLRP3,Caspase-1,GSDMD,and GSDMD-N protein in the cells of each group were detected by western blot assay. RESULTS AND CONCLUSION:(1)A total of 32 active components of Modified Erxian Pill were identified,and 21 components entered the blood.The main components into blood included a variety of sesquiterpenoids.(2)Molecular docking results showed that 3-O-Acetyl-13-deoxyphomenone,Incensol oxide,Atractylenolide III,Rupestonic acid,and 3,7-Dihydroxy-9,11-eremophiladien-8-one had good binding activity with NLRP3.(3)Compared with the blank control group,lactate dehydrogenase activity and the expression levels of interleukin-1β and interleukin-18 were significantly increased in cell supernatant of lipopolysaccharide+adenosine triphosphate group(P<0.001).Hoechst/PI staining showed that the number of PI-positive cells was significantly increased.After the intervention of lipopolysaccharide+adenosine triphosphate+Modified Erxian Pill group,all of them showed different degrees of reduction.(4)Compared with the blank control group,NLRP3,Caspase-1,GSDMD,and GSDMD-N protein expression levels were significantly increased in the lipopolysaccharide+adenosine triphosphate group(P<0.05).Compared with lipopolysaccharide+adenosine triphosphate group,the protein expressions of NLRP3,Caspase-1,GSDMD,and GSDMD-N were significantly decreased in the lipopolysaccharide+adenosine triphosphate+Modified Erxian Pill group(P<0.05),and had a certain dose dependence.These findings verify that the drug-containing serum of Modified Erxian Pill may inhibit the pyroptosis of J774A.1 macrophages by regulating the NLRP3/Caspase-1/GSDMD pathway.
7.Overview of Studies on the Intervention of Chinese Medicinals in Energy Metabolism Reconstruction in Heart Failure
Xinyue NING ; Wenxiao LI ; Zhenyu ZHAO ; Yang GUO ; Panpan ZHOU ; Ludan ZHAO ; Lin LI
Journal of Traditional Chinese Medicine 2025;66(10):1073-1077
Energy metabolism reconstruction is the new target of the treatment of heart failure. By combing the researches of Chinese medicinals for energy metabolism reconstruction of heart failure, it was found that Chinese medicinal compound formula and single Chinese medicinal have a certain role in regulating energy metabolism, mainly through three aspects, including the optimization of substrate utilization, improvement of mitochondrial structure, function, and homeostasis, and improvement of mitochondrial energy transport, so as to make the energy metabolism of the cardiomyocyte adjusted in the direction of beneficial to the organism, increasing the supply of energy, and improving the cardiac function.
8.Effect of transcranial magneto-acousto-electrical stimulation on the plasticity of the prefrontal cortex network in mice
Shuai ZHANG ; Zichun LI ; Yihao XU ; Xiaofeng XIE ; Zhongsheng GUO ; Qingyang ZHAO
Chinese Journal of Tissue Engineering Research 2025;29(6):1108-1117
BACKGROUND:Transcranial magneto-acoustic-electrical stimulation is a novel non-invasive neural regulation technique that utilizes the induced electric field generated by the coupling effect of ultrasound and static magnetic field to regulate the discharge activity of the nervous system.However,the mechanism by which it affects synaptic plasticity in the brain is still not enough. OBJECTIVE:To explore the effect of transcranial magneto-acoustic-electrical stimulation intensity on synaptic plasticity of the prefrontal cortex neural network in mice. METHODS:(1)Animal experiment:Twenty-four C57 mice were equally and randomly divided into four groups:the control group receiving pseudo-stimulation,the 6.35 W/cm2 stimulation group receiving coupled stimulation of 0.3 T,6.35 W/cm2,the 17.36 W/cm2 stimulation group receiving coupled stimulation of 0.3 T,17.36 W/cm2,and the 56.25 W/cm2 stimulation group receiving coupled stimulation of 0.3 T,56.25 W/cm2.The local field potential signals and behavioral correctness were recorded during the execution of T-maze in mice.(2)Modeling and simulation experiments:A neural network model of the prefrontal cortex in mice stimulated by transcranial magneto-acoustic-electrical stimulation was constructed to compare the structural connectivity characteristics of the neural network under different stimulation intensities. RESULTS AND CONCLUSION:Transcranial magneto-acoustic-electrical stimulation could effectively shorten the behavior learning time,improve the working memory ability of mice(P<0.05),and continue to stimulate the frontal lobe of mice after learning behavior.There was no significant difference in the accuracy of the T-maze behavioral experiment among the experimental groups(P>0.1).Analysis of local field potential signals in the frontal lobe of mice revealed that transcranial magneto-acoustic-electrical stimulation promoted energy enhancement of β and γ rhythms.As the stimulation intensity increased,there was an asynchronous decrease in β and γ rhythms.Through β-γ phase amplitude coupling,it was found that stimuli could enhance the neural network's ability to adapt to new information and task requirements.Modeling and simulation experiments found that stimulation could enhance the discharge level of the neural network,increase the long-term synaptic weight level,and decrease the short-term synaptic weight level only when the stimulation intensity was high.To conclude,there is a complex nonlinear relationship between different stimulus intensities and the functional structure of neural networks.This neural regulation technique may provide new possibilities for the treatment of related neurological diseases such as synaptic dysfunction and neural network abnormalities.
9.Clematichinenoside AR protects bone marrow mesenchymal stem cells from hypoxia-induced apoptosis by maintaining mitochondrial homeostasis.
Zi-Tong ZHAO ; Peng-Cheng TU ; Xiao-Xian SUN ; Ya-Lan PAN ; Yang GUO ; Li-Ning WANG ; Yong MA
China Journal of Chinese Materia Medica 2025;50(5):1331-1339
This study aims to elucidate the role and mechanism of clematichinenoside AR(CAR) in protecting bone marrow mesenchymal stem cells(BMSCs) from hypoxia-induced apoptosis. BMSCs were isolated by the bone fragment method and identified by flow cytometry. Cells were cultured under normal conditions(37℃, 5% CO_2) and hypoxic conditions(37℃, 90% N_2, 5% CO_2) and treated with CAR. The BMSCs were classified into eight groups: control(normal conditions), CAR(normal conditions + CAR), hypoxia 24 h, hypoxia 24 h + CAR, hypoxia 48 h, hypoxia 48 h + CAR, hypoxia 72 h, and hypoxia 72 h + CAR. The cell counting kit-8(CCK-8) assay and terminal-deoxynucleoitidyl transferase mediated nick end labeling(TUNEL) were employed to measure cell proliferation and apoptosis, respectively. The number of mitochondria and mitochondrial membrane potential were measured by MitoTracker®Red CM-H2XRo staining and JC-1 staining, respectively. The level of reactive oxygen species(ROS) was measured with the DCFH-DA fluorescence probe. The protein levels of B-cell lymphoma-2 associated X protein(BAX), caspase-3, and optic atrophy 1(OPA1) were determined by Western blot. The results demonstrated that CAR significantly increased cell proliferation. Compared with the control group, the hypoxia groups showed increased apoptosis rates, reduced mitochondria, elevated ROS levels, decreased mitochondrial membrane potential, upregulated expression of BAX and caspase-3, and downregulated expression of OPA1. In comparison to the corresponding hypoxia groups, CAR intervention significantly decreased the apoptosis rate, increased mitochondria, reduced ROS levels, elevated mitochondrial membrane potential, downregulated the expression of BAX and caspase-3, and upregulated the expression of OPA1. Therefore, it can be concluded that CAR may exert an anti-apoptotic effect on BMSCs under hypoxic conditions by regulating OPA1 to maintain mitochondrial homeostasis.
Mesenchymal Stem Cells/metabolism*
;
Apoptosis/drug effects*
;
Mitochondria/metabolism*
;
Animals
;
Rats
;
Cell Hypoxia/drug effects*
;
Homeostasis/drug effects*
;
Reactive Oxygen Species/metabolism*
;
Rats, Sprague-Dawley
;
Membrane Potential, Mitochondrial/drug effects*
;
Saponins/pharmacology*
;
Caspase 3/genetics*
;
Male
;
bcl-2-Associated X Protein/genetics*
;
Bone Marrow Cells/metabolism*
;
Cell Proliferation/drug effects*
;
Protective Agents/pharmacology*
;
Cells, Cultured
10.Study on strategies and methods for discovering risk of traditional Chinese medicine-related liver injury based on real-world data: an example of Corydalis Rhizoma.
Long-Xin GUO ; Li LIN ; Yun-Juan GAO ; Min-Juan LONG ; Sheng-Kai ZHU ; Ying-Jie XU ; Xu ZHAO ; Xiao-He XIAO
China Journal of Chinese Materia Medica 2025;50(13):3784-3795
In recent years, there have been frequent adverse reactions/events associated with traditional Chinese medicine(TCM), especially liver injury related to traditional non-toxic TCM, which requires adequate attention. Liver injury related to traditional non-toxic TCM is characterized by its sporadic and insidious nature and is influenced by various factors, making its detection and identification challenging. There is an urgent need to develop a strategy and method for early detection and recognition of traditional non-toxic TCM-related liver injury. This study was based on national adverse drug reaction monitoring center big data, integrating methodologies such as reporting odds ratio(ROR), network toxicology, and computational chemistry, so as to systematically research the risk signal identification and evaluation methods for TCM-related liver injury. The optimized ROR method was used to discover potential TCM with a risk of liver injury, and network toxicology and computational chemistry were used to identify potentially high-risk TCM. Additionally, typical clinical cases were analyzed for confirmation. An integrated strategy of "discovery via big data, identification via dry/wet method, confirmation via typical cases, and precise risk prevention and control" was developed to identify the risk of TCM-related liver injury. Corydalis Rhizoma was identified as a TCM with high risk, and its toxicity-related substances and potential toxicity mechanisms were analyzed. The results revealed that liver injury is associated with components such as tetrahydropalmatine and tetrahydroberberine, with potential mechanisms related to immune-inflammatory pathways such as the tumor necrosis factor signaling pathway, interleukin-17 signaling pathway, and Th17 cell differentiation. This paper innovatively integrated real-world evidence and computational toxicology methods, offering insights and technical support for establishing a risk discovery and identification strategy for TCM-related liver injury based on real-world big data, providing innovative ideas and strategies for guiding the safe and rational use of medication in clinical practices.
Corydalis/adverse effects*
;
Drugs, Chinese Herbal/adverse effects*
;
Humans
;
Chemical and Drug Induced Liver Injury/etiology*
;
Medicine, Chinese Traditional/adverse effects*
;
Rhizome/adverse effects*
;
Male
;
Female

Result Analysis
Print
Save
E-mail