1.Research and Application of Scalp Surface Laplacian Technique
Rui-Xin LUO ; Si-Ying GUO ; Xin-Yi LI ; Yu-He ZHAO ; Chun-Hou ZHENG ; Min-Peng XU ; Dong MING
Progress in Biochemistry and Biophysics 2025;52(2):425-438
Electroencephalogram (EEG) is a non-invasive, high temporal-resolution technique for monitoring brain activity. However, affected by the volume conduction effect, EEG has a low spatial resolution and is difficult to locate brain neuronal activity precisely. The surface Laplacian (SL) technique obtains the Laplacian EEG (LEEG) by estimating the second-order spatial derivative of the scalp potential. LEEG can reflect the radial current activity under the scalp, with positive values indicating current flow from the brain to the scalp (“source”) and negative values indicating current flow from the scalp to the brain (“sink”). It attenuates signals from volume conduction, effectively improving the spatial resolution of EEG, and is expected to contribute to breakthroughs in neural engineering. This paper provides a systematic overview of the principles and development of SL technology. Currently, there are two implementation paths for SL technology: current source density algorithms (CSD) and concentric ring electrodes (CRE). CSD performs the Laplace transform of the EEG signals acquired by conventional disc electrodes to indirectly estimate the LEEG. It can be mainly classified into local methods, global methods, and realistic Laplacian methods. The global method is the most commonly used approach in CSD, which can achieve more accurate estimation compared with the local method, and it does not require additional imaging equipment compared with the realistic Laplacian method. CRE employs new concentric ring electrodes instead of the traditional disc electrodes, and measures the LEEG directly by differential acquisition of the multi-ring signals. Depending on the structure, it can be divided into bipolar CRE, quasi-bipolar CRE, tripolar CRE, and multi-pole CRE. The tripolar CRE is widely used due to its optimal detection performance. While ensuring the quality of signal acquisition, the complexity of its preamplifier is relatively acceptable. Here, this paper introduces the study of the SL technique in resting rhythms, visual-related potentials, movement-related potentials, and sensorimotor rhythms. These studies demonstrate that SL technology can improve signal quality and enhance signal characteristics, confirming its potential applications in neuroscientific research, disease diagnosis, visual pathway detection, and brain-computer interfaces. CSD is frequently utilized in applications such as neuroscientific research and disease detection, where high-precision estimation of LEEG is required. And CRE tends to be used in brain-computer interfaces, that have stringent requirements for real-time data processing. Finally, this paper summarizes the strengths and weaknesses of SL technology and envisages its future development. SL technology boasts advantages such as reference independence, high spatial resolution, high temporal resolution, enhanced source connectivity analysis, and noise suppression. However, it also has shortcomings that can be further improved. Theoretically, simulation experiments should be conducted to investigate the theoretical characteristics of SL technology. For CSD methods, the algorithm needs to be optimized to improve the precision of LEEG estimation, reduce dependence on the number of channels, and decrease computational complexity and time consumption. For CRE methods, the electrodes need to be designed with appropriate structures and sizes, and the low-noise, high common-mode rejection ratio preamplifier should be developed. We hope that this paper can promote the in-depth research and wide application of SL technology.
2.Tasquinimod promotes the sensitivity of ovarian cancer cells to cisplatin by down-regulating the HDAC4/p21 pathway
Zhao LI ; Ya-Hong WU ; Ye-Qing GUO ; Xiao-Jia MIN ; Ying LIN
The Korean Journal of Physiology and Pharmacology 2025;29(2):191-204
To investigate whether Tasquinimod can influence cisplatin resistance in drug-resistant ovarian cancer (OC) cell lines by regulating histone deacetylase 4 (HDAC4) or p21, we explored its effects on the cell cycle, and associated mechanisms.RT-PCR and Western blot analyses, flow cytometry, CCK8 assay, and immunofluorescence were utilized to investigate the effects of Tasquinimod on gene expression, cell cycle, apoptosis, viability, and protein levels in OC cells. The results showed that Tasquinimod inhibited cell viability and promoted apoptosis in SKOV3/DDP (cisplatin) and A2780/DDP cells more effectively than DDP alone. In combination with cisplatin, Tasquinimod further enhanced cell apoptosis and reduced cell viability in these cell lines, an effect that could be reversed following HDAC4 overexpression. Tasquinimod treatment down-regulated HDAC4, Bcl-2, and cyclin D1, and CDK4 expression and up-regulated the cleaved-Caspase-3, and p21 expression in SKOV3/DDP and A2780/ DDP cells. Additionally, Tasquinimod inhibited DDP resistance in OC/DDP cells. These effects were similarly observed in OC mouse models treated with Tasquinimod. In conclusion, Tasquinimod can improve OC cells' sensitivity to DDP by down-regulating the HDAC4/p21 axis, offering insights into potential strategies for overcoming cisplatin resistance in OC.
3.Tasquinimod promotes the sensitivity of ovarian cancer cells to cisplatin by down-regulating the HDAC4/p21 pathway
Zhao LI ; Ya-Hong WU ; Ye-Qing GUO ; Xiao-Jia MIN ; Ying LIN
The Korean Journal of Physiology and Pharmacology 2025;29(2):191-204
To investigate whether Tasquinimod can influence cisplatin resistance in drug-resistant ovarian cancer (OC) cell lines by regulating histone deacetylase 4 (HDAC4) or p21, we explored its effects on the cell cycle, and associated mechanisms.RT-PCR and Western blot analyses, flow cytometry, CCK8 assay, and immunofluorescence were utilized to investigate the effects of Tasquinimod on gene expression, cell cycle, apoptosis, viability, and protein levels in OC cells. The results showed that Tasquinimod inhibited cell viability and promoted apoptosis in SKOV3/DDP (cisplatin) and A2780/DDP cells more effectively than DDP alone. In combination with cisplatin, Tasquinimod further enhanced cell apoptosis and reduced cell viability in these cell lines, an effect that could be reversed following HDAC4 overexpression. Tasquinimod treatment down-regulated HDAC4, Bcl-2, and cyclin D1, and CDK4 expression and up-regulated the cleaved-Caspase-3, and p21 expression in SKOV3/DDP and A2780/ DDP cells. Additionally, Tasquinimod inhibited DDP resistance in OC/DDP cells. These effects were similarly observed in OC mouse models treated with Tasquinimod. In conclusion, Tasquinimod can improve OC cells' sensitivity to DDP by down-regulating the HDAC4/p21 axis, offering insights into potential strategies for overcoming cisplatin resistance in OC.
4.Tasquinimod promotes the sensitivity of ovarian cancer cells to cisplatin by down-regulating the HDAC4/p21 pathway
Zhao LI ; Ya-Hong WU ; Ye-Qing GUO ; Xiao-Jia MIN ; Ying LIN
The Korean Journal of Physiology and Pharmacology 2025;29(2):191-204
To investigate whether Tasquinimod can influence cisplatin resistance in drug-resistant ovarian cancer (OC) cell lines by regulating histone deacetylase 4 (HDAC4) or p21, we explored its effects on the cell cycle, and associated mechanisms.RT-PCR and Western blot analyses, flow cytometry, CCK8 assay, and immunofluorescence were utilized to investigate the effects of Tasquinimod on gene expression, cell cycle, apoptosis, viability, and protein levels in OC cells. The results showed that Tasquinimod inhibited cell viability and promoted apoptosis in SKOV3/DDP (cisplatin) and A2780/DDP cells more effectively than DDP alone. In combination with cisplatin, Tasquinimod further enhanced cell apoptosis and reduced cell viability in these cell lines, an effect that could be reversed following HDAC4 overexpression. Tasquinimod treatment down-regulated HDAC4, Bcl-2, and cyclin D1, and CDK4 expression and up-regulated the cleaved-Caspase-3, and p21 expression in SKOV3/DDP and A2780/ DDP cells. Additionally, Tasquinimod inhibited DDP resistance in OC/DDP cells. These effects were similarly observed in OC mouse models treated with Tasquinimod. In conclusion, Tasquinimod can improve OC cells' sensitivity to DDP by down-regulating the HDAC4/p21 axis, offering insights into potential strategies for overcoming cisplatin resistance in OC.
5.Tasquinimod promotes the sensitivity of ovarian cancer cells to cisplatin by down-regulating the HDAC4/p21 pathway
Zhao LI ; Ya-Hong WU ; Ye-Qing GUO ; Xiao-Jia MIN ; Ying LIN
The Korean Journal of Physiology and Pharmacology 2025;29(2):191-204
To investigate whether Tasquinimod can influence cisplatin resistance in drug-resistant ovarian cancer (OC) cell lines by regulating histone deacetylase 4 (HDAC4) or p21, we explored its effects on the cell cycle, and associated mechanisms.RT-PCR and Western blot analyses, flow cytometry, CCK8 assay, and immunofluorescence were utilized to investigate the effects of Tasquinimod on gene expression, cell cycle, apoptosis, viability, and protein levels in OC cells. The results showed that Tasquinimod inhibited cell viability and promoted apoptosis in SKOV3/DDP (cisplatin) and A2780/DDP cells more effectively than DDP alone. In combination with cisplatin, Tasquinimod further enhanced cell apoptosis and reduced cell viability in these cell lines, an effect that could be reversed following HDAC4 overexpression. Tasquinimod treatment down-regulated HDAC4, Bcl-2, and cyclin D1, and CDK4 expression and up-regulated the cleaved-Caspase-3, and p21 expression in SKOV3/DDP and A2780/ DDP cells. Additionally, Tasquinimod inhibited DDP resistance in OC/DDP cells. These effects were similarly observed in OC mouse models treated with Tasquinimod. In conclusion, Tasquinimod can improve OC cells' sensitivity to DDP by down-regulating the HDAC4/p21 axis, offering insights into potential strategies for overcoming cisplatin resistance in OC.
6.Tasquinimod promotes the sensitivity of ovarian cancer cells to cisplatin by down-regulating the HDAC4/p21 pathway
Zhao LI ; Ya-Hong WU ; Ye-Qing GUO ; Xiao-Jia MIN ; Ying LIN
The Korean Journal of Physiology and Pharmacology 2025;29(2):191-204
To investigate whether Tasquinimod can influence cisplatin resistance in drug-resistant ovarian cancer (OC) cell lines by regulating histone deacetylase 4 (HDAC4) or p21, we explored its effects on the cell cycle, and associated mechanisms.RT-PCR and Western blot analyses, flow cytometry, CCK8 assay, and immunofluorescence were utilized to investigate the effects of Tasquinimod on gene expression, cell cycle, apoptosis, viability, and protein levels in OC cells. The results showed that Tasquinimod inhibited cell viability and promoted apoptosis in SKOV3/DDP (cisplatin) and A2780/DDP cells more effectively than DDP alone. In combination with cisplatin, Tasquinimod further enhanced cell apoptosis and reduced cell viability in these cell lines, an effect that could be reversed following HDAC4 overexpression. Tasquinimod treatment down-regulated HDAC4, Bcl-2, and cyclin D1, and CDK4 expression and up-regulated the cleaved-Caspase-3, and p21 expression in SKOV3/DDP and A2780/ DDP cells. Additionally, Tasquinimod inhibited DDP resistance in OC/DDP cells. These effects were similarly observed in OC mouse models treated with Tasquinimod. In conclusion, Tasquinimod can improve OC cells' sensitivity to DDP by down-regulating the HDAC4/p21 axis, offering insights into potential strategies for overcoming cisplatin resistance in OC.
7.Associations between statins and all-cause mortality and cardiovascular events among peritoneal dialysis patients: A multi-center large-scale cohort study.
Shuang GAO ; Lei NAN ; Xinqiu LI ; Shaomei LI ; Huaying PEI ; Jinghong ZHAO ; Ying ZHANG ; Zibo XIONG ; Yumei LIAO ; Ying LI ; Qiongzhen LIN ; Wenbo HU ; Yulin LI ; Liping DUAN ; Zhaoxia ZHENG ; Gang FU ; Shanshan GUO ; Beiru ZHANG ; Rui YU ; Fuyun SUN ; Xiaoying MA ; Li HAO ; Guiling LIU ; Zhanzheng ZHAO ; Jing XIAO ; Yulan SHEN ; Yong ZHANG ; Xuanyi DU ; Tianrong JI ; Yingli YUE ; Shanshan CHEN ; Zhigang MA ; Yingping LI ; Li ZUO ; Huiping ZHAO ; Xianchao ZHANG ; Xuejian WANG ; Yirong LIU ; Xinying GAO ; Xiaoli CHEN ; Hongyi LI ; Shutong DU ; Cui ZHAO ; Zhonggao XU ; Li ZHANG ; Hongyu CHEN ; Li LI ; Lihua WANG ; Yan YAN ; Yingchun MA ; Yuanyuan WEI ; Jingwei ZHOU ; Yan LI ; Caili WANG ; Jie DONG
Chinese Medical Journal 2025;138(21):2856-2858
8.Effect of different phosphorus application on morphological traits, active ingredients and rhizosphere soil microbial community of Polygala tenuifolia.
Huan GUO ; Tong WEI ; Wen-Hua CUI ; Huan SHI ; Fu-Ying MAO ; Xian GU ; Yun-Sheng ZHAO ; Xiao-Feng LIANG
China Journal of Chinese Materia Medica 2025;50(14):3898-3908
To investigate the effects of phosphorus fertilizer on the morphological traits, active ingredients and rhizosphere soil microbial community of Polygala tenuifolia. The phosphorus fertilizer was calculated in terms of P_2O_5. Five treatments were set up: 0(CK), 17(P1), 34(P2), 51(P3), and 68(P4) kg per Mu(1 Mu≈667 m~2). A randomized block design was adopted. Samples of P. tenuifolia and its rhizosphere soil were collected under different superphosphate fertilizer treatments. Illumina high-throughput sequencing was used to analyze the rhizosphere soil microbial community, 9 morphological traits were measured and the content of 11 active ingredients were determined. The results showed that the whole plant weight, shoot fresh weight, root weight, and root peel thickness were the highest under P1 treatment, increasing by 34.41%, 38.80%, 39.21%, and 3.17% respectively compared to CK. Under P2 treatment, the plant height, stem diameter, root thickness, and core thickness were significantly higher than CK. Phosphorus fertilizer had a significant impact on the content of tenuifolin, sibiricose A5, sibiricose A6, arillanin A, 3,6'-disinapoyl sucrose, and polygalaxanthone Ⅲ. Correlation analysis results showed that the relative abundance of Arthrobacter, Bacillus, norank_f_Vicinamibacteraceae, norank_o_Vicinamibacterales, MND1 and other bacteria, as well as the relative abundance of Neocosmospora, Paraphoma and other fungi were positively correlated with root diameter, wood core diameter, the whole plant weight, root weight, shoot fresh weight of P. tenuifolia. Bacillus, Neocosmospora, Subulicystidium were significantly positively correlated with oligosaccharides such as 3,6'-disinapoyl sucrose, sibiricose A5、sibiricose A6、glomeratose A、arillanin A and tenuifoliside C. Arthrobacter, Humicola, Aspergillus, Paraphoma were positively correlated with tenuifolin and norank_f_Vicinamibacteraceae, norank_o_Vicinamibacterales, Fusarium were positively correlated with polygalaxanthone Ⅲ. Evidently, appropriate phosphorus application is conducive to the growth and quality improvement of P. tenuifolia, and can increase the abundance of beneficial microorganisms in the soil.
Rhizosphere
;
Phosphorus/pharmacology*
;
Soil Microbiology
;
Polygala/anatomy & histology*
;
Fertilizers/analysis*
;
Bacteria/metabolism*
;
Soil/chemistry*
;
Microbiota/drug effects*
;
Plant Roots/metabolism*
9.Study on strategies and methods for discovering risk of traditional Chinese medicine-related liver injury based on real-world data: an example of Corydalis Rhizoma.
Long-Xin GUO ; Li LIN ; Yun-Juan GAO ; Min-Juan LONG ; Sheng-Kai ZHU ; Ying-Jie XU ; Xu ZHAO ; Xiao-He XIAO
China Journal of Chinese Materia Medica 2025;50(13):3784-3795
In recent years, there have been frequent adverse reactions/events associated with traditional Chinese medicine(TCM), especially liver injury related to traditional non-toxic TCM, which requires adequate attention. Liver injury related to traditional non-toxic TCM is characterized by its sporadic and insidious nature and is influenced by various factors, making its detection and identification challenging. There is an urgent need to develop a strategy and method for early detection and recognition of traditional non-toxic TCM-related liver injury. This study was based on national adverse drug reaction monitoring center big data, integrating methodologies such as reporting odds ratio(ROR), network toxicology, and computational chemistry, so as to systematically research the risk signal identification and evaluation methods for TCM-related liver injury. The optimized ROR method was used to discover potential TCM with a risk of liver injury, and network toxicology and computational chemistry were used to identify potentially high-risk TCM. Additionally, typical clinical cases were analyzed for confirmation. An integrated strategy of "discovery via big data, identification via dry/wet method, confirmation via typical cases, and precise risk prevention and control" was developed to identify the risk of TCM-related liver injury. Corydalis Rhizoma was identified as a TCM with high risk, and its toxicity-related substances and potential toxicity mechanisms were analyzed. The results revealed that liver injury is associated with components such as tetrahydropalmatine and tetrahydroberberine, with potential mechanisms related to immune-inflammatory pathways such as the tumor necrosis factor signaling pathway, interleukin-17 signaling pathway, and Th17 cell differentiation. This paper innovatively integrated real-world evidence and computational toxicology methods, offering insights and technical support for establishing a risk discovery and identification strategy for TCM-related liver injury based on real-world big data, providing innovative ideas and strategies for guiding the safe and rational use of medication in clinical practices.
Corydalis/adverse effects*
;
Drugs, Chinese Herbal/adverse effects*
;
Humans
;
Chemical and Drug Induced Liver Injury/etiology*
;
Medicine, Chinese Traditional/adverse effects*
;
Rhizome/adverse effects*
;
Male
;
Female
10.Clinical and Laboratory Characteristics of Streptococcus mitis Causing Bloodstream Infection in Children with Hematological Disease.
Yu-Long FAN ; Guo-Qing ZHU ; Zhi-Ying TIAN ; Yan-Xia LYU ; Zhao WANG ; Ye GUO ; Wen-Yu YANG ; Qing-Song LIN ; Xiao-Juan CHEN
Journal of Experimental Hematology 2025;33(1):286-291
OBJECTIVE:
To investigate the risk factors, clinical characteristics, and bacterial resistance of bloodstream infections caused by Streptococcus mitis in children with hematological disease, so as to provide a reference for infection control.
METHODS:
The clinical information and laboratory findings of pediatric patients complicated with blood cultures positive for Streptococcus mitis from January 2018 to December 2020 in the Institute of Hematology & Blood Diseases Hospital were searched and collected. The clinical characteristics, susceptibility factors, and antibiotic resistance of the children were retrospectively analyzed.
RESULTS:
Data analysis from 2018 to 2020 showed that the proportion of Streptococcus mitis isolated from bloodstream infections in children (≤14 years old) with hematological diseases was the highest (19.91%) and significantly higher than other bacteria, accounting for 38.64% of Gram-positive cocci, and presented as an increasing trend year by year. A total of 427 children tested positive blood cultures, including 85 children with bloodstream infections caused by Streptococcus mitis who tested after fever. Most children experienced a recurrent high fever in the early and middle stages (≤6 d) of neutropenia and persistent fever for more than 3 days. After adjusting the antibiotics according to the preliminary drug susceptibility results, the body temperature of most children (63.5%) returned to normal within 4 days. The 85 children were mainly diagnosed with acute myeloid leukemia (AML), accounting for 84.7%. The proportion of children in the neutropenia stage was 97.7%. The incidence of oral mucosal damage, lung infection, and gastrointestinal injury symptoms was 40%, 31.8%, and 27.1%, respectively. The ratio of elevated C-reactive protein (CRP) and procalcitonin was 65.9% and 9.4%, respectively. All isolated strains of Streptococcus mitis were not resistant to vancomycin and linezolid, and the resistance rate to penicillin, cefotaxime, levofloxacin, and quinupristin-dalfopristin was 10.6%, 8.2%, 9.4%, and 14.1%, respectively. None of children died due to bloodstream infection caused by Streptococcus mitis.
CONCLUSION
The infection rate of Streptococcus mitis is increasing year by year in children with hematological diseases, especially in children with AML. Among them, neutropenia and oral mucosal damage after chemotherapy are high-risk infection factors. The common clinical symptoms include persistent high fever, oral mucosal damage, and elevated CRP. Penicillin and cephalosporins have good sensitivity. Linezolid, as a highly sensitive antibiotic, can effectively control infection and shorten the course of disease.
Humans
;
Child
;
Streptococcal Infections/microbiology*
;
Retrospective Studies
;
Hematologic Diseases/complications*
;
Streptococcus mitis
;
Drug Resistance, Bacterial
;
Risk Factors
;
Microbial Sensitivity Tests
;
Anti-Bacterial Agents
;
Female
;
Male
;
Bacteremia/microbiology*
;
Child, Preschool
;
Adolescent

Result Analysis
Print
Save
E-mail