1.A Randomized Controlled Trial of Stone Needle Thermocompression and Massage for Treating Chronic Musculoskeletal Pain in the Shoulder and Back:A Secondary Analysis of Muscle Elasticity as a Mediator
Jingjing QIAN ; Yuanjing LI ; Li LI ; Yawei XI ; Ying WANG ; Cuihua GUO ; Jiayan ZHOU ; Yaxuan SUN ; Shu LIU ; Guangjing YANG ; Na YUAN ; Xiaofang YANG
Journal of Traditional Chinese Medicine 2025;66(9):935-940
ObjectiveTo evaluate the effectiveness of stone needle thermocompression and massage compared to flurbiprofen gel patch in relieving chronic musculoskeletal pain in the shoulder and back, and to explore the potential mediating mechanism through muscle elasticity. MethodsA total of 120 patients with chronic musculoskeletal pain in the shoulder and back were randomly assigned to either stone needle group or flurbiprofen group, with 60 patients in each. The stone needle group received stone needle thermocompression and massage for 30 minutes, three times per week; the flurbiprofen group received flurbiprofen gel patch twice daily. Both groups were treated for 2 weeks. Pain improvement, as the primary outcome, was assessed using the Global Pain Scale (GPS) at baseline, after 2 weeks of treatment, and again 2 weeks post-treatment. To explore potential mechanisms, a mediator analysis was conducted by measuring changes in superficial and deep muscle elasticity using musculoskeletal ultrasound at baseline and after the 2-week treatment period. ResultsThe stone needle group showed significantly greater pain relief than the flurbiprofen group 2 weeks post-treatment. After adjusting for confounders related to pain duration, the between-group mean difference was -8.8 [95% CI (-18.2, -0.7), P<0.05]. Part of the therapeutic effect was mediated by changes in deep muscle elasticity, with a mediation effect size of -1.5 [95% CI (-2.0, -0.9), P = 0.024], accounting for 17.9% of the total effect. ConclusionStone needle thermocompression and massage can effectively relieve chronic musculoskeletal pain in the shoulder and back, partly through a mediating effect of improved deep muscle elasticity.
2.Carvedilol to prevent hepatic decompensation of cirrhosis in patients with clinically significant portal hypertension stratified by new non-invasive model (CHESS2306)
Chuan LIU ; Hong YOU ; Qing-Lei ZENG ; Yu Jun WONG ; Bingqiong WANG ; Ivica GRGUREVIC ; Chenghai LIU ; Hyung Joon YIM ; Wei GOU ; Bingtian DONG ; Shenghong JU ; Yanan GUO ; Qian YU ; Masashi HIROOKA ; Hirayuki ENOMOTO ; Amr Shaaban HANAFY ; Zhujun CAO ; Xiemin DONG ; Jing LV ; Tae Hyung KIM ; Yohei KOIZUMI ; Yoichi HIASA ; Takashi NISHIMURA ; Hiroko IIJIMA ; Chuanjun XU ; Erhei DAI ; Xiaoling LAN ; Changxiang LAI ; Shirong LIU ; Fang WANG ; Ying GUO ; Jiaojian LV ; Liting ZHANG ; Yuqing WANG ; Qing XIE ; Chuxiao SHAO ; Zhensheng LIU ; Federico RAVAIOLI ; Antonio COLECCHIA ; Jie LI ; Gao-Jun TENG ; Xiaolong QI
Clinical and Molecular Hepatology 2025;31(1):105-118
Background:
s/Aims: Non-invasive models stratifying clinically significant portal hypertension (CSPH) are limited. Herein, we developed a new non-invasive model for predicting CSPH in patients with compensated cirrhosis and investigated whether carvedilol can prevent hepatic decompensation in patients with high-risk CSPH stratified using the new model.
Methods:
Non-invasive risk factors of CSPH were identified via systematic review and meta-analysis of studies involving patients with hepatic venous pressure gradient (HVPG). A new non-invasive model was validated for various performance aspects in three cohorts, i.e., a multicenter HVPG cohort, a follow-up cohort, and a carvediloltreating cohort.
Results:
In the meta-analysis with six studies (n=819), liver stiffness measurement and platelet count were identified as independent risk factors for CSPH and were used to develop the new “CSPH risk” model. In the HVPG cohort (n=151), the new model accurately predicted CSPH with cutoff values of 0 and –0.68 for ruling in and out CSPH, respectively. In the follow-up cohort (n=1,102), the cumulative incidences of decompensation events significantly differed using the cutoff values of <–0.68 (low-risk), –0.68 to 0 (medium-risk), and >0 (high-risk). In the carvediloltreated cohort, patients with high-risk CSPH treated with carvedilol (n=81) had lower rates of decompensation events than non-selective beta-blockers untreated patients with high-risk CSPH (n=613 before propensity score matching [PSM], n=162 after PSM).
Conclusions
Treatment with carvedilol significantly reduces the risk of hepatic decompensation in patients with high-risk CSPH stratified by the new model.
3.Carvedilol to prevent hepatic decompensation of cirrhosis in patients with clinically significant portal hypertension stratified by new non-invasive model (CHESS2306)
Chuan LIU ; Hong YOU ; Qing-Lei ZENG ; Yu Jun WONG ; Bingqiong WANG ; Ivica GRGUREVIC ; Chenghai LIU ; Hyung Joon YIM ; Wei GOU ; Bingtian DONG ; Shenghong JU ; Yanan GUO ; Qian YU ; Masashi HIROOKA ; Hirayuki ENOMOTO ; Amr Shaaban HANAFY ; Zhujun CAO ; Xiemin DONG ; Jing LV ; Tae Hyung KIM ; Yohei KOIZUMI ; Yoichi HIASA ; Takashi NISHIMURA ; Hiroko IIJIMA ; Chuanjun XU ; Erhei DAI ; Xiaoling LAN ; Changxiang LAI ; Shirong LIU ; Fang WANG ; Ying GUO ; Jiaojian LV ; Liting ZHANG ; Yuqing WANG ; Qing XIE ; Chuxiao SHAO ; Zhensheng LIU ; Federico RAVAIOLI ; Antonio COLECCHIA ; Jie LI ; Gao-Jun TENG ; Xiaolong QI
Clinical and Molecular Hepatology 2025;31(1):105-118
Background:
s/Aims: Non-invasive models stratifying clinically significant portal hypertension (CSPH) are limited. Herein, we developed a new non-invasive model for predicting CSPH in patients with compensated cirrhosis and investigated whether carvedilol can prevent hepatic decompensation in patients with high-risk CSPH stratified using the new model.
Methods:
Non-invasive risk factors of CSPH were identified via systematic review and meta-analysis of studies involving patients with hepatic venous pressure gradient (HVPG). A new non-invasive model was validated for various performance aspects in three cohorts, i.e., a multicenter HVPG cohort, a follow-up cohort, and a carvediloltreating cohort.
Results:
In the meta-analysis with six studies (n=819), liver stiffness measurement and platelet count were identified as independent risk factors for CSPH and were used to develop the new “CSPH risk” model. In the HVPG cohort (n=151), the new model accurately predicted CSPH with cutoff values of 0 and –0.68 for ruling in and out CSPH, respectively. In the follow-up cohort (n=1,102), the cumulative incidences of decompensation events significantly differed using the cutoff values of <–0.68 (low-risk), –0.68 to 0 (medium-risk), and >0 (high-risk). In the carvediloltreated cohort, patients with high-risk CSPH treated with carvedilol (n=81) had lower rates of decompensation events than non-selective beta-blockers untreated patients with high-risk CSPH (n=613 before propensity score matching [PSM], n=162 after PSM).
Conclusions
Treatment with carvedilol significantly reduces the risk of hepatic decompensation in patients with high-risk CSPH stratified by the new model.
4.Carvedilol to prevent hepatic decompensation of cirrhosis in patients with clinically significant portal hypertension stratified by new non-invasive model (CHESS2306)
Chuan LIU ; Hong YOU ; Qing-Lei ZENG ; Yu Jun WONG ; Bingqiong WANG ; Ivica GRGUREVIC ; Chenghai LIU ; Hyung Joon YIM ; Wei GOU ; Bingtian DONG ; Shenghong JU ; Yanan GUO ; Qian YU ; Masashi HIROOKA ; Hirayuki ENOMOTO ; Amr Shaaban HANAFY ; Zhujun CAO ; Xiemin DONG ; Jing LV ; Tae Hyung KIM ; Yohei KOIZUMI ; Yoichi HIASA ; Takashi NISHIMURA ; Hiroko IIJIMA ; Chuanjun XU ; Erhei DAI ; Xiaoling LAN ; Changxiang LAI ; Shirong LIU ; Fang WANG ; Ying GUO ; Jiaojian LV ; Liting ZHANG ; Yuqing WANG ; Qing XIE ; Chuxiao SHAO ; Zhensheng LIU ; Federico RAVAIOLI ; Antonio COLECCHIA ; Jie LI ; Gao-Jun TENG ; Xiaolong QI
Clinical and Molecular Hepatology 2025;31(1):105-118
Background:
s/Aims: Non-invasive models stratifying clinically significant portal hypertension (CSPH) are limited. Herein, we developed a new non-invasive model for predicting CSPH in patients with compensated cirrhosis and investigated whether carvedilol can prevent hepatic decompensation in patients with high-risk CSPH stratified using the new model.
Methods:
Non-invasive risk factors of CSPH were identified via systematic review and meta-analysis of studies involving patients with hepatic venous pressure gradient (HVPG). A new non-invasive model was validated for various performance aspects in three cohorts, i.e., a multicenter HVPG cohort, a follow-up cohort, and a carvediloltreating cohort.
Results:
In the meta-analysis with six studies (n=819), liver stiffness measurement and platelet count were identified as independent risk factors for CSPH and were used to develop the new “CSPH risk” model. In the HVPG cohort (n=151), the new model accurately predicted CSPH with cutoff values of 0 and –0.68 for ruling in and out CSPH, respectively. In the follow-up cohort (n=1,102), the cumulative incidences of decompensation events significantly differed using the cutoff values of <–0.68 (low-risk), –0.68 to 0 (medium-risk), and >0 (high-risk). In the carvediloltreated cohort, patients with high-risk CSPH treated with carvedilol (n=81) had lower rates of decompensation events than non-selective beta-blockers untreated patients with high-risk CSPH (n=613 before propensity score matching [PSM], n=162 after PSM).
Conclusions
Treatment with carvedilol significantly reduces the risk of hepatic decompensation in patients with high-risk CSPH stratified by the new model.
5.Sini Powder Alleviates Stress Response and Suppresses Hepatocellular Carcinoma Development by Restoring Gut Microbiota.
Si MEI ; Zhe DENG ; Fan-Ying MENG ; Qian-Qian GUO ; He-Yun TAO ; Lin ZHANG ; Chang XI ; Qing ZHOU ; Xue-Fei TIAN
Chinese journal of integrative medicine 2025;31(9):802-811
OBJECTIVES:
To explore the underlying pharmacological mechanisms and its potential effects of Chinese medicine herbal formula Sini Powder (SNP) on hepatocellular carcinoma (HCC).
METHODS:
The active components of SNP and their in vivo distribution were identified using ultraperformance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. Construction of component-target-disease networks, protein-protein interaction network, Gene Ontology function and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis, and molecular docking were employed to analyze the active components and anti-HCC mechanisms of SNP. Cell viability assay and wound healing assay were utilized to confirm the effect of SNP-containing serum (2.5%, 5.0%, 10%, 20%, and 40%), isoprenaline or propranolol (both 10, 100, and 1,000 µ mol/L) on proliferation and migration of HepG 2 or Huh7 cells. Meanwhile, the effect of isoprenaline or propranolol on the β 2 adrenergic receptor (ADRB2) mRNA expression on HepG2 cells were measured by real-time quantitative reverse transcription (RT-qPCR). Mice with subcutaneous tumors were either subjected to chronic restraint stress (CRS) followed by SNP administration (364 mg/mL) or directly treated with SNP (364 mg/mL). These two parallel experiments were performed to validate the effects of SNP on stress responses. Stress-related proteins and hormones were quantified using RT-qPCR, enzyme-linked immunosorbent assay, and immunohistochemistry. Metagenomic sequencing was performed to confirm the influence of SNP on the gut microbiota in the tumor-bearing CRS mice.
RESULTS:
The distribution of the 12 active components of SNP was confirmed in various tissues and feces. Network pharmacology analysis confirmed the anti-HCC effects of the 5 active components. The potential anti-HCC mechanisms of SNP may involve the epidermal growth factor receptor (EGFR), proto-oncogene tyrosine-protein kinase Src (SRC) and signal transducer and activator of transcription 3 (STAT3) pathways. SNP-containing serum inhibited the proliferation of HepG2 and Huh7 cells at concentrations of 2.5% and 5.0%, respectively, after 24 h of treatment. Furthermore, SNP suppressed tumor progression in tumor-bearing mice exposed to CRS. SNP treatment also downregulated the expressions of stress-related proteins and pro-inflammatory cytokines, primarily by modulating the gut microbiota. Specifically, the abundance of Alistipes and Prevotella, which belong to the phylum Bacteroidetes, increased in the SNP-treated group, whereas Lachnospira, in the phylum Firmicutes, decreased.
CONCLUSION
SNP can combat HCC by alleviating stress responses through the regulation of gut microbiota.
Animals
;
Gastrointestinal Microbiome/drug effects*
;
Liver Neoplasms/microbiology*
;
Carcinoma, Hepatocellular/microbiology*
;
Humans
;
Drugs, Chinese Herbal/therapeutic use*
;
Powders
;
Cell Proliferation/drug effects*
;
Mice
;
Molecular Docking Simulation
;
Cell Line, Tumor
;
Hep G2 Cells
;
Receptors, Adrenergic, beta-2/genetics*
;
Stress, Physiological/drug effects*
;
Cell Movement/drug effects*
;
Male
;
Protein Interaction Maps/drug effects*
;
Cell Survival/drug effects*
;
Proto-Oncogene Mas
6.Study on the effect of different administration regimens of iprrazole enteric-coated tablets on inhibiting gastric acid secretion
Ting-Yuan PANG ; Zhi WANG ; Zi-Shu HU ; Zi-Han SHEN ; Yue-Qi WANG ; Ya-Qian CHEN ; Xue-Bing QIAN ; Jin-Ying LIANG ; Liang-Ying YI ; Jun-Long LI ; Zhi-Hui HAN ; Guo-Ping ZHONG ; Guo-Hua CHENG ; Hai-Tang HU
The Chinese Journal of Clinical Pharmacology 2024;40(1):92-96
Objective To compare the effects of 20 mg qd and 10 mg bidadministration of iprrazole enteric-coated tablets on the control of gastric acid in healthy subjects.Methods A randomized,single-center,parallel controlled trial was designed to include 8 healthy subjects.Randomly divided into 2 groups,20 mg qd administration group:20 mg enteric-coated tablets of iprrazole in the morning;10 mg bid administration group:10 mg enteric-coated tablets of iprrazole in the morning and 10 mg in the evening.The pH values in the stomach of the subjects before and 24 h after administration were monitored by pH meter.The plasma concentration of iprazole after administration was determined by HPLC-MS/MS.The main pharmacokinetic parameters were calculated by Phoenix WinNonlin(V8.0)software.Results The PK parameters of iprrazole enteric-coated tablets and reference preparations in fasting group were as follows:The Cmax of 20 mg qd group and 10 mg bid group were(595.75±131.15)and(283.50±96.98)ng·mL-1;AUC0-t were(5 531.94±784.35)and(4 686.67±898.23)h·ng·mL-1;AUC0-∞ were(6 003.19±538.59)and(7 361.48±1 816.77)h·ng·mL-1,respectively.The mean time percentage of gastric pH>3 after 20 mg qd and 10 mg bid were 82.64%and 61.92%,and the median gastric pH within 24 h were 6.25±1.49 and 3.53±2.05,respectively.The mean gastric pH values within 24 h were 5.71±1.36 and 4.23±1.45,respectively.The correlation analysis of pharmacokinetic/pharmacodynamics showed that there was no significant correlation between the peak concentration of drug in plasma and the inhibitory effect of acid.Conclusion Compared with the 20 mg qd group and the 10 mg bid group,the acid inhibition effect is better,the administration times are less,and the safety of the two administration regimes is good.
7.Mechanism of Yi Sui Sheng Xue Fang in improving renal injury induced by chemotherapy in mice based on Keap1/Nrf2 signaling pathway
Yu LIU ; Li-Ying ZHANG ; Ya-Feng QI ; Yang-Yang LI ; Shang-Zu ZHANG ; Qian XU ; Guo-Xiong HAO ; Fan NIU ; Yong-Qi LIU ; Zhi-Ming ZHANG
The Chinese Journal of Clinical Pharmacology 2024;40(5):703-707
Objective To study the effect and mechanism of action of Yi Sui Sheng Xue Fang(YSSX)in ameliorating chemotherapy-induced renal injury in mice through The Kelch-like ECH-associated protein 1(KEAP1)/Nuclear factor erythroid-derived 2-like 2(NRF2)signalling pathway.Methods A mouse kidney injury model was induced by intraperitoneal injection of carboplatin(40 mg·kg-1).C57BL/6 mice were randomly divided into blank group(0.9%NaCl),model group(kidney injury model)and experimental-L,experimental-M,experimental-H groups(0.53,1.05 and 2.10 g·kg-1·d-1 YSSX by gavage for 7 d).Keap1 and Nrf2 were determined by Western blot;superoxide dismutase(SOD)and malondialdehyde(MDA)activities were determined by spectrophotometry.Results The protein expression levels of Keap1 in blank group,model group and experimental-L,experimental-M,experimental-H groups were 0.26±0.02,0.64±0.03,0.59±0.01,0.45±0.05 and 0.34±0.02;the protein expression levels of Nrf2 were 0.69±0.06,0.35±0.01,0.36±0.01,0.48±0.02 and 0.56±0.01;the enzyme activities of catalase(CAT)were(572.49±912.92),(334.60±4.92),(402.76±9.80),(475.35±5.21)and(493.00±12.03)U·mg-1;glutathione(GSH)were(2.79±0.06),(0.51±0.01),(0.59±0.07),(1.29±0.04)and(1.70±0.08)μmol·L1;SOD were(477.00±4.32),(260.67±6.13),(272.67±2.87),(386.33±3.68)and(395.00±12.25)U·mL-1;MDA were(3.89±0.02),(7.32±0.03),(6.94±0.14),(4.60±0.01)and(4.34±0.02)nmol·mg prot-1.The differences of the above indexes in the model group compared with the blank group were statistically significant(P<0.01,P<0.001);the differences of the above indexes in experimental-M,experimental-H groups compared withe model group were statistically significant(P<0.01,P<0.001).Conclusion YSSX can activate Keap1/Nrf2 signaling pathway and regulate the oxidative stress state of the organism,thus improving the renal injury caused by chemotherapy in mice.
8.Pathological mechanism of hypoxia-inducible factor-1α in tumours and the current status of research on Chinese medicine intervention
Yu LIU ; Li-Ying ZHANG ; Guo-Xiong HAO ; Ya-Feng QI ; Qian XU ; Ye-Yuan LIU ; Chao YUAN ; Peng ZHU ; Yong-Qi LIU ; Zhi-Ming ZHANG
The Chinese Journal of Clinical Pharmacology 2024;40(11):1670-1674
Traditional Chinese medicine can regulate the hypoxia-inducible factor-1α(HIF-1α)signalling pathway and slow down tumour progression mainly by inhibiting tumour angiogenesis,glycolysis,epithelial mesenchymal transition and other pathological processes.This paper,starting from HIF-1α and related factors,reviews its pathological mechanism in tumours and the research of traditional Chinese medicine interventions with the aim of providing theoretical references for the treatment of tumours with traditional Chinese medicine.
9. The regulatory mechanism of physiological sleep-wake
Wei-Jie LU ; Kai LIU ; Xin-Ke ZHAO ; Qian-Rong LI ; Ying-Dong LI ; Guo-Tai WU
Chinese Pharmacological Bulletin 2024;40(3):421-426
This paper explains the mechanism of the mutual switching between physiological sleep and wakefulness from the aspects of the sleep circadian system and the sleep homeostasis system. In the circadian rhythm system, with the suprachiasmatic nucleus as the core, the anatomical connections between the suprachiasmatic nucleusand various systems that affect sleep are summarized, starting from the suprachiasmatic nucleus, passing through the four pathways of the melatonin system, namely, subventricular area of the hypothalamus, the ventrolateral nucleus of the preoptic area, orexin neurons, and melatonin, then the related mechanisms of their regulation of sleep and wakefulness are expounded. In the sleep homeostasis system, with adenosine and prostaglandin D2 as targets, the role of hypnogen in sleep arousal mechanisms in regulation is also expounded.
10.Clinical Efficacy Analysis of Preconceptional Laparoscopic Cervical Cerclage in the Treatment of Cervical Incompetence
Yana LIU ; Yuxi JIN ; Meng MAO ; Qian WANG ; Xueyan LIU ; Siyu LI ; Ying ZHANG ; Lei CHANG ; Ruixia GUO
Journal of Practical Obstetrics and Gynecology 2024;40(7):572-576
Objective:To evaluate the application value of preconceptional laparoscopic cervical cerclage(LCC)in improving the pregnancy outcomes with cervical incompetence(CIC).Methods:Clinical data of 112 pa-tients with CIC who underwent preconceptional LCC in The First Affiliated Hospital of Zhengzhou University from July 1,2014 to May 31,2023 were retrospectively reviewed.The surgical indications of preconceptional LCC in-cluded:failed transvaginal cervical cerclage(TCC)(42 patients),history of cervical surgery+failed TCC(7 pa-tients),unsuitability for TCC(10 patients)and strong request from patients(53 patients).The surgical situation and pregnancy outcome of preconceptional LCC were analyzed,and the gestational age of delivery before and af-ter preconceptional LCC surgery and different surgical indications were compared in postoperative delivery pa-tients who underwent preconceptional LCC.Results:The median operation time of 112 patients was 65.5 min,the median intraoperative blood loss was 10.0 ml,and there were no intraoperative complications.The postopera-tive hospital stay was 2.9±0.6 d.108 cases were followed up after surgery,with 77 cases of pregnancy and de-livery after LCC.A total of 205 deliveries were made before surgery,and 81 deliveries were made after surgery.Successful postoperative deliveries(delivery after 28 weeks)were 78(96.3% ),with an average gestational age 37.4±1.7 weeks.The preterm birth rate was 16.7%,term birth rate was 83.3% .The delivery rate at≥28 weeks after preconceptional LCC was significantly higher than the previous delivery rate of pre pregnancy LCC(96.3% vs.10.7%,P<0.05),and the gestational age was significantly prolonged(36.4±5.5 weeks vs.19.8±7.5 weeks,P<0.05).The postoperative delivery gestational week of preconceptional LCC with different surgical indi-cations was significantly later than the previous delivery gestational week of pre pregnancy LCC(P<0.05),ex-cept for the indication of unsuitability for TCC(P>0.05).Conclusions:Preconceptional LCC surgery is highly safe and can effectively prolong the gestational age and improve pregnancy outcomes in patients with CIC.It can be an effective treatment method for patients with a history of TCC failure.

Result Analysis
Print
Save
E-mail