1.In situ Analytical Techniques for Membrane Protein Interactions
Zi-Yuan KANG ; Tong YU ; Chao LI ; Xue-Hua ZHANG ; Jun-Hui GUO ; Qi-Chang LI ; Jing-Xing GUO ; Hao XIE
Progress in Biochemistry and Biophysics 2025;52(5):1206-1218
Membrane proteins are integral components of cellular membranes, accounting for approximately 30% of the mammalian proteome and serving as targets for 60% of FDA-approved drugs. They are critical to both physiological functions and disease mechanisms. Their functional protein-protein interactions form the basis for many physiological processes, such as signal transduction, material transport, and cell communication. Membrane protein interactions are characterized by membrane environment dependence, spatial asymmetry, weak interaction strength, high dynamics, and a variety of interaction sites. Therefore, in situ analysis is essential for revealing the structural basis and kinetics of these proteins. This paper introduces currently available in situ analytical techniques for studying membrane protein interactions and evaluates the characteristics of each. These techniques are divided into two categories: label-based techniques (e.g., co-immunoprecipitation, proximity ligation assay, bimolecular fluorescence complementation, resonance energy transfer, and proximity labeling) and label-free techniques (e.g., cryo-electron tomography, in situ cross-linking mass spectrometry, Raman spectroscopy, electron paramagnetic resonance, nuclear magnetic resonance, and structure prediction tools). Each technique is critically assessed in terms of its historical development, strengths, and limitations. Based on the authors’ relevant research, the paper further discusses the key issues and trends in the application of these techniques, providing valuable references for the field of membrane protein research. Label-based techniques rely on molecular tags or antibodies to detect proximity or interactions, offering high specificity and adaptability for dynamic studies. For instance, proximity ligation assay combines the specificity of antibodies with the sensitivity of PCR amplification, while proximity labeling enables spatial mapping of interactomes. Conversely, label-free techniques, such as cryo-electron tomography, provide near-native structural insights, and Raman spectroscopy directly probes molecular interactions without perturbing the membrane environment. Despite advancements, these methods face several universal challenges: (1) indirect detection, relying on proximity or tagged proxies rather than direct interaction measurement; (2) limited capacity for continuous dynamic monitoring in live cells; and (3) potential artificial influences introduced by labeling or sample preparation, which may alter native conformations. Emerging trends emphasize the multimodal integration of complementary techniques to overcome individual limitations. For example, combining in situ cross-linking mass spectrometry with proximity labeling enhances both spatial resolution and interaction coverage, enabling high-throughput subcellular interactome mapping. Similarly, coupling fluorescence resonance energy transfer with nuclear magnetic resonance and artificial intelligence (AI) simulations integrates dynamic structural data, atomic-level details, and predictive modeling for holistic insights. Advances in AI, exemplified by AlphaFold’s ability to predict interaction interfaces, further augment experimental data, accelerating structure-function analyses. Future developments in cryo-electron microscopy, super-resolution imaging, and machine learning are poised to refine spatiotemporal resolution and scalability. In conclusion, in situ analysis of membrane protein interactions remains indispensable for deciphering their roles in health and disease. While current technologies have significantly advanced our understanding, persistent gaps highlight the need for innovative, integrative approaches. By synergizing experimental and computational tools, researchers can achieve multiscale, real-time, and perturbation-free analyses, ultimately unraveling the dynamic complexity of membrane protein networks and driving therapeutic discovery.
2.Constructing a model of degenerative scoliosis using finite element method:biomechanical analysis in etiology and treatment
Kai HE ; Wenhua XING ; Shengxiang LIU ; Xianming BAI ; Chen ZHOU ; Xu GAO ; Yu QIAO ; Qiang HE ; Zhiyu GAO ; Zhen GUO ; Aruhan BAO ; Chade LI
Chinese Journal of Tissue Engineering Research 2025;29(3):572-578
BACKGROUND:Degenerative scoliosis is defined as a condition that occurs in adulthood with a coronal cobb angle of the spine>10° accompanied by sagittal deformity and rotational subluxation,which often produces symptoms of spinal cord and nerve compression,such as lumbar pain,lower limb pain,numbness,weakness,and neurogenic claudication.The finite element method is a mechanical analysis technique for computer modelling,which can be used for spinal mechanics research by building digital models that can realistically restore the human spine model and design modifications. OBJECTIVE:To review the application of finite element method in the etiology and treatment of degenerative scoliosis. METHODS:The literature databases CNKI,PubMed,and Web of Science were searched for articles on the application of finite element method in degenerative scoliosis published before October 2023.Search terms were"finite element analysis,biomechanics,stress analysis,degenerative scoliosis,adult spinal deformity"in Chinese and English.Fifty-four papers were finally included. RESULTS AND CONCLUSION:(1)The biomechanical findings from the degenerative scoliosis model constructed using the finite element method were identical to those from the in vivo experimental studies,which proves that the finite element method has a high practical value in degenerative scoliosis.(2)The study of the etiology and treatment of degenerative scoliosis by the finite element method is conducive to the prevention of the occurrence of the scoliosis,slowing down the progress of the scoliosis,the development of a more appropriate treatment plan,the reduction of complications,and the promotion of the patients'surgical operation.(3)The finite element method has gradually evolved from a single bony structure to the inclusion of soft tissues such as muscle ligaments,and the small sample content is increasingly unable to meet the research needs.(4)The finite element method has much room for exploration in degenerative scoliosis.
3.Study on accumulation of polysaccharide and steroid components in Polyporus umbellatus infected by Armillaria spp.
Ming-shu YANG ; Yi-fei YIN ; Juan CHEN ; Bing LI ; Meng-yan HOU ; Chun-yan LENG ; Yong-mei XING ; Shun-xing GUO
Acta Pharmaceutica Sinica 2025;60(1):232-238
In view of the few studies on the influence of
4.The Mesencephalic Locomotor Region for Locomotion Control
Xing-Chen GUO ; Yan XIE ; Xin-Shuo WEI ; Wen-Fen LI ; Ying-Yu SUN
Progress in Biochemistry and Biophysics 2025;52(7):1804-1816
Locomotion, a fundamental motor function encompassing various forms such as swimming, walking, running, and flying, is essential for animal survival and adaptation. The mesencephalic locomotor region (MLR), located at the midbrain-hindbrain junction, is a conserved brain area critical for controlling locomotion. This review highlights recent advances in understanding the MLR’s structure and function across species, from lampreys to mammals and birds, with a particular focus on insights gained from optogenetic studies in mammals. The goal is to uncover universal strategies for MLR-mediated locomotor control. Electrical stimulation of the MLR in species such as lampreys, salamanders, cats, and mice initiates locomotion and modulates speed and patterns. For example, in lampreys, MLR stimulation induces swimming, with increased intensity or frequency enhancing propulsive force. Similarly, in salamanders, graded stimulation transitions locomotor outputs from walking to swimming. Histochemical studies reveal that effective MLR stimulation sites colocalize with cholinergic neurons, suggesting a conserved neurochemical basis for locomotion control. In mammals, the MLR comprises two key nuclei: the cuneiform nucleus (CnF) and the pedunculopontine nucleus (PPN). Both nuclei contain glutamatergic and GABAergic neurons, with the PPN additionally housing cholinergic neurons. Optogenetic studies in mice by selectively activating glutamatergic neurons have demonstrated that the CnF and PPN play distinct roles in motor control: the CnF drives rapid escape behaviors, while the PPN regulates slower, exploratory movements. This functional specialization within the MLR allows animals to adapt their locomotion patterns and speed in response to environmental demands and behavioral objectives. Similar to findings in lampreys, the CnF and PPN in mice transmit motor commands to spinal effector circuits by modulating the activity of brainstem reticular formation neurons. However, they achieve this through distinct reticulospinal pathways, enabling the generation of specific behaviors. Further insights from monosynaptic rabies viral tracing reveal that the CnF and PPN integrate inputs from diverse brain regions to produce context-appropriate behaviors. For instance, glutamatergic neurons in the PPN receive signals from other midbrain structures, the basal ganglia, and medullary nuclei, whereas glutamatergic neurons in the CnF rarely receive inputs from the basal ganglia but instead are strongly influenced by the periaqueductal grey and inferior colliculus within the midbrain. These differential connectivity patterns underscore the specialized roles of the CnF and PPN in motor control, highlighting their unique contributions to coordinating locomotion. Birds exhibit exceptional flight capabilities, yet the avian MLR remains poorly understood. Comparative studies suggest that the pedunculopontine tegmental nucleus (PPTg) in birds is homologous to the mammalian PPN, which contains cholinergic neurons, while the intercollicular nucleus (ICo) or nucleus isthmi pars magnocellularis (ImC) may correspond to the CnF. These findings provide important clues for identifying the avian MLR and elucidating its role in flight control. However, functional validation through targeted experiments is urgently needed to confirm these hypotheses. Optogenetics and other advanced techniques in mice have greatly advanced MLR research, enabling precise manipulation of specific neuronal populations. Future studies should extend these methods to other species, particularly birds, to explore unique locomotor adaptations. Comparative analyses of MLR structure and function across species will deepen our understanding of the conserved and evolved features of motor control, revealing fundamental principles of locomotion regulation throughout evolution. By integrating findings from diverse species, we can uncover how the MLR has been adapted to meet the locomotor demands of different environments, from aquatic to aerial habitats.
5.N-butyl-9H-pyrimido4,5-bindole-2-carboxamide inhibits macrophage foaming and pyroptosis via NLRP3/caspase-1
Zhi-Yun SHU ; Zi-Xu HUYAN ; Wen-Qing ZHANG ; Shi-Shun XIE ; Hong-Yuan CHENG ; Guo-Xing XU ; Xiang-Jun LI
Chinese Pharmacological Bulletin 2024;40(6):1035-1041
Aim To design the pyrimidoindole deriva-tive N-butyl-9H-pyrimido[4,5-b]indole-2-carboxamide(BFPI)and synthesize it to investigate whether it in-hibits macrophage pyroptosis and foaming effects through the NLRP3/Caspase-1 pathway.Methods BFPI was synthesized using 2,4,6-triethoxycarbonyl-l,3,5-triazine and 2-aminoindole as starting materials and structurally characterized by 1H NMR,13C NMR,and ESI-MS.The in vitro cultured mouse monocyte macro-phage cell line RAW264.7 was divided into blank,model(PA)and therapeutic(BFPI)groups,and the cells in each group were treated with the corresponding culture medium for 24 h.The proliferative viability was detected by MTT assay,and the formation of intracel-lular lipid droplets was detected by oil red O staining,and NLRP3 was detected by Western-blot and RT-qPCR,caspase-1 and MCP-1 mRNA and protein ex-pression levels by Western blot and RT-qPCR.Results Compared with the blank group,the proliferation vi-ability of cells in the model group significantly de-creased and the formation of lipid droplets significantly increased;compared with the model group,the prolif-eration viability of cells in the treatment group signifi-cantly increased and the formation of lipid droplets sig-nificantly decreased,and the differences were statisti-cally significant(P<0.01);compared with the blank group,the cellular NLRP3,caspase-1 and MCP-1 mR-NA and protein expression levels of cells in the model group significantly increased;compared with the model group,the expression levels of the above indexes of the cells in the treatment group significantly decreased,and the difference was statistically significant(P<0.01).Conclusions BFPI contributes to delaying macrophage-derived foam cell formation during athero-genesis by inhibiting macrophage NLRP3,caspase-1,and MCP-1 expression and thereby promoting their pro-liferation and inhibiting lipid phagocytosis.
6.Clinical value of high frequency ultrasound in the diagnosis of hip joint involvement in patients with ankylosing spondylitis
Guo-Yan XUE ; Ying-Qi LI ; Rui WANG ; Wen-Xing WANG ; Zhuang DONG ; Jian-Feng DING
China Journal of Orthopaedics and Traumatology 2024;37(4):374-380
Objective To analyze the correlation between hip joint musculoskeletal ultrasound score and ankylosing spondylitis(AS)disease activity,as well as to investigate the value of high frequency ultrasound in the assessment of hip joint involvement in AS.Methods The clinical data of 244 patients with AS who were treated in the rheumatology department of from March 2019 to March 2022 were retrospectively analyzed.Among them,there 174 males and 70 females,aged from 19 to 58 years old with an average of(34.22±9.49)years old;the disease duration of AS patients ranged from 8 months to 26 years,with an average of(13.68±4.04)years.The 244 patients were divided into disease group(83 cases)and control group(161 cases)based in the presence of hip joint involuement.According to the the disease activity,patients in the disease group were further categorezed into active phase(45 cases)and stable phase(38 cases).The ultrasound scores of patients in the active and stable phases of the disease group and the control group were compared.Relevant factors of hip joint involvement in AS patients were analyzed,and analyze the correlation between ultrasound score and Bath ankylosing spondylitis disease activity score index(BASD AI),Bath ankylosing spondylitis functional index(BASFI),visual analogue score of pain(VAS),C-reactive protein(CRP),erythrocyte sedimentation rate(ESR),and the correlation between hip joint capsule score and tendon attach-ment end score and BASDAI,BASFI,VAS,CRP and ESR.Results The hip joint capsule score(3.06±1.12),femoral head score(1.45±0.43),tendon attachment end score(3.28±1.30)and total ultrasound score(6.65±2.31)of the disease group were higher than those of the control group(1.51±0.48)、(0.66±0.27)、(1.61±0.53)、(3.81±1.44)scores(P<0.05).Multifactor Logstic re-gression analysis showed that the course of disease,hip joint capsule score and total ultrasound score were independent risk factors for hip involvement in AS patients.The hip capsule score(3.65±1.22)and total ultrasound score(8.28±2.33)in the ac-tive phase of the disease group were higher than those in the stable phase(2.48±1.04)、(6.82±1.96)scores(P<0.05).The hip joint capsule score and total ultrasonic score of AS patients were positively correlated with BASDAI,BASFI,VAS,CRP,and ESR(P<0.05,P<0.01).The score of tendon attachment end was positively correlated with CRP(P<0.05).The score of joint capsule effusion in AS patients was positively correlated with BASDAI,BASFI and VAS(P<0.05,P<0.01).The synovial blood flow score was positively correlated with BASDAI,VAS,CRP and ESR(P<0.05,P<0.01).The synovial thickening score was positively correlated with BASDAI,BASFI,VAS,CRP and ESR(P<0.05,P<0.01).There was no correlation between the score of tendon attachment end and BASDAI,BASFI,VAS,CRP and ESR.Conclusion There is a correlation between hip joint ul-trasonic score of hip joint and clinical indexes in AS patients.Hip joint capsule score and total ultrasonic score were indepen-dent risk factors for hip involvement in AS patients.High frequency ultrasound exhibits clinical value in the diagnosis of hip joint involvement in AS patients.
7.Genetic diversity of Ixodes persulcatus in parts of Inner Mongolia
Meng-Yu CUI ; Si SU ; Li-Li XING ; Lan MU ; Rui-Juan GAO ; Qi-Qi GUO ; Hong REN ; Dong-Dong QI ; Jing-Feng YU
Chinese Journal of Zoonoses 2024;40(4):295-301
The aim of this study was to clarify the genetic diversity and population history of Ixodes persulcatus in some ar-eas of Inner Mongolia in order to provide accurate data for effective vector control programs and reveal the transmission mecha-nism.Samples were collected in 10 areas of Inner Mongolia during the active tick season(April 2021-July 2023)using the flag-dragging and manual sampling methods.The 16S rRNA and COI gene were sequenced to clarify genetic diversity of I.per-sulcatus.The positivity rates for the COI gene and 16S rRNA were 90.00%and 98.33%respectively.Overall,18 and 15 haplotypes were identified for the COI gene and 16S rRNA,respectively,with a total haplotype diversity>0.762 and total nucleotide diversity<0.005.The Tajima's values and Fu's Fs were negative for significance.A nucleotide mismatch map was shown as a single peak.The genetic differentiation index FST of the population indicates a small degree of genetic differ-entiation of the population,while analysis of molecular vari-ance indicates that the variation within populations was greater than between populations.Phylogenetic tree and haplotype network plots showed confounding distributions between hap-lotypes.I.persulcatus from the Hinggan League and Hulun-buir regions can adapt to environmental changes and possess abundant genetic diversity.Genetic differentiation is mainly concentrated within the population and no geographical isolation was observed.
8.Detection of five tick-borne pathogens in Maanshan City,Anhui Province,China
Guo-Dong YANG ; Kun YANG ; Liang-Liang JIANG ; Ming WU ; Ying HONG ; Ke-Xia XIANG ; Jia HE ; Lei GONG ; Dan-Dan SONG ; Ming-Jia BAO ; Xing-Zhou LI ; Tian QIN ; Yan-Hua WANG
Chinese Journal of Zoonoses 2024;40(4):308-314
Here,5 important pathogens carried by ticks in Maanshan City,Anhui Province,China were identified.In to-tal,642 ticks were collected from 13 villages around Maanshan City and identified by morphological and mitochondrial COI genes.The 16S rRNA gene of Francisella tularensis,ssrA gene of Bartonella,16S rRNA,ompA and ompB genes of Rickett-sia,16S rRNA and gltA genes of Anaplasma,and groEL and rpoB genes of Coxiella were sequenced.Reference sequences were retrieved from a public database.Phylogenetic trees were constructed with MEG A1 1.0 software.In total,36 Rickettsiae isolates were detected in 640 Haemaphysalis longicornis ticks,which included 20 isolates of Rickettsia heilongjian-gensis,16 of Candidatus Rickettsia jingxinensis,2 of Ana-plasma bovis,and 186 of Coxiella-like endosymbiont.R.hei-longjiangensis HY2 detected in this study and Anhui B8 strain,Ca.R.jingxinensis QL3 and those from Shanxi Prov-ince and Jiangsu Province,A.bovis JX4 and those from Shanxi Province were clustered on the same branch.Overall,17 ticks had combined infections and none of the 5 bacteria were detected in two Amblyomma testudinarium ticks.This is the first report of Ca.R.jingxinensis detected in H.longicornis ticks from Anhui Province.It is recommended that the two types of Rickettsia that cause spotted fever and A.bovis should be reported to local health authorities to initiate appropriate prevention and control measures.
9.Functional Studies on the Regulation of Flowering by PfFT3,a Member of the Perilla PEBP Gene Family
Qi-Feng WANG ; Xiao-Yan FENG ; Hui LI ; Fu-Peng HOU ; Xi GUO ; Jun-Xing LU ; Jian HU ; Tao ZHANG
Chinese Journal of Biochemistry and Molecular Biology 2024;40(8):1173-1184
Perilla frutescens,a short-day plant,is rich in biologically active substances and nutrients.Current research on Perilla frutescens focuses on agronomic traits such as yield and fatty acid accumula-tion,with limited exploration of the flowering process and floral organ development.The molecular regu-latory mechanisms underlying these aspects remain unclear.FLOWERING LOUC T(FT)is a florigen in Arabidopsis,plays critical roles in floral transition.PfFT3 is unannotated by genome but annotated by transcriptomics data to the FT-like subfamily.Its function in controlling flowering is yet to be explored.Here subcellular localization analysis showed that PfFT3 is localized in the nucleus and cytoplasm.The plant over-expression vector pCAMBIAI1303-PfFT3 was constructed and transformed into wild-type(Col-0)and mutant fd-2,fd-3,and ft-10 plants by agrobacterium-mediated inflorescence infiltration as a means of obtaining genetically stable and pure overexpression and backfill transgenic lines in Arabidopsis,respectively.Analysis of the results showed that overexpression of PfFT3 significantly promoted early flowering in Arabidopsis and rescued the late-flowering phenotype of the mutants fd-2,fd-3,and ft-10,and that expression of the exogenous PfFT3 promoted the expression of the downstream endogenous flow-ering genes AtSOC1,AtAP1,AtFUL,and AtLFY.This study demonstrates the positive role of PfFT3 in promoting flowering,providing a foundation for further investigation of PfPEBP function and advancing the breeding of early-flowering Perilla frrutescens cultivars.
10.Clinical Features and Prognosis of Acute T-cell Lymphoblastic Leukemia in Children——Multi-Center Data Analysis in Fujian
Chun-Ping WU ; Yong-Zhi ZHENG ; Jian LI ; Hong WEN ; Kai-Zhi WENG ; Shu-Quan ZHUANG ; Xing-Guo WU ; Xue-Ling HUA ; Hao ZHENG ; Zai-Sheng CHEN ; Shao-Hua LE
Journal of Experimental Hematology 2024;32(1):6-13
Objective:To evaluate the efficacy of acute T-cell lymphoblastic leukemia(T-ALL)in children and explore the prognostic risk factors.Methods:The clinical data of 127 newly diagnosed children with T-ALL admitted to five hospitals in Fujian province from April 2011 to December 2020 were retrospectively analyzed,and compared with children with newly diagnosed acute precursor B-cell lymphoblastic leukemia(B-ALL)in the same period.Kaplan-Meier analysis was used to evaluate the overall survival(OS)and event-free survival(EFS),and COX proportional hazard regression model was used to evaluate the prognostic factors.Among 116 children with T-ALL who received standard treatment,78 cases received the Chinese Childhood Leukemia Collaborative Group(CCLG)-ALL 2008 protocol(CCLG-ALL 2008 group),and 38 cases received the China Childhood Cancer Collaborative Group(CCCG)-ALL 2015 protocol(CCCG-ALL 2015 group).The efficacy and serious adverse event(SAE)incidence of the two groups were compared.Results:Proportion of male,age ≥ 10 years old,white blood cell count(WBC)≥ 50 × 109/L,central nervous system leukemia,minimal residual disease(MRD)≥ 1%during induction therapy,and MRD ≥ 0.01%at the end of induction in T-ALL children were significantly higher than those in B-ALL children(P<0.05).The expected 10-year EFS and OS of T-ALL were 59.7%and 66.0%,respectively,which were significantly lower than those of B-ALL(P<0.001).COX analysis showed that WBC ≥ 100 x 109/L at initial diagnosis and failure to achieve complete remission(CR)after induction were independent risk factors for poor prognosis.Compared with CCLG-ALL 2008 group,CCCG-ALL 2015 group had lower incidence of infection-related SAE(15.8%vs 34.6%,P=0.042),but higher EFS and OS(73.9%vs 57.2%,PEFS=0.090;86.5%vs 62.3%,PoS=0.023).Conclusions:The prognosis of children with T-ALL is worse than children with B-ALL.WBC ≥ 100 × 109/L at initial diagnosis and non-CR after induction(especially mediastinal mass has not disappeared)are the risk factors for poor prognosis.CCCG-ALL 2015 regimen may reduce infection-related SAE and improve efficacy.

Result Analysis
Print
Save
E-mail